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Abstract

Gaining understanding of food-web processes often requires a simplified representation of natural diversity. One such
simplification can be based on functional traits, as functionally similar species may provide a similar contribution to
ecosystem level-processes. However, understanding how similarity in functional traits actually translates into similar
contributions to ecosystem-level properties remains a challenge due to the complex ways in which traits can influence
species’ dynamics. Moreover, in many communities, seasonality alters the abiotic and biotic forcing regime, causing
ongoing changes to patterns of species’ dominance; groups of species do not stay intact but are rather continuously
subjected to changes throughout the year. Using long-term high frequency measurements of phytoplankton in Lake
Constance, we investigated the effect of seasonal changes on the relationship between functional similarity and temporal
dynamics similarity of 36 morphotypes, and the relative contribution of different functional traits during the different parts
of the year. Our results revealed seasonal differences in the overall degree of synchronization of morphotypes’ temporal
dynamics and how combinations of functional traits influence the relationship between functional trait similarity and
temporal dynamics similarity, showing that different forcing regimes change how species cope with their environment
based on their functional traits. Moreover, we show that the individual functional traits matter at different periods of the
year indicating that species which are dynamically similar at certain parts of the year may not be at others. The differential
strength of the overall and individual impact of functional traits on species’ temporal dynamics makes the cohesion of a pair
of functionally similar species dependent on the different forcing. Hence, simplifying food webs based solely on functional
traits may not provide consistent estimates of functional groups over all seasons.
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Introduction

Investigation into the structure and functioning of natural food-

webs often relies upon the aggregation of a high number of species

into fewer ecologically meaningful groups [1,2]. Early work in this

area focused on using information from the food web itself, such as

the flow of nutrients or energy, to define trophic roles or groups

and their similarity and reduce the complexity of ecosystems [3,4].

However, it was noted that sampling bias within empirical food

web data severely limited the use of any singular objective criterion

for defining groups [3,4]. The increasing acknowledgement that

species share specific functional properties fostered their descrip-

tion by the biological characteristics required for a species to

perform a particular role in the ecosystem through the measure-

ment of functional traits [5,6,7,8,9]. Suggested functional charac-

teristics range from e.g. basic adaptive strategies such as the C-R-S

concept [5] or a performance trait which is the net result of several

morpho-physiological traits [6], to specific morpho-physio-pheno-

logical traits which directly or indirectly impact fitness [7]. Hence,

they constitute potentially a valuable source of information for

aggregating species into groups responsible for particular ecosys-

tem-level functions such as N fixation and edible primary

production. However, understanding how similarity in functional

traits translates into similarity in the contribution to ecosystem-

level properties remains a challenge, due to the multitude of

potential functional characteristics exhibited by a species and the

complex, non-linear ways in which these can interact with a

variable environment and other species.

The contribution of a species to ecosystem-level properties is

linked to its temporal dynamics, which in turn is determined by the

interaction between its functional traits and density-dependent and

independent factors. In phytoplankton, the study of the general

relationship between functional trait similarity and temporal

dynamics similarity has shown that functionally similar species

have more similar temporal dynamics than functionally distant

ones [9]. However, this general pattern does not necessarily hold

all year round in temperate lakes and marine systems, in which

plankton communities experience strong seasonal changes in the

biotic and abiotic factors which govern dynamics [10]. Seasonality

potentially leads to changes in the relative impact of different

functional traits on temporal dynamics during different periods.

For example, previous work showed that there exists a seasonal
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alternation between coherent and compensatory dynamics in

edible and less edible phytoplankton [11]. During winter when

grazing and competition for nutrients are reduced, both groups

present coherent dynamics whereas during summer and fall, when

both grazing pressure and nutrient limitation are present, edible

and less-edible phytoplankton exhibit compensatory dynamics

[11]. Moreover, a clear pattern of positive and negative

covariances was found within and among functional groups of

phytoplankton, mainly driven by different types of predators

occurring at different parts of the growing season [12]. This

implies that certain functional traits are only important at certain

times, suggesting that species which are dynamically similar at

certain times are not at others, and challenging the view that

functional traits may provide an objective classification for species

aggregation in complex food webs.

The structure of phytoplankton assemblages varies greatly

according to the seasonal conditions and species may present

different strategies based on their tolerances - and thus their

functional characteristics - to different combinations of the degree

of vertical mixing, light and nutrient availability, competition and

grazing [13]. For example, light represents a very important

limiting factor for phytoplankton growth during winter, forcing

most morphotypes to very low densities. In contrast, competition

for nutrients and differential grazing are the dominant factors for

phytoplankton growth during summer. To understand how such

seasonal changes influence the adequacy of functional traits for

defining cohesive groups of functionally similar species throughout

the year, we paired long-term high-frequency measurements of

phytoplankton in large deep, mesotrophic Lake Constance, with

data on the 4 functional traits reflecting the most important growth

determining factors in Lake Constance (i.e. maximum growth rate,

nutrient demands, susceptibility to grazing and sedimentation) [7].

We determined the relationship between functional trait similarity

and temporal dynamics similarity, the relative importance of

functional traits for governing dynamics and the overall degree of

synchronization among populations for 6 seasonal periods with

different abiotic and biotic forcing. Analyzing the impact of

seasonality on the relationship between functional trait similarity

and temporal dynamics similarity will inform us whether

functional similarity is consistently a suitable criterion for

simplifying complex food webs throughout the year.

Methods

Data Acquisition
Upper Lake Constance (Bodensee) is a large (472 km2), deep

(depth = 101 m), warm-monomictic temperate lake north of the

European Alps. It underwent re-oligotrophication [14] and mean

annual phytoplankton biomass declined by a factor of 2 with

phosphorous decline, indicating that the long-term changes are

small compared to the very pronounced seasonal dynamics

(morphotypes vary in density by a factor of 10 to 1000 during

the year). Plankton sampling was conducted weekly during the

growing season and approximately fortnightly in winter, culmi-

nating in 853 sampling dates between 1979 and 1999 (for details

see [14,15]). We log2-transformed the biomass measurements to

account for the skewed size distribution of phytoplankton

organisms [14]. In the present study, we used a taxonomic

resolution of 36 morphotypes of phytoplankton comprising

individual species or, in some cases, higher taxonomic units which

are functionally identical or very similar under the functional

classification employed here. This guaranteed a similar taxonomic

resolution across the 20 years of sampling, avoided the consider-

ation of a large number of morphotype pairs with (almost)

identical traits (functionally ‘‘neutral’’ morphotypes), and reduced

a bias towards some groups which were more resolved than others,

e.g. because of having particular morphological structures which

are lacking in other groups. We treated the non-detection of a

morphotype at a particular sampling date as missing value. This

approach ensured that we quantified similarity only during periods

of temporal co-occurrence rather than during periods when

morphotypes were below the detection limit in the plankton or

existed only in resting stages. Morphotypes were classified based

on their functional traits as well as upon their dynamics, as

described below. All steps of our methodology are summarized in

Fig. 1.

Seasonal patterns in Lake Constance
We subdivided the year into 6 consecutive periods (cf [16]):

winter, early spring, late spring, clear water phase, summer and

autumn. The start and end of each period is not a fixed calendar

date but was determined for each year based upon independent

physical (temperature, vertical mixing, water transparency),

chemical (soluble reactive phosphorous concentration) and

biological parameters (phytoplankton and zooplankton biomass,

chlorophyll concentration and species composition). Other ways of

subdividing the annual (e.g. phases fixed by calendar dates) led to

phases which were more heterogeneous in respect to their abiotic

and biotic conditions throughout the 20 years of sampling and

were therefore not reported here. In the approach used here, each

period is associated with a different well-defined forcing regime in

Lake Constance. (i) First, during winter deep mixing and low

irradiance lead to a decrease of phytoplankton biomass to the

annual minimum level [10]. (ii) Early spring follows winter and is

characterized by unstable stratification, variable light availability,

low grazing pressure and high, non-limiting nutrient concentra-

tions which enables the first growth of algae and small protozoan

grazers interrupted by mixing events [17]. (iii) During late spring

algal biomass further increases with the onset of thermal

stratification [10,18] giving rise to the spring bloom, which

reduces nutrient concentrations. Protozoans are the dominant

phytoplankton grazers during spring [17]. (iv) The high biomass of

mostly small, edible algae promotes growth of different groups of

micro- and meso-zooplankton [17] and as a consequence,

phytoplankton biomass strongly declines, resulting in the clear

water phase, which is characterized by the strongest grazing

pressure throughout the year [19]. Nutrient concentrations re-

increase during the clear water phase and with decreased grazing

pressure, the summer phytoplankton bloom starts. (v) Summer is

marked by severe nutrient depletion leading to strong competition

within the phytoplankton community and the presence of different

zooplankton groups (ciliates, rotifers, cladocerans and copepods)

with different feeding strategies and grazing on different groups of

phytoplankton [10,12,20,21]. (vi) An increase of the mixing depth

as autumn begins leads to a minor reduction of algal biomass and

replenishing of nutrients from deeper water. The increase in

nutrients may give rise to an autumn phytoplankton and

crustacean maximum, paralleled by shifts in algal species

composition. Overall, each period is associated with different

intensities of abiotic forcing, competition and grazing which are

expected to have differentiated effects on the relationship between

functional trait similarity and temporal dynamics similarity, the

number of important functional traits and their relative impor-

tance and the overall degree of synchronization among phyto-

plankton species.

Seasonally Varying Impact of Functional Traits
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Relationship between functional trait similarity and
temporal dynamics similarity

Functional classification of morphotypes. Selection of

functional traits. For phytoplankton, net growth is the sum of

intrinsic growth, sedimentation, grazing losses and some other

typically less important loss factors. Building on a previous study

on functional diversity in Lake Constance, we selected four traits

reflecting these three main processes and the 36 morphotypes were

classified according to: volume, shape, motility and silica use [7]

(nitrogen fixation and mixotrophy were excluded due to a lack of

relevance [14], cf results).

First, according to allometric theory, size/cell volume strongly

influences many physiological attributes such as maximum growth

rate [22]. For both colony-forming and single-cell phytoplankton

species the classification was done according to individual cell size.

Such a classification optimizes the predictability of weight-specific

metabolic rates from cell size rather than the vulnerability to

grazing and implies that edible and less-edible phytoplankton

species strongly overlap in size. Secondly, the shape of a cell or

colony (their surface-to-volume ratio) impacts their ability to

absorb nutrients, their susceptibility to sedimentation and to filter-

feeding zooplankton grazing. In combination with cell volume, a

suitable measure for these processes is the longest linear dimension

(LLD) of the single cell (for single-cell morphotypes) or the colony

(for colony-forming morphotypes). We log2-transformed the cell

volumes and the LLD values to account for morphotypes skewed

size distribution (covering over 4 and 3 orders of magnitude,

respectively). Third, motility was considered as mobile organisms

can counteract sedimentation and may migrate into favorable

strata. In addition, motility affects nutrient deficiency as the

movement of cells minimizes the hydrate envelope and, thus, the

diffusive boundary layer for nutrients around the cells [23].

Morphotypes were classified as: 0, non-motile; 0.5, buoyancy

regulation (through gas vacuoles); and 1, flagellated morphotypes

which can move in three-dimensional space [24]. Fourth, silica use

was considered as it may be a limiting nutrient in Lake Constance.

The use of silica decreases the carbon demand for cell walls and

increases the specific weight, leading to higher sedimentation rates.

Silica use can be classified as: 1, for diatoms, which need silica for

their frustules, 0.5 for Chrysophyceae and Synurophyceae which

form statospores (e.g. Ochromonas), bristles and scales (e.g. Synura

or Mallomonas) and 0 for all morphotypes which do not use silica

[24]. We used the functional traits considered most relevant for

our morphotypes [7], however these are obviously a subset of all

traits potentially impacting phytoplankton dynamics. We did not

consider other commonly used functional traits directly related to

light or temperature responses [25]. For light, this is because this

information was too unreliable given the plasticity of these

functional traits (e.g. taxonomic groups chlorophyll concentration)

[25]. Temperature only influences primary production substan-

tially under light saturated conditions [26][27] which hardly

occurs in deep Lake Constance [28].

Distance matrices based on the traits. Because our

functional traits are of mixed types (continuous and discrete

functional traits) we opted for Gower’s General Similarity

Coefficient, as a single measure of functional distance [29]. To

Figure 1. Schematics of the analysis carried out. 1- Dynamical classification of morphotypes (Mt) and quantification of the overall degree of
synchronization: for each pair of morphotypes we calculated the average of Pearson correlations per period, the ensemble average rijk , which
resulted in 6 dynamics distance matrices, one for each period; 2a- Functional classification of the 36 morphotypes based on 4 functional traits (cell
volume, longest linear dimension, silica use and motility) (Weithoff 2003), 2b- Distance matrices based on the traits: 500,000 combinations of weights
summing to 1 were attributed to the functional traits. Gower’s similarity index was used to calculate the functional distance between the pairs of
morphotypes for each set of traits, which resulted in 500,000 functional distance matrices; 3- Comparison of the functional trait similarity and
temporal dynamics distance matrices: Mantel test was used to compared the distances matrices culminating in a frequency distribution of the
500,000 different Mantel r’s for each period.
doi:10.1371/journal.pone.0051257.g001

Seasonally Varying Impact of Functional Traits
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ease interpretation of our results, we used 1-Gower’s coefficient as

functional metric and defined a pair-wise distance value djk

between two morphotypes, as follows:

djk~1{
XN

i~1

wi � abs
xij{xik

max(xi){min(xi)

� �

where N is the number of functional traits considered, wi the

weight attributed to functional trait i, xij the value of trait i for

species j and xik the value of the trait i for species k. Each pair-wise

distance ranges from 0 (functionally very different) to 1 (function-

ally identical). Because we had no a priori assumptions about the

relative importance of traits, we generated 500,000 random sets of

weights summing to 1. This culminated in 500,000 distance

matrices based on functional traits differing randomly in their

relative importance which were subsequently compared to the 6

distance matrices based on temporal dynamics (Fig. 1).

Dynamical classification of morphotypes and overall
degree of synchronization

For each pair of morphotypes, and within each period, we

calculated the Pearson correlation of the time-series of their

biomasses. We then averaged these correlations across each period

for all years to obtain an ‘ensemble average’ for each morphotype

pair in each period (in Fig. 1 referred to as rijk – the ensemble

average of the pair of morphotypes i and j, at period k). Ensemble

average values range from -1 (perfect compensatory dynamics) to 1

(perfectly synchronized), with 0 representing series which are

independent. We excluded periods from the ensemble average in

years in which both morphotypes were present together on less

than 4 sampling dates. The average number of sampling dates per

period was 7.4, 6.2, 6.4, 4.5, 14.2 and 4.8 for winter, early spring,

late spring, clear water phase, summer and autumn, respectively.

Furthermore we excluded ensemble averages for pairs which

yielded a valid correlation (that is, based on at least 4 sampling

dates) in less than 20% of all possible periods. These criteria

inevitably cause longer periods to present more pairs of

morphotypes with valid ensemble averages. For this reason, we

also examined the results for only the pairs which have valid

correlations for all periods (SI). We constructed 6 distance matrices

using the ensemble averages of each period.

The overall degree of synchronization among morphotypes

temporal dynamics within a period is quantified by the mean value

of the ensemble averages (�rrk, the mean of all ensemble averages

rijk, for period k). We tested for differences among these means

during different periods using a one-way ANOVA, followed by a

Tukey-Kramer post-hoc test for pair-wise comparisons among

periods.

Comparison of the functional and dynamics distance
matrices

We compare the set of distance matrices based on the functional

traits with the 6 matrices based on dynamics (one for each period)

using a Mantel test (package vegan under R 2.9.0 [30]). This test

determines the Pearson correlation between the two distance

matrices (the Mantel r, ranging from -1 and 1) and informs us

about the nature of the relationship between functional trait

similarity and temporal dynamics similarity.

Because we assumed no prior knowledge about the relative

importance of traits we examined the distribution of Mantel r’s

arising in each period from 500,000 randomizations of trait

weights (Fig. 1). This allowed us to determine the sensitivity of the

relationship between functional distance and dynamics to variation

in the importance of different traits. We compared these

distributions across the six periods using a Fisher’s z transform

(to normalize our bounded distributions) and then a Wilcoxon

rank sum test.

From each of these six distributions we selected the set of trait

weights which gave rise to the median Mantel r as an indicator of

the general relationship and used it for further analysis. To

determine if the median Mantel r differed significantly from zero

in each period, we calculated a null distribution for ‘r’ by

randomly shuffling the rows and columns of the morphotypes pairs

that occurred together during a given period in the functional

distance matrix giving rise to the median Mantel r, and

recalculating ‘r’ 10000 times. This procedure is akin to randomly

assigning the sets of measured functional traits among species;

however, randomizing the functional distances themselves requires

fewer computations per replicate. The square of the Mantel r

quantifies the amount of shared variance between the two distance

matrices. It is important to note that we deal with two sorts of

correlations throughout this study: first, the correlations between

functional similarity and temporal dynamics similarity (the median

Mantel r, Fig. 2 and Fig. S1) and the temporal correlations among

morphotype biomasses (the ensemble averages rijk, Fig. 3 and Fig.

S2).

Moreover, because our data consistently indicated a positive

correlation between functional trait similarity and temporal

dynamics similarity, we searched for sets of weights resulting in

the most positive Mantel r. From the 500,000 random sets of

weights, we selected all sets which generated the most positive

Mantel r (to two decimal places). From these, we assessed the

relative importance of each trait, during each period, by

calculating the mean and first and third quartiles of the

distribution of weights. These sets of weights maximize the

functional similarity among morphotype pairs which present more

synchronized dynamics and maximize the functional difference

among pairs with the least synchronization. In addition, in order

to confirm our results, we used an optimization routine to search

for the set of weights resulting in the most positive Mantel r [31].

We assume that traits which obtain high weights are important for

generating dynamic patterns for each one of the periods.

Variation in pairwise Pearson correlation coefficients per
period

In order to investigate the temporal variation in the Pearson

correlation coefficients giving rise to the period ensemble averages

rijk, we studied their standard deviations (generated from across-

year replicates). The goal of this analysis was to test whether

species pairs typically display consistent correlation coefficients

throughout the study period or whether the extent of correlation

within one species pair is as variable as expected from random

pairings. First, we calculated the standard deviation of the Pearson

correlation coefficients (for all periods across years) for the 119

pairs of morphotypes which occurred together in at least 25% of

the sampling dates, culminating in 119 standard deviations (each

of those calculated from n Pearson correlation coefficients). We

compared these to a null distribution where we randomly selected

n Pearson correlations coefficients from all 119 morphotype pairs

and all periods (Fig. 4). We applied Fisher z transformation to all

coefficients. We used a t-test to compare the observed and null

distributions. All metrics were coded using R 2.9.0 [30].

No specific permits were required for the described field studies.

Herewith we confirm that the location is not privately-owned or

protected in any way. We also confirm that the field studies did not

involve endangered or protected species.

Seasonally Varying Impact of Functional Traits
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Results

Functionally similar morphotypes presented more similar

dynamics than functionally different morphotypes in all periods

except winter. Furthermore, the frequency distributions of Mantel

r’s per period significantly differed from each other (p,0.001,

Wilcoxon rank-sum test) (Fig. 2), demonstrating that functional

similarity has the capacity to explain different amounts of the

variation in dynamics similarity in different periods. In each

period, the median values of these distributions were significantly

greater than zero (in all but winter; p,0.01) (Fig. 2) indicating that

an increase in functional similarity is accompanied by a

strengthening in the covariation of morphotypes temporal

dynamics. The median Mantel r’s amounted to 0.11, 0.33, 0.15,

0.25, 0.18 and 0.12, for winter, early spring, late spring, clear

water phase, summer and autumn, respectively. The amount of

shared variance between distance matrices measuring similarity in

functional traits and distance matrices measuring similarity in

temporal dynamics, which can be quantified by the square of the

Mantel r’s, varied between 1.5 and 10% (Fig. 2 a–f).

Since the seasonal periods have different lengths and sampling

frequencies, periods differ in their number of valid ensemble

averages rijk. In addition, the sets of pairs of morphotypes also

change among periods. This may lead to differences between

periods based only on the number of morphotypes and/or

morphotype composition. To control for this we repeated the

computations with matrices comprising the same morphotype

pairs (i.e. those which were present during all periods). There were

Figure 2. Frequency distribution of 500 000 Mantel r per period, based on 500 000 different distance matrices based on functional
traits varying in their relative importance. The dashed line indicates the median value of the frequency distribution and the corresponding
values are shown in the box within the plot area. ** means p,0.01 and *** means p,0.001. Periods are (a) winter, (b) early spring, (c) late spring, (d)
clear water phase, (e) summer and (f) autumn.
doi:10.1371/journal.pone.0051257.g002

Seasonally Varying Impact of Functional Traits
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less than 50 pairs out of 630 in common among all 6 periods and

the morphotypes present in winter and early spring were

particularly different from those present in the remaining periods.

Late spring, clear water phase, summer and autumn presented 62

pairs of morphotypes in common, and we hence performed this

analysis using only these 4 periods. Overall, consistently high

values of median Mantel r (0.41, 0.3, 0.42 and 0.4 during late

spring, clear water phase, summer and autumn, respectively) (Fig.

S1) point to a relatively stronger correlation between functional

trait similarity and temporal dynamics similarity quantified when

considering only the common pairs of morphotypes. Moreover,

the frequency distributions of Mantel r were significantly different

from each other (p,0.001, Wilcoxon rank-sum test) (Fig. S1).

Regarding the overall degree of synchronization of morpho-

types dynamics per period, we found a significant difference

between the means of the ensemble averages per period �rrk

(F = 12.3, p,0.001) (Table 1). The overall degree of synchroni-

zation �rrk during winter, early spring, late spring and autumn was

significantly higher than during summer (p,0.05) and the clear

water phase presented a significantly lower overall degree of

synchronization among pairs of morphotypes than winter

(p,0.05) (Fig. 3 and Table 1 - Tukey-Kramer post hoc test).

The clear water phase showed the most negative ensemble

averages rijk among all periods and summer presents the highest

number of ensemble averages rijk close to 0 (Fig. 3). When

considering only the common pairs of morphotypes between late

spring and autumn, the means of the ensemble averages per period

�rrk did not significantly differ (F = 2.1, p = 0.15) (Fig. S2).

For both the analysis including all data and the one including

only the common pairs of morphotypes, the relationship between

Figure 3. Plots of functional trait distance vs. temporal dynamics distance at different periods of the year. Each dot corresponds to a
period ensemble average rijk , per pair of morphotypes. Functional traits distances are measured for pairs of morphotypes using the Gower distance
and temporal dynamic distance is based on a period correlation for (a) winter, (b) early spring, (c) late spring, (d) clear water phase, (e) summer and (f)
autumn. The dashed horizontal line indicates the mean of ensemble averages �rrk for each period and the solid thick grey trend line represents the
running mean.
doi:10.1371/journal.pone.0051257.g003

Seasonally Varying Impact of Functional Traits
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functional trait similarity and temporal dynamics similarity was

not associated with a specific set of weights for the different traits,

but rather very different sets of traits led to the same median

Mantel r. In contrast, although the trait longest linear dimension

had consistently the largest weight, we found that the set of weights

leading to the most positive Mantel r was unique per period but

variable among periods, showing that different functional traits

matter at different times of the year (Table 2 and Table S1). The

combination of weights generating the most positive Mantel r was

little affected by either using all data or considering only the pairs

of morphotypes present from late spring to autumn except for late

spring, during which the relative importance of traits changed

strongly under the more restrictive rules). Moreover, different ways

of subdividing the year into phases led to comparable results but as

they typically comprised more heterogeneous abiotic and biotic

conditions difference between periods in Mantel r and in the

relative importance of trait weights were typically smaller. Both

the maximization of Mantel r and the study of the distributions of

Mantel r with varying weights arrived at the same answer

concerning the weights leading to the most positive Mantel r.

The standard deviations of the Pearson correlation coefficients

of the individual morphotype pairs were significantly less than

those drawn at random from different morphotype pairs

(p,0.001, n = 119). However, the means only differed by very

little indicating a large temporal variability in the dynamics

patterns of numerous pairs of morphotypes (Fig. 4).

Discussion

The study of morphotype dynamics under different regimes of

biotic and abiotic forcing reveals differences in how functional

traits influence dynamics and in the relative importance of traits

within each period. The distributions of correlations among

functional similarity and dynamic similarity, generated by

randomly weighting the importance of functional traits, are

significantly different across periods. Because these distributions

do exhibit some degree of overlap, we cannot rule out the

possibility that the community might adhere to a set of trait

weighting which produces similar correlations across some or all

periods. However, explicitly addressing this issue would require an

a priori knowledge of the ‘correct’ weighting scheme during each

period, which is not available. Moreover, it is likely that the

relative importance of traits changes continuously through time

and varies from year to year based on biotic and abiotic

conditions. Our results demonstrate the capacity for differences

among periods without such an a priori knowledge of the

importance of traits and we suggest that these differences are

driven by the biotic and abiotic factors impacting dynamics.

Overall, morphotypes with high functional trait similarity present

dynamics which are more similar than those of dissimilar

morphotypes, as shown by the positive median Mantel r

encountered for all periods except winter for which median

Mantel r is not significantly different from zero.

Winter is characterized by a non-significant relationship

between functional trait similarity and temporal dynamics

similarity indicating that the traits used here have little influence

on morphotypes’ dynamics. The high overall degree of synchro-

nization found during this period (given by the �rrk) suggests that the

strong external forcing, i.e. low light and deep mixing, affect all

morphotypes in concert regardless of their functional traits and

lead them to decrease in abundance. This may reduce the

predictive power of the functional traits considered here for

morphotypes’ temporal dynamics.

During early spring, we found a positive relationship between

functional trait similarity and temporal dynamics similarity and

the highest degree of synchronization, showing that even though

changes in the temporary stratification due to strong mixing events

tend to synchronize morphotypes dynamics, functional traits also

play an important role in determining the dynamics. During late

spring, the relationship between functional trait similarity and

temporal dynamics similarity was also significantly different from

zero, indicating that functional traits influence morphotypes’

dynamics.

As a result of intensified grazing pressure after late spring,

phytoplankton biomass declines rapidly which gives rise to the

clear water phase, during which only fast-growing (typically small)

species persist. This period is characterized by a positive median

Mantel r, indicating that functional traits influence dynamics

during this period. In contrast to the earlier periods of the year, the

overall degree of synchronization is low during the clear water

phase, which is due to strong negative correlations between several

pairs of morphotypes during this period: whilst edible plankton

Figure 4. Box plot of the standard deviations of pairwise
Pearson correlation coefficients (‘‘Morphotype pairs’’) and of
the null distribution generated by determining standard
deviations from random species pairs and periods (‘‘Ran-
dom’’).
doi:10.1371/journal.pone.0051257.g004

Table 1. Mean period ensemble average (F = 12.26, p,0.0001).

Winter Early spring Late spring CWP Summer Autumn

Mean period ensemble average 0.12a 0.13a,b 0.1a,b 0.06b,c 0.03c 0.09a,b

Different superscript letters indicate significant difference among periods using a Tukey Kramer post hoc test. CWP: Clear water phase.
doi:10.1371/journal.pone.0051257.t001
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decline due to grazing, some less edible morphotypes start growing

benefitting from increased light and nutrient availability.

During summer, functional traits play a strong role as indicated

by a highly significant positive median Mantel r. In addition, the

temporal dynamics of numerous pairs of morphotypes are

uncorrelated leading to the lowest overall degree of synchroniza-

tion throughout the year when considering all pairs of morpho-

types. These findings may be a result of e.g. different zooplankton

groups exerting their grazing pressure on different phytoplankton

groups [12] and the different strategies displayed by species to

cope with nutrient depletion.

An increase of the mixing depth as autumn begins leads to

replenishment of nutrients from deeper water and a deterioration

of the underwater light climate. During this time, along with a

positive significant median Mantel r, we found an increase in the

overall degree of synchronization, likely due to events of deep

mixing, nutrient pulses and insufficient light which may affect

morphotypes in concert.

The sets of trait weights leading to the most positive Mantel r

changed throughout the year. Longest linear dimension was

important all year round, being most of the time (except late

spring) the single most important functional trait we included. Cell

volume was important only during winter and summer but not

during the other periods. The lower relevance of cell size may be

explained by the fact that our classification of cell size according to

individual cell size and not to colony size implies that edible and

less-edible phytoplankton species strongly overlap in size. In

contrast, the longest linear dimension of the cell or colony/

filament is more strongly related to the susceptibility to zooplank-

ton grazing. This underlines the importance of grazing for

determining morphotypes’ temporal dynamics in Lake Constance

as found by e.g. [12]. Silica use reaches its highest weight during

late spring, when silica-demanding morphotypes dominate.

Interestingly, we found that in summer all functional traits matter

in contrast to the other periods. Different groups of zooplankton

with different food selectivity graze on phytoplankton during

summer [12,19,21], synchronizing the dynamics of species with

similar cell volume and longest linear dimension. Moreover,

summer is characterized by the strongest nutrient scarcity

throughout the year and a sequential depletion of nutrients shifts

algal composition, namely diatoms dynamics may be regulated by

the changes in silica concentrations, which may explain the high

importance of the trait ‘‘silica use’’ during summer. Motility

matters as it is directly or indirectly associated with several factors

impacting the dynamics, notably nutrient deficiency and sedimen-

tation which are most relevant during summer. Besides summer,

motility also matters during the clear water phase.

The prevalence of positively correlated temporal dynamics

among pairs of morphotypes is in agreement with previous studies

which showed that synchronized dynamics dominate in natural

systems [32]. However, the majority of positive ensemble averages

encountered in our study are rather weak (Fig. 3) and we mostly

found no consistent pattern of covariation for a pair of

morphotypes throughout the year and a large interannual

variability (Fig. S3). Negative ensemble averages are also frequent

between pairs of morphotypes, indicating the presence of

compensatory dynamics. Compensatory dynamics have been

previously quantified in the Lake Constance phytoplankton and

attributed to the interaction between edible and less-edible groups,

which is mediated by competition for nutrients and grazing during

the growing season [11,12]. The negative correlations spread

along the entire axis of functional distance which indicates that

these processes occur equally among functionally similar and

different morphotypes. To the extent that negative correlations

reflect competitive interactions, this can be explained by the fact

that all phytoplankton morphotypes compete for the same

essential resources (e.g. light and phosphorous required for

photosynthesis and growth) regardless of their functional traits

[33] and that edible and less edible forms can differ substantially in

other traits. Here we vary the functional distance of a pair of

morphotypes by applying different sets of weights to functional

traits and find that different traits matter at different times of the

year, because the dynamical patterns of a pair of morphotypes are

also variable across seasons. Moreover, the pairwise correlations

(giving rise to the ensemble average rijk) within one pair of

morphotypes often alternate between synchronized and compen-

satory dynamics (Fig. S3), showing that the degree of functional

similarity of a morphotype pair does not determine alone how the

pair will covary in time. The rather weak but significant

relationship between functional trait similarity and temporal

dynamics similarity we encountered is, however, reassuring of

the effect traits have on dynamics. The interplay of all these factors

including functional similarity and their impact on the covariation

patterns of pairs of species under different forcing regimes

represents a promising area for future research.

Previous work showed that functional redundancy plays a key

role in measures of functional diversity [34]. We show that

different functional traits are important for determining morpho-

types’ temporal dynamics in different parts of the year, suggesting

that morphotypes which are redundant during one part of the year

Table 2. Mean and standard deviation of weights leading to the most positive Mantel r per period.

Median Mantel r Traits
Most positive
Mantel r

Cell volume LLD Silica use Motility

Winter 0.11 0.43 (0.34; 0.52) 0.45 (0.37; 0.54) 0.10 (0.06; 0.13) 0.02 (0.01; 0.03) 0.19**

Early spring 0.33** 0.04 (0.01; 0.05) 0.73 (0.69; 0.76) 0.20 (0.16; 0.23) 0.03 (0.02; 0.05) 0.42***

Late spring 0.15** 0.03 (0.01; 0.04) 0.29 (0.21; 0.38) 0.65 (0.55; 0.73) 0.03 (0.01; 0.05) 0.20**

CWP 0.25** 0.05 (0.02; 0.08) 0.73 (0.69; 0.76) 0.03 (0.01; 0.04) 0.19 (0.16; 0.22) 0.35***

Summer 0.18** 0.15 (0.07; 0.22) 0.38 (0.31; 0.46) 0.36 (0.31; 0.42) 0.10 (0.06; 0.14) 0.22***

Autumn 0.12** 0.05 (0.02; 0.08) 0.63 (0.58; 0.68) 0.25 (0.2; 0.3) 0.06 (0.03; 0.09) 0.21***

**means p,0.01.
***means p,0.001.
LLD: Longest linear dimension. CWP: Clear water phase.
doi:10.1371/journal.pone.0051257.t002
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may not be redundant at others. This annual reorganization in the

extent of functional differences among morphotypes may lead to

considerable changes in functional diversity. Our results suggest

that the common approach (but see also [35]) for calculating

functional diversity (considering functional traits with fixed relative

importance) will likely profit from a more detailed consideration of

the distinct periods of the year, which not only vary in species

composition and richness but also in the relative importance of

traits and in the extent of functional redundancy.

Our seasonally resolved study suggests that functional similarity

is a valid criterion to group species based on e.g. their trophic roles

[3,4] into aggregate entities, since functionally similar species

generally have more similar temporal dynamics than functionally

distant species ([9] and present results). However, we also show

that the link between functional traits and temporal dynamics

changes throughout the year, indicating that species aggregations

may periodically reorganize. Moreover, the range of functional

characteristics we assess here is small compared to the potential

range contained in an entire food web. Thus, when larger

functional distances are taken into account, the cohesion among

species within a group may become even weaker unless the

additional functional characteristics have greater importance than

those we have considered here. We conclude that functional

similarity is a useful predictor of dynamic similarity and thereby

can be useful for assigning species to aggregate groups. However,

given the seasonal variability in the importance of functional traits

functional similarity should not be used as the sole means to group

species into higher aggregation levels. More research of this kind,

both theoretical and empirical, is needed to further evaluate the

criteria for species aggregations.

Supporting Information

Table S1 Mean and standard deviation of weights leading to the

most positive Mantel r per period, for the pairs of morphotypes in

common between late spring, clear water phase, summer and

autumn. ** means p,0.01 and *** means p,0.001. LLD: Longest

linear dimension and CWP: clear water phase.

(DOC)

Figure S1 Frequency distribution of 500 000 Mantel r
per period, based on 500 000 different distance matrices
based on functional traits varying in their relative
importance, using only the pairs of morphotypes
consistently present between late spring and autumn
(n = 62). The dashed line indicates the median value of the

frequency distribution and the corresponding values are shown in

the box within the plot area. *** means p,0.001. Periods are (a)

late spring, (b) clear water phase, (c) summer and (d) autumn.

(TIF)

Figure S2 Plots of functional trait distance vs. temporal
dynamics distance at different periods of the year, only
for the pairs of morphotypes consistently present

between late spring and autumn (n = 62). Each cross

corresponds to a period ensemble average rijk, per pair of

morphotypes. Functional traits distances are measured for pairs of

morphotypes using the Gower distance and temporal dynamics

distance is based on a period correlation for (a) late spring, (b) clear

water phase, (c) summer and (d) autumn. The dashed horizontal

line indicates the mean of ensemble averages �rrk for each period

(0.14, 0.08, 0.08 and 0.13 for late spring, clear water phase,

summer and autumn, respectively) and the solid thick grey trend

line represents the running mean.

(TIF)

Figure S3 Correlation coefficients per period, for three pairs of

morphotypes: a. Chrysochromulina parva and Erkenia subaequiciliata

(both motile algae with similar cell size and longest linear

dimension, showing high functional similarity); b. Asterionella

formosa and Erkenia subaequiciliata (a colony forming diatom and a

motile chrysophyte, respectively, with low functional similarity)

and c. Rhodomonas spp and Cryptomonas spp (both motile algae with

rather similar cell volume and longest linear dimension (high

functional similarity) which were present together in 97% of all

sampling dates). These correlation coefficients give rise to the

pairwise period ensemble averages rijk, represented here by the

tickmarks on the right axis (the color corresponds to the colors of

the periods). We observe that correlation coefficients are highly

variable within a pair of morphotypes in the different periods of

the year. However, functional similarity leads to differences in the

period ensemble averages. The functionally more similar pairs (a.

Chrysochromulina parva and Erkenia subaequiciliata and c. Rhodomonas

spp and Cryptomonas spp) are mainly positively correlated

throughout the year, whereas the functionally most different pair

(b. Asterionella formosa and Erkenia subaequiciliata) presents a wide

range of positive and negative correlations over all periods, leading

to ensemble averages closer to 0. Moreover, we find that

correlation coefficients vary in different ways during the different

periods. Note that two tickmarks are missing (early spring in a. and

clear water phase (CWP) in b., as correlations were valid in less

than 20% of all possible periods).

(TIF)
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