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Abstract: In this study, we developed machine learning-based prediction models for early childhood
caries and compared their performances with the traditional regression model. We analyzed the
data of 4195 children aged 1–5 years from the Korea National Health and Nutrition Examination
Survey data (2007–2018). Moreover, we developed prediction models using the XGBoost (version
1.3.1), random forest, and LightGBM (version 3.1.1) algorithms in addition to logistic regression.
Two different methods were applied for variable selection, including a regression-based backward
elimination and a random forest-based permutation importance classifier. We compared the area
under the receiver operating characteristic (AUROC) values and misclassification rates of the different
models and observed that all four prediction models had AUROC values ranging between 0.774 and
0.785. Furthermore, no significant difference was observed between the AUROC values of the four
models. Based on the results, we can confirm that both traditional logistic regression and ML-based
models can show favorable performance and can be used to predict early childhood caries, identify
ECC high-risk groups, and implement active preventive treatments. However, further research
is essential to improving the performance of the prediction model using recent methods, such as
deep learning.

Keywords: early childhood caries; Korea National Health and Nutrition Survey; machine learn-
ing; prediction

1. Introduction

Early childhood caries (ECC) refers to the presence of one or more decayed, missing,
or filled tooth surfaces in a child under six years of age [1] and can cause severe pain,
tooth loss, low self-esteem, low school performance, sleep disturbance, and reduce quality
of life [2–4]. Considering oral diseases can have adverse effects on the development
of permanent teeth, a healthy oral environment during early childhood is essential for
determining one’s oral health for a lifetime [5]. Therefore, the prevention of ECC is highly
necessary for children to maintain their oral health, a healthy life, and reduced medical
costs [6]. Although a sharp decline in ECC was observed in Korea until the early 2000s due
to the efforts of academia and clinicians, there has been an increase since 2016 [7]. Based
on previous studies, risk factors such as socioeconomic factors [8], parents’ knowledge on
oral health [9], type of feeding [10], time at which weaning food was introduced [11], sugar
consumption [8], allergic disease [12], and overweightness [13] have been identified for
the early life prediction of ECC. The prediction of caries risk based on these risk factors is
considered a cornerstone of clinical decision making and disease prevention in individual
patients [14] and using comprehensive and standardized tools is recommended [15]. While
many have attempted to evaluate the risk of dental caries in early childhood [16–18], none
have developed a prediction model that uses large-scale, representative survey data from
the Korea National Health and Nutrition Examination Survey (KNHANES).
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In recent years, machine learning (ML) is being widely used in medicine for develop-
ing disease prediction models [19]. Artificial intelligence (AI) is a commonly used term,
referring to the development of machines to perform tasks that require intrinsic human abil-
ities such as learning, reasoning, and perception. Machine learning (ML), a subfield of AI, is
used to predict unknown information by using algorithms that learn the intrinsic statistical
patterns and structures of data. Medical AI is most actively applied in the diagnosis and
prediction of prognosis [20]. For example, a previous study attempted to predict placenta
accreta spectrum in patients with placenta previa by performing an analysis using ML
of MRI-derived texture features and reported their high effects [21]. Another study used
various ML algorithms for heart murmur detection based on wavelet transformation [22].
Compared to conventional methods, ML models provide high prediction accuracy and
are expected to make significant contributions to diagnosis. In addition, data of various
characteristics, which cannot be handled by traditional analysis, can be processed with
the ML [23]. Conversely, ML has the disadvantage of requiring massive datasets with
high-quality data for training. Another major challenge is the ability to interpret results
generated by ML models properly [6].

Studies have been conducted on the use of ML in the field of dentistry to predict
toothache [24], impaction of maxillary canine teeth [25], tooth extraction in orthodontic
treatment [26], and the presence of root caries [27]. However, as of yet, attempts to use AI in
dentistry remain at an elementary stage due to the lack of availability of massive dentistry
datasets. Unlike other areas, data in dentistry are often inaccessible for privacy purposes,
and the structural complexity renders it difficult to validate [28]. Moreover, the results
of using AI in dentistry are sometimes difficult to apply to real-world clinical situations
that require highly complex decision-making processes [29]. In particular, it is typically
complex and difficult to obtain oral health-related datasets of sufficient quality relative to
preschool children, although the KNHANES data include sufficient volume and quality
to apply ML. Although the development of an ML-based prediction model for predicting
dental caries in preschool children is academically and clinically meaningful, there is a lack
of relevant studies. Therefore, in this study, we developed prediction models for ECC by
using the national survey data in Korea and evaluated the performance by comparing the
ML-based models with a regression model. The proposed prediction models could be the
first step towards developing interventions and policies to prevent ECC and can be used in
oral health care education.

2. Materials and Methods
2.1. Research Data and Participants

KNHANES is conducted every three years. Using a two-stage stratified cluster sam-
pling method based on census data, 20 sample households per survey district were selected,
and the family members of the sampled households were considered as survey participants.
We conducted our study on children from 1 to 5 years of age from the KNHANES 4–7
(2007–2018) survey. Out of 5137 children, 942 children with missing values were excluded,
and the data of 4195 children were analyzed.

2.2. Variables

Based on responses of surveys, we collected the demographic variables (age, sex,
siblings, and household income level), details on oral hygiene management (daily tooth
brushing frequency), and maternal details (educational level, birthing age, use of dental
floss or interdental brushes, and daily brushing frequency of the mother). Children were
classified into three categories: only child, one sibling, and two or more siblings. The
mother’s age at the time of giving birth was classified into two categories: under 35, and
35 and above. The mother’s decayed missing filled teeth (DMFT) were selected as an
additional maternal variable and classified according to quartiles. As a response variable,
we grouped the children based on the number of decayed-filled teeth (dft) into groups of 0
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(n = 3134) and 1 or more (n = 1061). Dentists who participated in the study conducted the
oral examination for the DMFT of the mother and dft of the children.

2.3. Data Analysis

We performed a chi-square test to examine the distribution of ECC history according
to the characteristics of the participants. Analysis of variance (ANOVA) was performed
to compare the differences between groups in dft values. To develop and evaluate the
prediction models, the entire participant population was divided into training (n = 2936)
and test (n = 1259) datasets with a ratio of 7:3. We conducted a logistic regression analysis
with the training datasets to examine the relationship between the characteristics and
ECC history of the participants and to develop an ECC prediction model. Moreover, we
developed prediction models by implementing various ML algorithms (XGBoost, random
forest, and lightGBM). We performed hyperparameter tuning, a process that adjusts an
algorithm to improve the accuracy of the prediction model (Supplementary Table S1).

For variable selection, two methods were applied on the training datasets; (1) the
variables were selected using backward elimination based on logistic regression with the
reference p-value of 0.2 [30]; (2) permutation importance was calculated using a random
forest classifier, which is more appropriate for non-linear classifiers [31]. For the k-fold
cross-validation step, we performed 5-fold cross-validation of the model using area under
the receiver operator characteristic curve (AUROC) as the measure of model quality. The
performance of the model was evaluated with the test dataset using the area under the
AUROC, misclassification rate (1-Accuracy), Sensitivity, Specificity, and the Matthews
correlations coefficient (MCC) [32,33]. ML algorithms used in our study were developed
using open-source Python packages (Scikit-learn, lightgbm: https://lightgbm.readthedocs.
io/en/latest/index.html, accessed on 4 August 2021), and XGboost: https://xgboost.
readthedocs.io/en/latest/python/index.html, accessed on 4 August 2021). All statistical
analyses were performed using SAS (version 9.4; SAS Institute Inc., Cary, NC, USA), with
the statistical significance level set at p < 0.05.

3. Results

Of the children with a dft of 1 or higher, children aged 1, 2, 3, 4, and 5 years accounted
for 1.7%, 9.4%, 18.9%, 31.0%, and 38.9%, respectively, of which 54.9% were boys and 45.1%
were girls (Table 1). The distribution of children with dft ≥ 1 was higher than those whose
mother’s age at childbirth was 35 years or older (p < 0.001). In addition, 27.8% of children
with a history of dental caries had a mothers’ DMFT score of 7 or higher, whereas 23.6%
of mothers whose children never experienced dental caries (dft = 0) had a DMFT of 7 or
higher (p < 0.01).

Table 1. Characteristics of participants based on early childhood caries.

Variables

dft ≥ 1 dft = 0

p-Valuen = 1061 n = 3134

n % n %

Age of the children

1 18 1.7 817 26.1 <0.001
2 100 9.4 723 23.1
3 201 18.9 628 20.0
4 329 31.0 514 16.4
5 413 38.9 452 14.4

Sex
Boy 583 54.9 1620 51.7 0.066
Girl 478 45.1 1514 48.3

Children with siblings
Only child 642 60.5 1814 57.9 0.289

1 396 37.3 1239 39.5
≥2 23 2.2 81 2.6

https://lightgbm.readthedocs.io/en/latest/index.html
https://lightgbm.readthedocs.io/en/latest/index.html
https://xgboost.readthedocs.io/en/latest/python/index.html
https://xgboost.readthedocs.io/en/latest/python/index.html
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Table 1. Cont.

Variables

dft ≥ 1 dft = 0

p-Valuen = 1061 n = 3134

n % n %

Household income

Low 63 5.9 141 4.5 0.098
Low-medium 340 32.0 961 30.7
High-medium 381 35.9 1231 39.3

High 277 26.1 801 25.6

Tooth brushing frequency
≤1 165 15.6 828 26.4 <0.001
2 389 36.7 1036 33.1
≥3 507 47.8 1270 40.5

Education level of the mother
Middle school 13 1.2 43 1.4 0.888
High school 197 18.6 567 18.1
≥College 851 80.2 2524 80.5

Age of the mother at the time of giving birth <35 483 45.5 1786 57.0 <0.001
≥35 578 54.5 1348 43.0

Use of dental floss or interdental
toothbrush of mother

No 473 44.6 1479 47.2 0.141
Yes 588 55.4 1655 52.8

Tooth brushing frequency of the mother
≤1 41 3.9 139 4.4 0.070
2 366 34.5 1189 37.9
≥3 654 61.6 1806 57.6

DMFT of the mother

≤1 224 21.1 833 26.6 0.001
2–4 346 32.6 1029 32.8
5–6 196 18.5 531 16.9
≥7 295 27.8 741 23.6

p-value was derived using the chi-square test; dft: decayed or filled primary teeth; DMFT: decayed, missing, or filled permanent teeth.

The mean dft of 5 year olds was 1.83 ± 2.78, which was higher than that of 1–4 year
olds (Table 2, p < 0.001). The mean dft of children according to the mother’s birthing age
was 0.70 ± 1.79 for under 35 years and 1.11 ± 2.37 for 35 years and above, which was a
statistically significant difference (p < 0.001). The mean dft of a child whose mother had
7 or more DMFT was 1.13 ± 2.44, which was significantly higher than that of the other
groups (p < 0.001).

In order to examine the factors related to ECC history, we selected significant variables
from multiple logistic regression analyses using backward elimination in the training
dataset. As a result, the final prediction model comprised five characteristics such as age,
household income, daily brushing frequency, age of the mother at the time of giving birth,
and the mother’s DMFT quartile (Table 3). Based on the final model, the risk of ECC was
observed to be low among children who brushed their teeth over three times a day (OR,
0.77; CI, 0.58–0.98) and significantly higher in the group having a maternal DMFT of 7
or higher compared to that having 0 or 1 DMFT (OR, 1.44; CI, 1.11–1.87). Simple logistic
regression analysis showed that the risk of ECC was significantly higher in the group where
the mother’s birthing age was 35 years or more (OR, 1.60; CI, 1.36–1.89). However, while
the OR was higher than 1 in the final prediction model, it was not statistically significant
(OR, 1.14; CI, 0.94–1.36).
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Table 2. Comparison of the dft values based on the characteristics of the participants.

Variables n Mean SD p-Value

Age of the children

1 835 0.05 0.47 <0.001
2 823 0.32 1.20
3 829 0.76 1.78
4 846 1.44 2.60
5 865 1.83 2.78

Sex
Boy 2203 0.97 2.22 0.011
Girl 1992 0.81 1.92

Children with siblings
Only child 2456 0.93 2.15 0.362

1 1635 0.84 2.00
≥2 104 0.76 1.84

Household income

Low 204 1.20 2.72 0.014
Low-medium 1301 0.98 2.34
High-medium 1612 0.79 1.85

High 1078 0.86 1.83

Tooth brushing frequency
≤1 993 0.59 1.74 <0.001
2 1425 0.97 2.15
≥3 1777 0.99 2.19

Education level of the mother
Middle school 56 1.14 2.77 0.102
High school 764 1.02 2.49
≥College 3375 0.86 1.97

Age of the mother at the time of giving birth <35 2269 0.70 1.79 <0.001
≥35 1926 1.11 2.37

Use of dental floss or interdental toothbrush of mother
No 1952 0.88 2.13 0.679
Yes 2243 0.90 2.05

Tooth brushing frequency of the mother
≤1 180 1.11 2.82 0.151
2 1555 0.83 1.94
≥3 2460 0.92 2.11

DMFT of the mother

≤1 1057 0.70 1.81 <0.001
2–4 1375 0.82 1.89
5–6 727 0.96 2.22
≥7 1036 1.13 2.44

p-value was derived using ANOVA; dft: decayed or filled primary teeth; DMFT: decayed, missing, or filled permanent teeth.

Table 3. Logistic regression results for the prediction of early childhood caries.

Variables
Simple Multiple Multiple (Final Model) *

Crude OR 95% CI p-Value Adjusted
OR 95% CI p-Value Adjusted

OR 95% CI p-Value

Age of the children

1 1.00 1.00 1.00
2 5.25 3.02 9.12 <0.001 5.44 3.12 9.51 <0.001 5.48 3.14 9.58 <0.001
3 11.38 6.69 19.38 <0.001 12.33 7.16 21.23 <0.001 12.43 7.22 21.40 <0.001
4 22.87 13.55 38.59 <0.001 25.23 14.74 43.20 <0.001 25.48 14.90 43.59 <0.001
5 31.40 18.64 52.92 <0.001 33.96 19.81 58.19 <0.001 34.13 19.93 58.46 <0.001

Sex Boy 1.00 1.00 -
Girl 0.82 0.69 0.97 0.018 0.88 0.74 1.06 0.182

Children with
siblings

Only
child 1.00 1.00

-
1 0.89 0.75 1.06 0.180 0.95 0.78 1.15 0.607
≥2 0.92 0.53 1.61 0.766 1.06 0.56 2.00 0.860

Household income

Low 1.00 1.00 1.00
Low-

medium 0.74 0.50 1.08 0.517 0.70 0.46 1.09 0.114 0.70 0.45 1.07 0.101
High-
medium 0.65 0.45 0.96 0.024 0.54 0.35 0.84 0.006 0.54 0.35 0.83 0.005

High 0.74 0.50 1.10 0.622 0.63 0.40 0.98 0.041 0.63 0.41 0.98 0.039

Tooth brushing
frequency

≤1 1.00 1.00 1.00
2 1.81 1.42 2.30 <0.001 0.99 0.60 1.65 0.973 0.97 0.73 1.27 0.804
≥3 1.88 1.49 2.37 <0.001 1.06 0.63 1.76 0.836 0.77 0.58 0.98 0.032
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Table 3. Cont.

Variables
Simple Multiple Multiple (Final Model) *

Crude OR 95% CI p-Value Adjusted
OR 95% CI p-Value Adjusted

OR 95% CI p-Value

Education level of the mother

Middle
school 1.00 1.00

-
High

school 0.66 0.33 1.32 0.234 0.83 0.38 1.78 0.625

≥College 0.66 0.34 1.31 0.234 0.86 0.41 1.82 0.696

Age of the motherat the time of
giving birth

<35 1.00 1.00 1.00
≥35 1.60 1.36 1.89 <0.001 1.12 0.93 1.35 0.236 1.14 0.94 1.36 0.177

Use of dental floss orinterdental
toothbrush of mother

No 1.00 1.00 -Yes 1.04 0.88 1.22 0.682 1.05 0.87 1.27 0.585

Tooth brushing
frequency of the mother

≤1 1.00 1.00
-2 1.06 0.68 1.67 0.788 0.99 0.60 1.65 0.809

≥3 1.14 0.73 1.77 0.576 1.06 0.63 1.76 0.695

DMFT of the mother

≤1 1.00 1.00 1.00
2–4 1.19 0.95 1.50 0.134 1.21 0.94 1.55 0.132 1.21 0.95 1.55 0.129
5–6 1.29 0.99 1.68 0.058 1.33 0.99 1.77 0.055 1.34 1.00 1.78 0.048
≥7 1.40 1.10 1.77 0.006 1.43 1.10 1.86 0.008 1.44 1.11 1.87 0.006

AUROC - 0.775 0.777

Analyses were performed with the training dataset (n = 2936). * Variables were selected by backward elimination. DMFT, decayed, missing,
or filled permanent teeth; AUROC, area under the receiver operating characteristic.

Among the ECC prediction models comprising five variables selected from logistic
regression, the model using XGBoost exhibited the highest AUROC of 0.785, whereas that
of the models using logistic regression, a random forest, and lightGBM were 0.784, 0.780,
and 0.774, respectively (Figure 1A and Table 4). The logistic regression model exhibited the
lowest misclassification rate of 0.235. However, no statistically significant differences were
observed between the four models.

We also implemented another variable selection method from a random forest algo-
rithm using permutation importance. As a result, there were four important variables
including age, household income, daily brushing frequency, and the mother’s DMFT quar-
tile. In the models including these four variables, the model using the logistic regression
exhibited the highest AUROC of 0.783, whereas those of the models using XGBoost, ran-
dom forest, and lightGBM were 0.782, 0.779, and 0.780, respectively (Figure 1B and Table 4).
Similarly, the misclassification rate was the lowest in the logistic regression model. The
most models exhibited almost random classification results (MCC < 0.20), except logistic
regression which had MCC > 0.20.
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Table 4. Summary of the predictive performance of each prediction model.

Model AUROC 1-Accuracy Sensitivity Specificity MCC

Variable selection by logistic regression using backward elimination *
Logistic Regression (Final model) 0.784 0.235 0.799 0.531 0.258
XGBoost 0.785 0.237 0.769 0.581 0.148
Random Forest 0.780 0.245 0.759 0.400 0.040
LightGBM 0.774 0.236 0.782 0.546 0.204

Variable Selection by random forest using permutation importance **
Logistic Regression 0.783 0.232 0.798 0.547 0.260
XGBoost 0.782 0.237 0.770 0.583 0.158
Random Forest 0.779 0.245 0.772 0.480 0.139
LightGBM 0.780 0.239 0.776 0.532 0.174

Analyses were performed with test dataset (n = 1259). AUROC: area under the receiver operating characteristic; 1-Accuracy: misclassification
rate; MCC: Matthews correlations coefficient. * Five variables were included: age, household income, daily brushing frequency, age of the
mother at giving birth, and the mother’s DMFT quartile. ** Four variables were included: age, household income, daily brushing frequency,
and the mother’s DMFT quartile.

4. Discussion

We developed ECC prediction models by performing logistic regression analysis
on children from 1 to 5 years of age from the 4th–7th KNHANES data (2007–2018) to
identify ECC-related factors. The final prediction model considered the age of the child,
household income, tooth brushing frequency of the child, mother’s birthing age, and the
mother’s DMFT as related variables. It has been widely known that the higher the age, the
less frequent brushing, and the lower the economic level of a household, the higher the
likelihood of ECC prevalence [34]. Conversely, the sex of the child was excluded from the
final prediction model because it had no significant relationship with the prevalence of
ECC. A wide variety of conclusions have been reported regarding the relationship between
the sex of the child and ECC. While some studies reported that boys are more likely to
experience ECC [35], some showed no significant differences due to the sex of the child,
which is consistent with the results of this study [36,37]. These differences could be due
to the studies conducted at different times and the varied characteristics of the research
populations. Furthermore, the number of siblings of a participant was also excluded from
the final prediction model as no significance was observed with the prevalence of ECC, as
demonstrated in a previous study [37].

Since parent’s knowledge, perception, and behavior on oral health can significantly
influence the onset of ECC in children [9,34], we included maternal variables in the analysis.
According to the results of the final prediction model, the likelihood of ECC in a child was
high if the mother’s DMFT value was high, which is consistent with previous research
findings which demonstrated that the oral health status of guardians also affects the oral
health of children [9,34]. While the OR value was higher than 1 when the age of the mother
at the time of giving birth was 35 years or more, there was no significant association.
While a previous study [38] found no significant association between maternal age at
childbirth and the prevalence of ECC among children, other studies [39,40] reported a
significant relationship between them. In these studies [39,40], the children were divided
into three groups based on their mother’s age at their birth (low, middle, and high age).
They reported that children in the low maternal age group (22 or 24 and below) had a
significantly higher ECC risk than compared to children in the middle and high age groups.
However, for the datasets used in our study, the proportion of mothers below 24 years
of age at the time of giving birth was extremely low. Therefore, we divided children into
two groups according to their mothers’ ages (old age and non-old age), while considering
a reference age of high-risk pregnancy (35 years old). We suspect that the relationship
between ECC and the mother’s age at the time of giving birth was not significant in our
study owing to the differences in the classification criteria. However, the mean dft was
significantly higher in children whose mother’s age at birth was 35 years or above than in
children whose mother’s age at birth was below 35 years. Furthermore, the education level
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of mothers was not significantly associated with the ECC history in children. In contrast
to our findings, a study conducted in Hong Kong [41] reported a significant relationship
between a mother’s low educational level and the high prevalence of ECC in the child.
However, a Canadian study [42] showed results consistent with our study. The rise in the
average level of education in Korean society in recent years is consistent with our data,
which shows that over 80% of the participants had a college degree or higher. Although
such upward leveling of educational background can weaken the relationship between the
education level and ECC, further research would be required to verify it.

We attempted to reduce the number of variables to conveniently use a prediction
model. Compared to the multiple regression model that considered all variables, the AU-
ROC value of our final prediction model changed only 0.002 after removing some variables
using the backward elimination method. Therefore, we developed a logistic regression
model with five variables as the final prediction model, which showed a higher AUROC
than the widely used critical point for prediction model performance (0.7), thereby indicat-
ing that the final prediction model was appropriate for predicting ECC in clinical practices.

In addition, we built prediction models using three ML algorithms that have been
widely used in recent disease prediction models and compared their performance with
the logistic regression model. As a result, no significant difference was observed in the
performance of the ML-based models and the logistic regression model. Considering
the limited number of studies conducted by using ML in prediction models in dentistry,
it is difficult to compare our study with the existing studies. Although most ML-based
prediction models used in the field of medicine demonstrated improved performance com-
pared to traditional statistical methods [43–45], not all showed a higher performance than
regression models developed in these studies. For example, Sampa et al. [43] developed
a blood uric acid prediction model using multiple ML algorithms and reported that the
boosted decision tree model showed improved performance compared to the traditional
linear regression model. However, among the ML algorithms used in Sampa’s study, the
model using a neural network exhibited a lower performance than the linear regression
model. This shows that not all ML-based prediction models show higher performance than
traditional regression models, and the outcome varies based on the variable characteristics,
the database used, and disease characteristics to be predicted. Nevertheless, there is no
doubt that ML algorithms such as XGBoost and random forest are very powerful classifiers
in many cases [43–45].

In this study, two kinds of variable selection methods were applied in the prediction
models because selecting variables using only a linear model can bias the results for ML
algorithms, which are nonlinear classifiers. Among the methods which are appropriate for
nonlinear classifiers, performance importance was used in this study, as suggested by the
previous studies [31,45,46]. When the backward elimination based on logistic regression
was used, five variables were selected. On the other hand, in the variable selection based
on the random forest, only four variables were selected, excluding the mother’s age at
childbirth. Regardless of the variable selection method, there was no significant difference
in the AUROC values between the regression and the ML-based models, which may mean
that the bias due to the variable selection was not significant. The logistic prediction model
including four variables also showed similarly good performance compared to the model
including five variables (Table 4). However, for the regression model, applying variable
selection by a linear model was more appropriate than the nonlinear approach. Therefore,
the prediction model ultimately proposed in this study was determined to be a logistic
regression model including five variables.

Owing to the nature of the cross-sectional survey data, although our study examined
the association between various variables and ECC, their causal relationship could not be
analyzed. In addition, because we only used variables included in the KNHANES data,
we did not analyze variables such as feeding behavior, sugar intake, and fluoride use.
Furthermore, although KNHANES investigates both paternal and maternal variables, we
only examined the maternal variables owing to the high missing frequency in paternal
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variables, which could result in biased results. Our final prediction model included the
maternal DMFT index assessed through a dentist’s examination during the survey, which
increases the accuracy of the model due to the accurate measurements. Nevertheless,
if a prediction model such as this is to be used in actual clinical practices, the need for
a dentist’s examination can be disadvantageous as it reduces the utility of the model.
Therefore, further research is required to examine whether the model maintains a high
performance when a dentist’s examination is not feasible and is, instead, replaced by a
questionnaire. Another drawback of the prediction models developed in this study is
their relatively low specificity values. This may be attributed to the skewed distribution
of data, which is even worse for the test set [32]. In order to estimate the performance of
models, a balance of false positive and negative prediction errors is considered a good
characteristic of prediction models [47]. Therefore, further research is needed to develop
an ECC prediction model able to overcome this weakness.

Despite several limitations, we believe our proposed prediction model makes a signif-
icant contribution to the literature as it can predict ECC in preschool children based on a
relatively simple survey and examination. Furthermore, our model was developed using
high-quality data that represented the Korean population. Moreover, the model can be
used to identify ECC high-risk groups and implement active preventive treatments and to
establish policies on ECC prevention as baseline data. We hope to enhance the effects of
oral health education in guardians of preschool children by using the proposed model and
to contribute to a reduction in ECC prevalence.

5. Conclusions

In this study, we developed prediction models using data from the KNHANES (2007–
2018) to detect ECC in children from the ages of 1 and 5. According to the final logistic
model proposed in this study, the following five variables were found to be risk factors
for ECC: children’s age (old), household income (low), teeth brushing frequency (≤1),
mother’s birthing age (≥35 years old), and the mother’s DMFT (≥7). The children’s sex
and the number of siblings were not associated with the prevalence of ECC. By contrast,
their mother’s education level, the use of dental floss or interdental brushes, and the
children’s frequency of teeth brushing did not show significant association with the child’s
prevalence of ECC. Additionally, we compared the performances of the prediction models
and found no evidence of the ML-based models exhibiting a higher predictive performance
than the regression model. All four types of prediction models showed AUROC values of
0.7 or higher, which indicated an appropriate level of accuracy for realization in clinical
applications. In future research, we are considering undertaking the development of an
ECC prediction model with improved performance by using a large-scale longitudinal
database or, alternatively, a more recently developed deep-learning algorithm. Furthermore,
it is necessary to develop a more practical ECC prediction model recording fewer false
positives, which might be more suitable for real-world clinical use.
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