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    Urinary tract infection (UTI) and pyelone-
phritis, which are usually caused by uropatho-
genic  Escherichia coli  (UPEC), are common 
infectious diseases that constitute a notable risk 
factor for the development of renal insuffi  -
ciency in children, young adults and renal 
transplanted patients ( 1 – 3 ). Toll-like recep-
tor (TLR) 4, which recognizes LPS, an ob-
ligate constituent of the outer membrane of 
all Gram-negative bacteria, plays a central 
role in initiating the antibacterial host re-
sponse: LPS-defective ( Lps d  ) C3H/HeJ mice 
exhibiting a loss-of-function mutation in the 
 Tlr4  gene are unresponsive to LPS ( 4 ) and 

fail to clear Gram-negative bacteria colonizing 
the lower urinary tract and kidneys ( 5 ). Us-
ing an experimental mouse model of ascend-
ing pyelo nephritis, we have shown that when 
UPECs invade the kidneys, they bind specifi -
cally to the apical surface of collecting duct (CD) 
cells ( 6 ) and induce a potent proinfl ammatory 
response via distinct TLR4-dependent and 
-independent signaling pathways ( 6, 7 ). These 
fi ndings indicate that, like bladder epithelial 
cells ( 8 ), epithelial cells from the collecting 
duct (which is the fi rst tubule segment to 
encounter ascending bacteria), together with 
bone marrow – derived cells ( 8, 9 ), play a key 
role in initiating an innate immune response in 
the kidney. 
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 Ascending urinary tract infection (UTI) and pyelonephritis caused by uropathogenic  Esch-

erichia coli  (UPEC) are very common infections that can cause severe kidney damage. 

Collecting duct cells, the site of hormonally regulated ion transport and water absorption 

controlled by vasopressin, are the preferential intrarenal site of bacterial adhesion and 

initiation of infl ammatory response. We investigated the effect of the potent V2 receptor 

(V2R) agonist deamino-8-D-arginine vasopressin (dDAVP) on the activation of the innate 

immune response using established and primary cultured collecting duct cells and an ex-

perimental model of ascending UTI. dDAVP inhibited Toll-like receptor 4 – mediated nuclear 

factor  � B activation and chemokine secretion in a V2R-specifi c manner. The dDAVP-

mediated suppression involved activation of protein phosphatase 2A and required an intact 

cystic fi brosis transmembrane conductance regulator Cl  −   channel. In vivo infusion of dDAVP 

induced a marked fall in proinfl ammatory mediators and neutrophil recruitment, and a 

dramatic rise in the renal bacterial burden in mice inoculated with UPECs. Conversely, 

administration of the V2R antagonist SR121463B to UPEC-infected mice stimulated both 

the local innate response and the antibacterial host defense. These fi ndings evidenced a 

novel hormonal regulation of innate immune cellular activation and demonstrate that 

dDAVP is a potent modulator of microbial-induced infl ammation in the kidney. 
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   RESULTS  

  Renal collecting duct mpkCCD cl4  cells express TLR4 

and are sensitive to LPS 

 The identifi cation of collecting duct cells as a preferential 
adhesion site for UPECs in an in vivo model of ascending UTI 
( 6 ) led us to analyze the mechanisms of cell activation in a 
highly diff erentiated collecting duct cell line, mpkCCD cl4 , 
derived from collecting ducts microdissected from the kidney 
of a transgenic SVPK-Tag mouse harboring the large T anti-
gen under the control of a truncated pyruvate kinase pro-
moter fused to an SV40 enhancer ( 21 ). These cells formed 
confluent layers of epithelial-shaped cells, which in turn 
formed domes, a characteristic feature of layers of ion-trans-
porting epithelial cells (Fig. S1, available at http://www.jem
.org/cgi/content/full/jem.20071032/DC1). mpkCCD cl4  cells 
expressed TLR4 as well as the accessory protein MD-2 and 
myeloid diff erentiation factor 88 (MyD88; Fig. S1). They 
also expressed the mRNA of CD14 (Fig. S1), indicating that 
mpkCCD cl4  cells might autonomously produce CD14, ren-
dering them independent of serum-derived soluble CD14. 
Western blotting using a specifi c polyclonal rabbit anti-TLR4 
antiserum revealed a major protein band of the predicted size 
of  � 96 kD, which was not detected in the presence of an 
excess of the peptide used for immunization ( Fig. 1 A ).  FACS 
analysis revealed predominantly intracellular staining of 
TLR4 ( Fig. 1 B ), and immunofl uorescence studies showed 
that TLR4 was mainly concentrated in the perinuclear region 
of the cytoplasm ( Fig. 1 C , top), where it colocalized with 
the Golgi marker CTR433 ( Fig. 1 C , bottom) ( 24 ). These 
fi ndings indicate that mpkCCD cl4  cells express the LPS receptor 
complex TLR4 – MD-2, which is mainly detected in the intra-
cellular compartment (i.e., in the Golgi apparatus), as previously 
reported in pulmonary epithelial cells ( 25 ), endothelial cells 
( 26 ), and intestinal epithelial m-IC cl2  cells ( 27 ). 

 The recognition of LPS by TLR4 induces a cascade of 
events leading to activation of the nuclear transcription factor 
NF- � B signaling pathway and the subsequent production of 
chemokines and cytokines ( 28 ). I � B- �  undergoes ubiquitina-
tion and proteasome-mediated degradation, leading to the re-
lease and nuclear translocation of the NF- � B subunit p65/RelA 
( 29, 30 ). In mpkCCD cl4  cells, LPS induced the nuclear trans-
location of NF- � B ( Fig. 1 D , top). This nuclear redistribution 
was completely abolished after treatment with the specifi c 
NF- � B inhibitor SN50. LPS also induced a dose-dependent 
increase in luciferase activity in cells transiently transfected 
with a NF- � B luciferase reporter gene construct ( Fig. 1 D , 
bottom). 50 ng/ml TNF- � , used as positive control, similarly 
induced a signifi cant increase in luciferase activity. Finally, 
LPS induced dose- and time-dependent stimulation of the 
secretion of the chemokine macrophage infl ammatory protein 2 
(MIP-2;  Fig. 1 E ), which was very signifi cantly reduced in the 
presence of SN50 or polymyxin B, a competitive inhibitor of 
LPS (not depicted). These results indicate that mpkCCD cl4  
cells provide a suitable in vitro cell system for analyzing regu-
latory mechanisms controlling TLR4-mediated cellular acti-
vation in renal collecting duct cells. 

 Collecting duct cells are a major site of the reabsorption 
of water and of NaCl from the primitive urine. These pro-
cesses are tightly regulated by hormones such as arginine 
vasopressin (AVP), a neuropeptide secreted into the systemic 
bloodstream by hypothalamic neurons, which binds to V2 
receptors (V2Rs) coupled to adenylyl cyclase and stimulates 
the cyclic AMP (cAMP) – protein kinase A (PKA) signaling 
pathway. This boosts the reabsorption of water by increasing 
the permeability of the apical membranes of the collecting 
duct principal cells ( 10 ). AVP also stimulates the reabsorption 
of NaCl mediated by the epithelial sodium channel (ENaC) 
and activates the cAMP-sensitive cystic fi brosis transmem-
brane conductance regulator (CFTR) Cl  −   conductance in 
cultured renal collecting duct cells ( 11 – 13 ). Children with 
pyelonephritis exhibit increased levels of circulating AVP 
and develop polyuria with urinary concentrating defect, 
probably related to acute renal interstitial infl ammation ( 14 – 16 ). 
However, this does not exclude that vasopressin may pro-
duce unexpected biological eff ects on renal cells indepen-
dently of its antidiuretic action. As a matter of fact, the 
mechanisms involved in the interplay between AVP and renal 
infl ammatory responses caused by LPS or UPECs are still 
poorly understood. Previous studies have shown that in-
creased cell cAMP levels inhibit the TNF- �  – , LPS-, and 
IL-1 �  – stimulated expression of adhesion molecules and sig-
naling molecules in a variety of cell types ( 17 – 20 ). AVP, via its 
stimulatory action on cell cAMP content, might therefore 
inhibit the activation of target cells (i.e., collecting duct cells) 
after bacterial colonization of the kidney. However, the ef-
fects of AVP on proinfl ammatory mediators and the upstream 
and downstream mechanisms of cAMP-mediated inhibition 
of cellular activation remain to be identifi ed. The fact that 
UPECs preferentially adhere to AVP-sensitive collecting 
duct cells that are able to develop a potent infl ammatory re-
sponse ( 6 ) led us to hypothesize that AVP may infl uence the 
innate immune response and aff ect renal bacterial clearance. 
In the present study, we examine the eff ects of 1-deamino-
8-D-AVP (dDAVP), a pure V2R agonist, on LPS recog-
nition in immortalized cortical collecting duct (CCD) 
mpkCCD cl4  cells that have retained the main properties of 
the parent collecting duct cells ( 11, 21 ) and their sensitivity 
to LPS ( 22 ). We carefully analyze the underlying molecular 
process and show that dDAVP inhibits LPS-mediated cell 
activation through a dephosphorylation process, which is 
mainly mediated by the serine/threonine (Ser/Thr) protein 
phosphatase 2A (PP2A). Using CCD cells dissected from 
homozygous  cftr m1unc   mice in which the  cftr  gene had been 
disrupted ( 23 ) and their wild-type counterparts, we further 
demonstrated the important role played by CFTR in this 
process. Using an experimental model of ascending UTI ( 4 ), 
we also provide in vivo demonstration of the relevance of the 
regulatory role of dDAVP in controlling renal infl ammatory 
responses. Overall, our fi ndings identify a novel AVP – CFTR –
 Ser/Thr PP2A regulatory pathway involved in controlling 
the intrarenal innate immune response to pyelonephritis caused 
by UPEC. 
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NF- � B subunit p65/RelA (phosphorylated p65) caused by 
LPS was no longer observed in the presence of dDAVP 
( Fig. 2 B ). Experiments using mpkCCD cl4  cells confi rmed 
that dDAVP induced a dose-dependent decrease of the LPS-
induced activation of NF- � B ( Fig. 2 C ). Consistent with 
these fi ndings, dDAVP caused dose-dependent inhibition of 
LPS-stimulated secretion of MIP-2 and TNF- �  ( Fig. 2 D ). 
A constant concentration of 10  − 8  M dDAVP also transac-
tivated NF- � B and stimulated the secretion of MIP-2, and 
TNF- �  inhibited to the same extent at all concentrations of 
LPS tested ( Fig. 2, E and F ), indicating that dDAVP does not 
bind to LPS in solution. To confi rm that the inhibitory ac-
tion of dDAVP on LPS-mediated cell activation involved the 
binding of dDAVP to V2R, the production of MIP-2 was 

 dDAVP inhibits LPS-dependent NF- � B activation and 

secretion of MIP-2 and TNF- �  in renal collecting duct 

mpkCCD cl4  cells 

 Previous studies had demonstrated that AVP induces a rapid 
rise in cellular cAMP content and stimulates the reabsorp-
tion of NaCl and water by renal collecting duct cells ( 17 – 20 ). 
We investigated whether dDAVP could aff ect innate immune 
recognition of LPS in mpkCCD cl4  epithelial cells. Incubating 
cells with 10  − 8  M dDAVP alone or with LPS for 6 h induced 
a signifi cant rise in cAMP as compared with untreated cells 
( Fig. 2 A ).  LPS induced rapid time-dependent degradation 
of I � B- �  and stimulated the phosphorylation of the NF- � B 
subunit p65/RelA (phosphorylated p65;  Fig. 2 B ). The time-
dependent degradation of I � B- �  and phosphorylation of the 

 Figure 1.   TLR4 expression in CCD mpkCCD cl4  cells. (A) Western blot analysis of mpkCCD cl4  cell lysates revealing a band of the predicted size 

( � 96 kD; arrow) of TLR4, which was not detected in the presence of an excess of the peptide (+pep) used for immunization. (B) FACS analysis for TLR4 in 

nonpermeabilized and permeabilized cells. Nonbolded lines correspond to the isotype control. (C) Cellular immunolocalization of TLR4 performed with or 

without an excess of the peptide used for immunization (top), and colocalization of TLR4 with the Golgi apparatus marker CTR433 (bottom). Nuclei were 

counterstained with HOECHST 33258. Bars, 10  � m. (D, top) Nuclear translocation of NF- � B p65/RelA in cells stimulated with 10 ng/ml LPS in the presence 

or absence of 18  � M SN50 for 3 h. Bar, 10  � m. (bottom) Effects of rising concentrations of LPS and 50 ng/ml TNF- �  on NF- � B activation in cells trans-

fected with the NF- � B luciferase reporter. (E) Effects of rising concentrations of LPS and time dependency on the secretion of MIP-2. Values are means  ±  SE 

from four to seven experiments. *, P  <  0.05 versus zero values.   
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 Figure 2.   Inhibitory effect of dDAVP on LPS-mediated cellular activation. (A) Cell cAMP content in mpkCCD cl4  cells incubated without or with 

10  − 8  M dDAVP, LPS, or dDAVP plus LPS for 6 h. (B) Time-dependent expression of I � B- �  and  � -actin and phosphorylated (p-p65) and total (p65) NF- � B 

p65/RelA in cells incubated with LPS ( − dDAVP) or LPS plus dDAVP (+dDAVP). (C and D) Effects of rising concentrations of dDAVP on 10 ng/ml LPS –

 induced cellular activation in mpkCCD cl4  cells transfected with the NF- � B luciferase reporter (C), and on the secretion of MIP-2 and TNF- �  (D). 

(E and F) Effects of 10  − 8  M dDAVP on 1 – 1,000 ng/ml LPS – induced cellular activation (E), and on the secretion of MIP-2 and TNF- �  (F). TNF- �  was used 

as control for the transactivation experiments. (G and H) Effects of SR121463B on the secretion of MIP-2 6 h after adding dDAVP and LPS. dDAVP and 

SR121463B had no effect on MIP-2 secretion stimulated by PMA. Results are expressed as means  ±  SE. *, P  <  0.05 versus LPS values.   
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In the absence of dDAVP, preincubating the cells with 10 nM 
calyculin A or okadaic acid had no eff ect on LPS-stimulated 
secretion of MIP-2 or TNF- �  ( Fig. 3 B ). In sharp contrast, 
the two protein phosphatase inhibitors prevented the inhibitory 
eff ect of dDAVP on the LPS-stimulated secretion of MIP-2 
and TNF- �  ( Fig. 3 B ). Although calyculin A and okadaic 
acid both inhibit PP1 and PP2A activities, the latter is a more 
selective inhibitor of PP2A at the 10-nM dose used ( 36, 37 ). 
10 nM calyculin A and okadaic acid also impaired the inhibi-
tory eff ect of 10  − 8  M dDAVP on the stimulated secretion of 
MIP-2 and TNF- �  at all concentrations of LPS (1 – 1,000 ng/ml) 
tested (Fig. S3, available at http://www.jem.org/cgi/content/
full/jem.20071032/DC1). These fi ndings strongly suggest that 
the increase in PP2A activity is directly responsible for the 
inhibitory eff ect of dDAVP on the LPS-stimulated secretion 
of both MIP-2 and TNF- �  by renal collecting duct cells. 

 Cl  −   channel inhibitors abolish the inhibitory activity 

of dDAVP on LPS-stimulated cytokine secretion 

 CFTR, a Cl  −   channel activated by cAMP-dependent PKA, 
can be dephosphorylated and inactivated by several Ser/Thr 
protein phosphatases ( 38 – 41 ). CFTR mediates the electro-
genic apical secretion of Cl  −   stimulated by dDAVP in renal 
collecting duct cells ( 12, 13 ). mpkCCD cl4  cells express both 
ENaC and the CFTR Cl  −   channel ( Fig. 4 A ).  Two recent 
studies have demonstrated that the CFTR Cl  −   channel is di-
rectly linked to PP2A ( 42, 43 ). Inhibitors of PP2A were also 
shown to prolong the deactivation of cAMP-activated CFTR 

measured in mpkCCD cl4  cells preincubated with increasing 
concentrations of SR121463B (see Materials and methods), 
a selective, nonpeptide V2R antagonist ( 31 ). Stimulations 
were subsequently performed with 10 ng/ml LPS plus 10  − 8  M 
dDAVP. SR121463B produced concentration-dependent 
antagonism of the inhibitory action of dDAVP on LPS-in-
duced MIP-2 secretion: at 10  − 7  M, SR121463B completely 
antagonized the inhibitory action of dDAVP and restored the 
stimulatory activity of LPS ( Fig. 2 G ). The V2R-mediated 
inhibitory action of dDAVP appeared to be specifi c because 
neither dDAVP alone nor dDAVP plus SR121463B aff ected 
PMA-induced cell stimulation ( Fig. 2 H ). We then checked 
that dDAVP was acting specifi cally on the TLR4-mediated 
cellular activation. Extinction of TLR4 mRNA expression 
by a specifi c TLR4 small-interfering RNA (siRNA) com-
pletely inhibited the secretion of MIP-2 stimulated by LPS 
in mpkCCD cl4  cells, whereas a negative control siRNA had 
no eff ect (Fig. S2, available at http://www.jem.org/cgi/
content/full/jem.20071032/DC1). As a control, TLR4 ex-
tinction induced by the siRNA used had no eff ect on PMA 
stimulation. Involvement of PKA in the inhibitory action of 
dDAVP on LPS activation was demonstrated by preincubat-
ing the cells for 30 min with 5  ×  10  − 5  M of the selective 
PKA inhibitor H89. H89 signifi cantly reduced the inhibitory 
eff ect of dDAVP on the LPS-mediated secretion of MIP-2 
(LPS + dDAVP = 429  ±  31 pg/ml; LPS + dDAVP + H89 = 
616  ±  11 pg/ml;  n  = 4; P  <  0.05). In contrast, preincubating 
cells with 10  − 6  M GF109203X, a protein kinase C inhibitor, 
did not aff ect the inhibitory action of dDAVP on the LPS-
mediated secretion of MIP-2 (LPS + dDAVP = 495  ±  17 pg/ml; 
LPS + dDAVP + GF109203X = 503  ±  18 pg/ml;  n  = 4). 
Collectively, these fi ndings indicate that dDAVP acts as a 
potent modulator of the TLR4-dependent activation of renal 
CCD cells. 

 The inhibitory effect of dDAVP on the LPS-induced 

secretion of MIP-2 and TNF- �  is mediated by Ser/Thr 

protein phosphatases 

 dDAVP-induced down-regulation of LPS-mediated NF- � B 
activation suggests that this polypeptide hormone may alter 
the activation (i.e., phosphorylation) of signaling molecules. 
The phosphorylation of signaling molecules is regulated not 
only by protein kinases, but also by Ser/Thr protein phos-
phatases ( 32 ). PP1 and PP2A, as well as a variety of protein 
kinases, are involved in the regulation of signaling pathways 
by a phosphorylation/dephosphorylation mechanism ( 32 ). 
Interestingly, Ser/Thr PP2A is highly expressed in the distal 
nephron ( 33 ) and is activated by dDAVP in mouse renal col-
lecting duct cells ( 34 ). We therefore investigated whether 
dDAVP activated Ser/Thr protein phosphatase activity, and 
whether calyculin A and okadaic acid, two potent inhibitors of 
Ser/Thr PP1 and PP2A ( 35 ), impaired the inhibitory eff ect 
of dDAVP on LPS-mediated cell stimulation. Incubating 
mpkCCD cl4  cells with 10  − 8  M dDAVP for 6 h signifi cantly stim-
ulated PP2A activity ( Fig. 3 A ).  10 ng/ml LPS for 6 h also slightly 
increased the PP2A activity stimulated by dDAVP ( Fig. 3 A ). 

 Figure 3.   Inhibitors of Ser/Thr protein phosphatases impair the 

inhibitory effect of dDAVP on the LPS-mediated cytokine secretion. 

(A) mpkCCD cl4  cells were incubated with or without 10  − 8  M dDAVP, 10 ng/ml 

LPS, or dDAVP plus LPS for 6 h. Ser/Thr phosphatase activity was mea-

sured in cell homogenates using a synthetic phosphopeptide substrate. 

Error bars represent the mean phosphate release values  ±  SE from six 

separate experiments. (B) The secretion of MIP-2 and TNF- �  was mea-

sured in the cell supernatants after incubation with or without 10 ng/ml 

LPS or 10  − 8  M dDAVP plus LPS for 6 h in the presence or absence of 

10 nM calyculin A or okadaic acid. Values are means  ±  SE from four to seven 

separate experiments. *, P  <  0.05 versus basal and LPS values (A) or versus 

the other experimental conditions (B).   
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cell activation. We therefore tested the eff ects of various Cl  −   
channel inhibitors on mpkCCD cl4  cells exposed to LPS alone 
or to LPS plus dDAVP for 6 h ( Fig. 4 B ). 5-nitro-2(3phenyl-
propyl-amino)benzoate (NPPB) and glybenclamide (Gly) both 
inhibit mouse CFTR at high concentrations and also aff ect 
other Cl  −   transporters, as well as K + -ATP – sensitive channels 
( 13, 44 – 46 ). The more potent and specifi c CFTR inhibitor 

Cl  −   channels in colonic carcinoma Caco-2 cells ( 42 ) and to 
increase CFTR channel activity in excised patches of airway 
and intestinal epithelium ( 43 ). Although protein phosphatase 
inhibitors had no substantial eff ects on dDAVP-stimulated 
Cl  −   fl uxes in mpkCCD cl4  cells (unpublished data), we wanted 
to fi nd out whether CFTR was involved in the observed 
PP2A-dependent inhibitory eff ect of dDAVP on LPS-mediated 

 Figure 4.   Anion channel inhibitors prevent the inhibitory effect of dDAVP on LPS-mediated cytokine secretion. (A) mpkCCD cl4  cells expressed 

 � -ENaC (564 bp) and CFTR (636 bp) mRNA. + represents reverse-transcribed RNA;  −  represents non – reverse-transcribed RNA. (B) MIP-2 and TNF- �  secre-

tions were measured after incubating cells with or without 10 ng/ml LPS, 10  − 8  M dDAVP, or dDAVP plus LPS for 6 h in the presence or absence of 10  − 4  M 

NPPB, 10  − 4  M Gly, 10  − 7  M CFTR inh -172, or 10  − 5  M amiloride (Am). (C) Apical and basal secretion of MIP-2 and TNF- �  measured on confl uent cells grown on 

fi lters and incubated with 10 ng/ml LPS, LPS plus 10  − 8  M dDAVP, or LPS plus dDAVP and 10  − 7  M CFTR inh -172. LPS was added either on the apical (Apical 

LPS) or basal (Basal LPS) side of the cell layers, dDAVP was added to the basal side of the cell layers, and CFTR inh -172 was added to the apical side of the 

cell layers. Values are means  ±  SE from fi ve to eight experiments (B) and from 7 to 10 measurements from three independent experiments (C). *, P  <  0.05 

versus LPS plus dDAVP values and the other experimental conditions.   
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calyculin A ( Fig. 5 D ). In sharp contrast,  cftr  − / −    CCDs were 
completely resistant to the eff ect of dDAVP ( Fig. 5, D and E ). 
In line with these fi ndings, dDAVP signifi cantly reduced 
the LPS-induced secretion of MIP-2 and TNF- �  in  cftr +/+   
but not in  cftr  − / −    CCDs ( Fig. 5 F ). Moreover, calyculin A, 
okadaic acid, and CFTR inh -172 had no eff ect on LPS-treated 
 cftr  − / −    CCDs ( Fig. 5 F ). These findings indicate that the 
inhibitory activity of dDAVP requires functional CFTR to 
control the activity of the Ser/Thr protein phosphatases in 
renal collecting duct cells. 

 dDAVP inhibits UPEC-induced secretion of MIP-2 and TNF- �  

in cultured CCDs 

 To study the dDAVP-mediated eff ect on LPS-induced cell 
activation in a biologically relevant context, confl uent cul-
tures of CCDs dissected from TLR4-defective C3H/HeJ mice 
and from TLR4-expressing C3H/HeN mice (hereafter referred 
to as  Lps d   and  Lps n   CCDs, respectively) were analyzed after 
exposure to UPECs ( 6 ). dDAVP inhibited the secretion of 
MIP-2 and TNF- �  in  Lps n   CCDs after the addition of LPS or 
HT7 UPEC isolates ( Fig. 6, A and B ).  In contrast, no detect-
able LPS or dDAVP-induced eff ect was noted in  Lps d   CCDs 
( Fig. 6 A ). In line with a previous study, which had demon-
strated that UPEC isolates also activate a TLR4-independent 
signaling pathway ( 6 ), we found that incubating  Lps d   CCDs 
with UPECs resulted in residual cell stimulation. However, 
the levels of MIP-2 and TNF- �  secreted by  Lps d   CCDs 
reached only  � 50% of those for  Lps n   CCDs. Importantly, 
TLR4-independent cell activation was not aff ected by preincu-
bating with dDAVP ( Fig. 6 B ). These fi ndings demonstrate that 
the suppressor eff ect of dDAVP is limited to TLR4-mediated 
cell activation and suggest that it may well be of biological 
relevance during UPEC infection. 

 dDAVP-induced inhibition of the TLR4-mediated innate 

host defense in response to UPECs leads to exacerbated 

kidney infection in vivo 

 Increased AVP plasma levels are found in a variety of patho-
physiological situations associated with dehydration, such as 
severe renal infection or septic shock. The question arises 
of the extent that dDAVP infl uences renal infl ammatory 
 responses and bacterial clearance. To answer this question, 
either 1 ng/ � l/h dDAVP or 1  � l/h isotonic saline was ad-
ministered continuously to adult female  Lps n   and  Lps d   mice 
via an implanted osmotic pump while receiving normal water 
intake (see Materials and methods) ( 48 ). Untreated  Lps n   and 
 Lps d   mice were kept in metabolic cages before and after the 
implantation of the osmotic pumps filled with dDAVP 
to fi nd out whether dDAVP had similar antidiuretic ef-
fects in both mouse strains. dDAVP administration induced 
similar reduction in urine volume in both mouse strains 
(Table S1, available at http://www.jem.org/cgi/content/
full/jem.20071032/DC1). In accordance with these results, 
urine osmolality increased and plasma osmolality decreased in 
all HT7-infected mice treated with dDAVP but not in those 
given isotonic saline (Table S2). Moreover, the magnitude of 

CFTR inh -172 (see Materials and methods) was therefore also 
included in the analysis ( 47 ). 10  − 4  M NPPB and Gly signifi -
cantly impaired the inhibitory activity of dDAVP on LPS-
mediated secretions of MIP-2 and TNF- � , whereas 10  − 5  M 
amiloride, a potent inhibitor of ENaC, did not aff ect cyto-
kine secretion ( Fig. 4 B ). Importantly, 10  − 7  M CFTR inh -172 
also signifi cantly diminished the inhibitory eff ect of dDAVP 
on the LPS-mediated secretion of MIP-2 and TNF- �  ( Fig. 
4 B ). Similar to what has been reported for calyculin A and 
okadaic acid, 10  − 7  M CFTR inh -172 completely impaired the 
inhibitory eff ect of 10  − 8  M dDAVP on the stimulation of the 
secretion of MIP-2 and TNF- �  at all concentrations of LPS 
(1 – 1,000 ng/ml) tested (Fig. S3). 

 Confl uent mpkCCD cl4  cells exhibit a highly diff erentiated, 
tight epithelial phenotype when grown on semipermeable 
fi lters and develop high transepithelial electrical resistance 
( > 1,500  Ω .cm 2 ) ( 21 ). The polarized (apical and/or basal) se-
cretion of MIP-2 was measured in the apical and basal me-
dium bathing confl uent mpkCCD cl4  cells grown on fi lters 
after being exposed to 10 ng/ml LPS for 6 h. Apical addition 
of LPS resulted in an increase in predominantly apically di-
rected secretion of MIP-2 ( Fig. 4 C ). In contrast, basal addi-
tion of LPS induced only a moderate increase in the secretion 
of MIP-2, which appeared to be predominantly basally di-
rected ( Fig. 4 C ). These fi ndings demonstrate the presence of 
a predominantly apically oriented mechanism of LPS recog-
nition and chemokine secretion in mpkCCD cl4  cells. Simi-
larly, apical addition of 10  − 7  M CFTR inh -172 restored the 
LPS-stimulated apical and basal secretion of MIP-2 and TNF- �  
after the apical or basal addition of LPS to confl uent cultures 
of dDAVP-treated mpkCCD cl4  cells grown on fi lters ( Fig. 4 C ). 
These fi ndings indicate that the cAMP-regulated CFTR Cl  −   
channel, together with PP1 and PP2A, is involved in regulat-
ing the bipolarized cytokine secretion induced by LPS in renal 
collecting duct cells. 

 The inhibitory effect of dDAVP on LPS-stimulated cytokine 

secretion requires intact CFTR 

 To assess further the role of CFTR in the down-regulation of 
the LPS-induced infl ammatory responses elicited by dDAVP, 
experiments were performed using primary cultures of CCDs 
dissected from  cftr m1unc   and wild-type counterpart mice 
(hereafter referred to as  cftr +/+   and  cftr  − / −    CCDs, respectively). 
Cultured  cftr +/+   and  cftr  − / −    CCDs formed confl uent layers of 
cuboid-shaped cells expressing K 8  – K 18  cytokeratins and the 
tight junction – associated protein ZO-1 ( Fig. 5 A ).  These cell 
layers were devoid of hematopoietic cells and did not express 
the bone marrow – derived cell marker CD45 ( Fig. 5 B ).  cftr +/+   
and  cftr  − / −    CCDs both expressed TLR4, whereas the ex-
pected size of CFTR transcripts was only observed in  cftr +/+   
and not in  cftr  − / −    CCDs ( Fig. 5 C ). dDAVP impaired the LPS-
induced activation of the phosphorylated NF- � B subunit 
p65/RelA in  cftr +/+   CCDs ( Fig. 5, D and E ). As in mpkCCD cl4  
cells, the decrease in phosphorylated p65 caused by dDAVP 
was no longer detected in LPS-treated wild-type  cftr +/+   CCDs 
incubated with 10  − 7  M CFTR inh -172, 10 nM okadaic acid, or 
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inoculation of the HT7 isolates, the expression of proinfl am-
matory mediators and the renal bacterial burden were ana-
lyzed. The levels of IL-1 � , MIP-2, regulated on activation, 

changes in plasma and urinary osmolalities refl ecting the 
hydroosmotic activity of dDAVP were very similar in the 
 Lps n   and  Lps d   mice (Table S2). 24 h after the transurethral 

 Figure 5.   The inhibitory effect of dDAVP on LPS-stimulated cytokine secretion requires functional CFTR. (A)  cftr +/+   and  cftr  − / −    CCDs formed 

confl uent layers of cuboid cells and expressed cytokeratins 8 – 18 (red) and the tight junction – associated protein ZO-1 (green). Bars, 10  � m. (B) CD45 

mRNA (405 bp) expressed in peritoneal macrophages was not detected in cultured  cftr +/+   CCDs. (C) Cultured  cftr +/+   CCDs and  cftr  − / −    CCDs expressed TLR4 

(311 bp) mRNAs. No amplifi ed product of the expected size CFTR (636 bp) was detected in  cftr  − / −    CCDs. + represents reverse-transcribed RNA;  −  repre-

sents non – reverse-transcribed RNA. (D) Western blots analyses of phosphorylated (p-p65) and total (p65) NF- � B p65/RelA after incubation of  cftr +/+   and 

 cftr  − / −    CCDs with or without LPS or LPS plus dDAVP, and with or without CFTR inh -172, okadaic acid, or calyculin A for 60 min (E). Error bars are the mean 

ratio values (arbitrary units)  ±  SE of densitometric analyses of phosphorylated over total p65 ( n  = 3) in the different conditions tested. (F) The secretion of 

MIP-2 was measured in  cftr +/+   CCD and  cftr  − / −    CCD cell supernatants before and after adding LPS or LPS plus dDAVP with or without protein phosphatase 

and CFTR inhibitors for 6 h. Values are means  ±  SE from 7 to 11 wells from three to fi ve separate experiments. *, P  <  0.05 versus LPS plus dDAVP values 

and the other experimental conditions.   
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infected mice 1d after bacterial challenge was signifi cantly 
lower in dDAVP-treated  Lps n   mouse kidneys than in the 
saline-infused  Lps n   control mice ( Fig. 7, D and E ). In sharp 
contrast, the number of PMNs in UPEC-infected  Lps d   kid-
neys, which was signifi cantly lower than that in infected  Lps n   
mouse kidneys, was not aff ected by the dDAVP treatment 
( Fig. 7, D and E ). The distribution of neutrophils in the py-
elic and inner medullary regions of infected kidneys appears 
to be rather variable ( Fig. 7 D ). To confi rm the immuno-
histological fi ndings, neutrophil migration was also assessed 
by measuring myeloperoxydase (MPO) activity in renal homog-
enates ( 51 ). MPO assay revealed that neutrophil migration 
was lower in  Lps d   than in  Lps n   kidneys colonized by HT7 
( Fig. 7 F ). dDAVP infusion induced a marked decrease in 
MPO activity in the kidneys from HT7-infected  Lps n   mice 
as compared with that of saline-infused infected  Lps n   mice 
but had no eff ect on MPO activity in HT7-infected  Lps d   
kidneys ( Fig. 7 F ). These fi ndings demonstrate that dDAVP 
also infl uences infl ammatory responses in vivo and suggest that 
dDAVP may be involved during bacterial kidney infection. 
They also raised the question as to whether in vivo blockade 
of the endogenous V2R, which is highly expressed in 
 collecting duct cells, could prevent the deleterious eff ect of 
dDAVP on the infl ammatory response and bacterial burden. 
To answer this question, C3H/HeN  Lps n   mice subjected to 
water restriction were given intraperitoneal injections of 0.03 
or 0.3 mg/kg SR121463B 6 h before the transurethral in-
oculation of HT7. The mice received a second injection of 
SR121463B 14 h after bacterial infection. Administration of 
a low or high concentration of SR121463B alone had no 
eff ect on the levels of mRNA expression of proinfl amma-
tory mediators ( Fig. 8 A ).  As a control, we checked that a 
high concentration (10  − 6  M) of SR121463B did not aff ect 
the growth or viability of HT7  E. coli  isolates (unpublished 
data). Also, the administration of low doses of SR121463B 
did not signifi cantly aff ect plasma and urine osmolality 
(Table S3, available at http://www.jem.org/cgi/content/full/
jem.20071032/DC1). Consistent with the decrease in urine 
osmolality caused by aquaresis ( 31 ), a high dose of the V2R 
antagonist (0.3 mg/kg) signifi cantly increased plasma osmo-
lality (Table S3). The administration of both low and high 
doses of SR121463B to infected mice resulted in signifi cant 
dose-dependent increases in the expression of proinfl amma-
tory mediators and in the production of MIP-2 and TNF- �  
measured in whole kidney homogenates ( Fig. 8, A and B ). 
Compared with untreated infected mice, SR121463B treated 
mice also displayed a signifi cant dose-dependent decrease in 
the renal bacterial burden 24 h after challenge ( Fig. 8 C ). 
Consistent with the stimulatory eff ect of the V2R antagonist 
on proinfl ammatory mediators, the number of CFU detected 
in kidneys proportionally decrease as a function of the dose of 
SR121463B administered ( Fig. 8 C ), whereas the number of 
Ly6-G – positive neutrophils infi ltrating the kidneys and the 
levels of MPO activity remained almost the same in infected 
mice receiving a low dose (0.03 mg/kg) of SR121463B, and 
then fell signifi cantly in infected mice treated with the high 

normal T cell expressed and secreted (RANTES), MCP-1, 
and TNF- �  expression were lower in the dDAVP-treated 
 Lps n   mice than in mice infused with isotonic saline after bac-
terial infection ( Fig. 7 A ).  UPEC infection induced only a 
moderate increase in proinfl ammatory mediator expression 
in the kidneys of  Lps d   mice, which was not altered by the 
dDAVP treatment ( Fig. 7 A ). dDAVP also dampened the 
production of MIP-2 and TNF- �  measured in whole-cell 
homogenates from HT7-infected  Lps n   mice but had no eff ect 
on the production of MIP-2 and TNF- �  by HT7-infected 
kidneys of  Lps d   mice ( Fig. 7 B ). These data are in accordance 
with the in vitro observations and further confi rm that the 
suppressor eff ect of dDAVP is restricted to TLR4-dependent 
immune activation. The importance of TLR4 activation 
during UPEC infection was demonstrated by the fi nding that 
the renal bacterial burden was markedly greater in  Lps d   than 
in  Lps n   wild-type mice. Importantly,  Lps n   mice treated with 
dDAVP were signifi cantly more susceptible to UPEC infec-
tion than their  Lps n   counterparts receiving isotonic saline, with 
a 20-fold greater bacterial CFU 1d after infection ( Fig. 7 C ). 
In contrast, dDAVP had no eff ect on the renal bacterial counts 
in  Lps d   mice ( Fig. 7 C ). 

 Chemoattractant chemokines, such as MIP-2, play a 
key role in the migration of PMNs to mucosal sites of in-
fl ammation to produce effi  cient bacterial clearance ( 49, 50 ). 
In accordance with the lower expression of chemokines in 
infected  Lps n   mouse kidneys treated with dDAVP, the num-
ber of Ly6-G – positive PMNs found on kidney sections from 

 Figure 6.   Differential action of dDAVP on LPS- and UPEC-stimulated 

cytokine secretion in  Lps n   and  Lps d   CCD cells. Secretion of MIP-2 and 

TNF- �  was measured in confl uent cultures of  Lps n   and  Lps d   CCDs incu-

bated with LPS alone or LPS plus dDAVP for 6 h (A), or incubated with  

E. coli  HT7 isolates (5  ×  10 5  bacteria per well) alone or HT7 plus dDAVP for 

3 h (B). Values are means  ±  SE from fi ve to seven separate wells from three 

separate experiments under each condition tested. *, P  <  0.05 versus LPS or 

HT7 values (open bars) or HT7 and HT7 plus dDAVP values (shaded bars).   
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rapid renal clearance of bacteria by stimulating proinfl amma-
tory mediators. The benefi cial eff ect of the V2R antagonist 
appeared to be restricted to the kidney, because the number 
of CFUs detected in the bladder did not considerably diff er 
in untreated and SR121463B-treated mice (unpublished 
data). These fi ndings support the idea that this potent V2R 
blocker agent, which may impair the retrograde ascent of 
UPECs via its aquaretic eff ects ( 31 ), eff ectively antagonizes 
the action of endogenous dDAVP, leading to a signifi cant 

dose (0.3 mg/kg) of SR121463B ( Fig. 8, D – F ). Only a few 
UPECs ( � 3,000 CFU per kidney) and infi ltrating neutrophils 
were detected in kidneys from 0.3 mg/kg SR121463B –
 injected mice ( Fig. 8, E and F ). Furthermore, the small num-
ber of infi ltrating neutrophils present in the infected kidneys 
from the 0.3 mg/kg SR121463B – injected mice was very 
similar to that found in dDAVP-treated  Lps n   mice, which 
exhibited  � 110-fold more bacteria in their kidneys ( Fig. 7 D ). 
These results suggest that SR121463B administration promoted 

 Figure 7.   Inhibitory action of dDAVP on infl ammatory response, bacterial colonization, and neutrophil infi ltrates in kidneys of mice chal-

lenged with UPECs. dDAVP or isotonic saline was delivered via osmotic minipumps to  Lps n   and  Lps d   mice. Expression of proinfl ammatory mediators, 

production of cytokines, bacterial counts, numbers of infi ltrating neutrophils, and MPO activity were determined in kidneys from isotonic saline control 

( − dDAVP) and dDAVP-treated (+dDAVP)  Lps n   (open bars) and  Lps d   (shaded bars) mice 24 h after the transurethral inoculation of HT7 isolates. (A) Relative 

fold increase of each mRNA level compared with that measured in naive mice. (B and C) Production of MIP-2 and TNF- �  (B) and bacterial counts (C) in 

kidneys from HT7-infected  Lps n   and  Lps d   mice. (D and E) Illustrations (D) and quantifi cation (E) of infi ltrating Ly6-G – positive neutrophils (arrowheads) in 

kidney sections from HT7-infected  Lps n   and  Lps d   mice pretreated without ( − dDAVP) or with dDAVP (+dDAVP). Bars, 50  � m. (F) Levels of MPO activity 

measured in kidney homogenates from uninfected and HT7-infected  Lps n   and  Lps d   kidneys treated or not with dDAVP. All values are means  ±  SE from 

measurements performed on six to eight different kidneys in each group tested. *, P  <  0.05 between groups.   



JEM VOL. 204, November 26, 2007 

ARTICLE

2847

   DISCUSSION  

  Renal tubule collecting duct cells play an active role in initiating 
the infl ammatory host defense during renal bacterial infection 
( 6 ). In this paper, we show that the antidiuretic peptide AVP, 

(P < 0.05) increase in the expression of proinfl ammatory 
mediators and the subsequent activation of PMN infl ux, thereby 
promoting the recruitment of neutrophils to kill bacteria in-
vading kidneys. 

 Figure 8.   The V2R antagonist SR121463B stimulates infl ammatory response and promotes bacterial clearance in the kidneys of mice 

challenged with UPECs.  Lps n   mice received intraperitoneal injections of SR121463B (0.03 or 0.3 mg/kg in 100  � l) 6 h before and after the transurethral 

inoculation of HT7 isolates. The expression of proinfl ammatory mediators, bacterial counts, numbers of infi ltrating neutrophils, and MPO activity were 

performed 24 h after the transurethral inoculation of HT7 isolates. (A – C) Relative fold increase of each mRNA level of proinfl ammatory mediator com-

pared with that measured in naive mice (A), production of MIP-2 and TNF- �  (B), and bacterial counts (C) in kidneys from untreated and SR121463B-

treated  Lps n   mice challenged with HT7. (D) Illustrations of neutrophil infi ltrates (brown) in untreated (top), and 0.3 mg/kg SR121463B – treated (bottom) 

 Lps n   mice challenged with HT7. Bars, 50  � m. (E and F) Quantifi cation of infi ltrating neutrophils (E) and MPO activity (F) in kidneys from HT7-infected  Lps n   

mice pretreated or not with SR121463B. All values are means  ±  SE from measurements performed on six to eight different kidneys in each group tested. 

*, P  <  0.05 versus HT7 values and between groups.   
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tional interaction between CFTR and PP2A. Using mass 
spectrometry, Thelin et al. ( 43 ) demonstrated that the PP2A 
catalytic A regulatory (A � ) and B  �   (B �  � ) regulatory subunits 
associate with CFTR, and that the latter binds directly to the 
C terminus of the CFTR molecule. PP2A inhibitors have 
also been shown to increase cAMP-stimulated CFTR currents 
in excised patches of airway epithelia and in intact mouse 
jejunum, and to delay their deactivation in colonic carcinoma 
Caco-2 cells ( 43, 44 ), which is consistent with physical inter-
action between CFTR and PP2A. Although neither calyculin 
A nor okadaic acid had any effect on dDAVP-stimulated 
CFTR-mediated Cl  −   secretion, they both impaired the in-
hibitory eff ect of dDAVP on p65/RelA phosphorylation and 
on the secretion of MIP-2 and TNF- �  elicited by LPS in 
mpkCCD cl4  cells. CFTR blocking agents also impaired the 
inhibitory action of dDAVP on LPS-mediated activation. 
Collectively, these fi ndings suggest that the closely associated 
CFTR and PP2A proteins are key signaling molecules activated 
by dDAVP, and that they down-regulate LPS-stimulated, 
TLR4-mediated infl ammatory responses in renal collecting 
duct cells. 

 The cAMP-regulated CFTR is associated with infl am-
matory processes in other cell types. For example, defective 
CFTR function is responsible for cystic fi brosis, a chronic 
infl ammatory lung disease characterized by bacterial coloni-
zation of the respiratory mucosa and an exaggerated and 
destructive chronic infl ammatory response ( 59 ). CFTR has 
been shown to regulate the expression of RANTES, IL-8, 
IL-10, and inducible nitric oxide synthase ( 60 ). Interestingly, 
Estell et al. ( 60 ) also demonstrated that the CFTR-mediated 
NF- � B activation and RANTES expression require the 
insertion of CFTR into the plasma membrane. In this study, 
we show that the activation of the cAMP – PKA pathway by 
dDAVP, which down-regulates LPS-induced infl ammatory 
responses in renal collecting duct cells, also requires an intact 
CFTR, which is inserted into the apical membrane of col-
lecting duct cells in response to cAMP stimulation ( 12, 13 ). 
The inhibitory action of dDAVP seems to be restricted to the 
TLR4-mediated signaling pathway, because administration 
of the peptide hormone to mice infected by UPECs only 
altered infl ammatory responses mediated by the TLR4 sig-
naling cascade and not pathways independent of TLR4 ( 6 ). 
Our fi ndings also suggest that activation of the PP2A – CFTR 
complex by dDAVP involves a dephosphorylation process on 
the TLR4-mediated, NF- � B signaling pathway. This sce-
nario is consistent with a previous report showing that NF-
 � B activation and increased IL-8 production in cystic fi brosis 
tracheal epithelial cells is abrogated when dominant-negative 
signaling molecules, such as MyD88, are expressed ( 61 ). 

 Under conditions of dehydration, a rise in the circulatory 
level of vasopressin will stimulate NaCl and water reabsorp-
tion from the terminal parts of the nephron. We show that 
AVP, via its stimulatory eff ect on CFTR and PP2A, simulta-
neously reduces host infl ammatory responses and favors renal 
bacterial invasion. This was illustrated by the fact that chronic 
administration of dDAVP reduces the renal expression of 

which acts on collecting duct cells, is also a potent immuno-
modulator of the innate response elicited by UPECs. Previous 
studies have demonstrated that the stimulation of proinfl am-
matory responses in a variety of cell types is associated with 
down-regulation of cAMP and increased expression of intra-
cellular adhesion molecule (ICAM) 1 (CD54) and vascular 
cell adhesion molecule 1, which are involved in the cell-to-cell 
contact-mediated host response ( 17, 52 ). In contrast, activa-
tion of cAMP-mediated signaling may suppress the immune 
response elicited by LPS and TNF- � . Agents that increase 
cellular cAMP have also been shown to inhibit the TNF-
induced expression of ICAM-1 and vascular cell adhesion 
molecule 1 in human lung epithelial A549 cells ( 52 ), airway 
smooth muscle cells ( 17 ), and activated macrophages ( 18, 19 ). 
In this study, dDAVP also inhibited the LPS-induced expres-
sion of ICAM in mpkCCD cl4  cells (unpublished data). A rise in 
cellular cAMP content was also shown to induce selective 
suppression of the activation of NF- � B in splenic B lympho-
cytes by blocking the phosphorylation of NF- � B/RelA and 
the degradation of I � B- �  ( 53 ). Similar to these previous fi ndings, 
we show here that dDAVP inhibited both the LPS-induced 
degradation of I � B- �  and its stimulation of phosphorylated 
p65/RelA, as well as LPS-mediated NF- � B activation and 
cytokine secretion in mpkCCD cl4  cells. Ser/Thr protein 
phosphatases play key roles in the regulation of phosphoryl-
ation of the NF- � B transcription factors. The SV40 small 
antigen, which associates with PP2A and inhibits its activity, 
enhances the activity of NF- � B ( 54 ). PP2A has been shown to 
dephosphorylate RelA directly in melanoma cell lines ( 55 ). 
In addition, the inhibition of PP1 and PP2A by okadaic acid 
induces the nuclear translocation and activation of NF- � B, 
as well as its activation in Jurkat cells and human neutro-
phils ( 56, 57 ). We show that after specifi c binding to V2R, 
dDAVP stimulates PP2A activity in both untreated and LPS-
treated mpkCCD cl4  cells. These fi ndings are consistent with 
those of a previous immunohistochemical study demon-
strating that the expression of the PP2A protein is restricted 
to the epithelial cells of the distal nephron of adult rat and 
mouse kidneys ( 33, 34 ). We show that inhibition of PP2A 
activity by exposure to low concentrations of okadaic acid and 
calyculin A blunted the inhibitory eff ect of dDAVP on the 
LPS-stimulated secretion of MIP-2 and TNF. This suggests 
that the cAMP-dependent PKA activation caused by dDAVP 
leads to increased PP2A activity, which in turn inhibits I � B- �  
degradation and p65/RelA phosphorylation in renal collecting 
duct epithelial cells. 

 We also demonstrate that the inhibitory action of dDAVP 
on cellular activation requires an intact CFTR. The regula-
tion of CFTR by PKA has been extensively studied. The 
regulatory domain (R domain) of CFTR harbors multiple 
consensus sites for phosphorylation by PKA. The phosphory-
lation of the R domain regulates the opening of the CFTR 
channel ( 58 ). Multiple phosphatases may deactivate CFTR 
( 38 – 41 ). PP2A has been shown to be one of the most potent 
protein phosphatases involved in the dephosphorylation of 
purifi ed CFTR. Vastiau et al. ( 42 ) reported a direct and func-
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Cl  −   channel activity. Importantly, the negative regulatory 
action of dDAVP described targets the site to which ascend-
ing uropathogenic  E. coli  preferentially adheres in vivo, and 
may therefore produce an important downstream eff ect on 
host defense activation, bacterial proliferation, and disease 
progression. Identifi cation of this novel negative regulatory 
mechanism illustrates the important infl uence of hormonal 
control on local innate immune recognition and identifi es a 
previously unrecognized factor of disease susceptibility and 
clinical outcome. 

 MATERIALS AND METHODS 
 Inhibitors.    NPPB was obtained from Research Biochemicals International. 

The thiazolidinone CFTR inhibitor 3-[(3-trifl uoromethyl)phenyl]-5-[(4-

carboxyphenyl)methylene]-2-thioxo-4-thiazolidinone (CFTR inh -172) was pro-

vided by A.S. Verkman (University of California, San Francisco, San Francisco, 

CA). The V2R antagonist SR121463B (1-[4(N-tert-butylcarbamoyl)-2-

methoxybenzene sulfonyl]-5-ethoxy-3-spiro-[4-(2-morpholinoethoxy)

cyclohexane]indol-2-one, phosphate monohydrate) was provided by C. Serradeil-

Le Gal (Sanofi -Aventis, Toulouse, France). SR121463B was dissolved in 

10  − 2  M DMSO and then in 0.9% NaCl to produce the appropriate fi nal 

concentration. PKA (H89) and PKC (GF109203X) inhibitors were obtained 

from Merck Biosciences. All reagents used were tested for the absence of LPS 

contamination using the  Limulus  amebocyte lysate assay (BioWhittaker). 

  Mice, bacteria, and retrograde infection studies.    Adult female C3H/

HeN ( Lps n  ) and C3H/HeJ ( Lps d  ) mice were obtained from the Jackson Lab-

oratory. Homozygous mutant  cftr m1unc   ( cftr  − / −   ) mice were obtained by a tar-

geted mutation of the  cftr  gene ( 23 ), and their wild-type counterpart ( cftr +/+  ) 

mice were obtained from the Centre de D é veloppement des Techniques 

Avanc é es pour l ’ Exp é rimentation Animale (provided by M.F. Bertrand, 

Centre National de la Recherche Scientifi que, Orl é ans, France). Mice origi-

nally derived from ES129/Sv cells injected into C57BL/6J mice embryos 

have been further backcrossed on a C57BL/6J background for three genera-

tions and were then intercrossed. All mice were housed under specifi c 

pathogen-free conditions and used when 8 – 13 wk of age. Renal retrograde 

UTI was performed on  Lps n   and  Lps d   mice, as previously described ( 6 ), using 

UPEC strain HT7. This UPEC strain was isolated from the urine of a 

woman with acute pyelonephritis and expresses the  pap  adhesin-encoding 

genes but lacks the  hly   � -hemolysin – encoding gene. The experimental pro-

cedures for the continuous infusion of dDAVP and administration of the 

V2R antagonist SR121463B before bacterial retrograde infection are listed 

in Supplemental materials and methods (available at http://www.jem.org/

cgi/content/full/jem.20071032/DC1). The experiments were performed 

in accordance with the guidelines of the French Agricultural Offi  ce and in 

compliance with the legislation governing animal studies. 

  Cell culture.    Experiments were performed on mpkCCD cl4  cells ( 21 ) seeded 

on glass coverslips, Petri dishes, or Transwell permeable fi lters (0.4- � m pore 

size, 1-cm 2  insert growth area; Corning Costar Corp.) and on primary cul-

tures of isolated CCDs microdissected from the kidneys of  Lps n   and  Lps d   

mice, or from the kidneys of  cftr  − / −    and  cftr +/+   mice, as previously described 

( 6, 21 ). Cells were grown in a modifi ed defi ned medium (DMEM/Ham ’ s 

F12; 1:1 vol/vol; Invitrogen) supplemented with hormones and 2% fetal calf 

serum ( 21 ) in a 5% CO 2 -95% air atmosphere. Confl uent cells were incu-

bated with purifi ed  E. coli  (0111:B4 LPS Ultra-Pure; InvivoGen) or HT7 (5  ×  

10 5  bacteria per well). 

  Transient transfection and luciferase reporter assay.    15  ×  10 6  mp-

kCCD cl4  cells per milliliter were transfected by electroporation with the 

p( � B) 3  IFN-Luc plasmid (a Luciferase cis-reporter system containing 7 ×  AP-1 

and 3 ×  NF- � B enhancer elements), as previously described ( 69 ). Luciferase 

activity was measured with a luminometer using the Luciferase Assay System 

(Promega) according to the manufacturer ’ s instructions. 

proinfl ammatory mediators and the recruitment of PMNs, and 
increased the susceptibility of  Lps n   (but not  Lps d  ) mice to 
UPEC infection. The reduction in urine fl ow resulting from 
increased NaCl and water reabsorption may also contribute 
to the increased susceptibility to ascending bacterial infection. 
However, there is no reason why this eff ect should be restricted 
to  Lps n   mice. 

 It is generally agreed that adequate hydration helps to 
improve the resolution of UTIs and even to prevent them, 
although there is no direct clinical evidence that dehydration 
promotes UTIs in humans ( 62 ). However, previous experi-
mental studies have demonstrated that water deprivation does 
considerably increase the risk of  E. coli  – induced pyelonephritis 
in rats ( 63 ) and that enterococcal-induced pyelonephritis in 
rats could be cured by sustained water diuresis ( 64 ). These stud-
ies are in accordance with the present fi ndings showing that 
vasopressin impairs immune response both in vivo and in vitro. 
This means that it is conceivable that a sustained increased in the 
concentration of vasopressin in kidneys would tend to inhibit 
the local immune response and favor the bacterial colonization 
by ascending uropathogens. Such situations could account, at 
least in part, for the high frequency of UTI in elderly patients, 
who are particularly susceptible to dehydration. 

 The action of dDAVP in the down-regulation of infl am-
matory response observed in UPEC-infected kidneys has 
been confi rmed by the blocking experiments using a V2R 
antagonist. Previous binding studies have demonstrated that 
nonpeptide V2R antagonists, including salts of SR121463 
and Tolvaptan, display high competitive affi  nity for the renal 
V2R from diff erent species, including mice and humans 
( 31, 65, 66 ). These very selective compounds also display only 
very low affi  nity for other AVP receptor subtypes and do not 
bind to many of the receptors that are unrelated to AVP ( 65, 66 ). 
In in vivo studies, these V2R antagonists induce marked 
aquaresis in healthy and diseased animals, and clinical trials 
have shown that they improve hyponatremia, congestive 
heart failure, and various other diseases associated with volume 
overload ( 31, 66 – 68 ). Oral or intravenous administration of 
SR121463 salts induce dose-dependent aquaresis lasting 2 – 6 h 
( 65 ). Unlike conventional diuretics, such as furosemide, the 
action of the SR121463 salts is purely aquaretic, with no ma-
jor changes in urinary Na +  or K +  excretion ( 31 ). We show 
that blockade of V2Rs by SR121463B stimulated the expres-
sion of proinfl ammatory mediators in the kidneys of infected 
mice. Furthermore, the combination of the stimulated ex-
pression of proinfl ammatory mediators and aquaresis caused 
by high doses of SR121463B (0.3 mg/kg) resulted in the vir-
tually complete clearance of UPECs colonizing the kidneys. 
These fi ndings strongly suggest that in vivo, as in cultured 
collecting duct cells, dDAVP has a potent inhibitory eff ect on 
the infl ammatory response in UPEC-infected kidneys. 

 To conclude, this study demonstrates that dDAVP, in 
addition to its key role in fl uid homeostasis, also infl uences 
local innate immune recognition in the kidney by inhibiting 
TLR4-mediated cell activation in collecting duct epithelial 
cells. This pathway involves both PP2A and intact CFTR 
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  Cellular cAMP assay.    Confl uent mpkCCD cl4  cells were incubated with 

dDAVP, or with LPS or LPS plus dDAVP for 6 h. The cAMP content was 

measured using the cAMP Biotrak EIA system (GE Healthcare), according 

to the manufacturer ’ s instructions. 

  Statistics.    Results are expressed as means  ±  SE. Signifi cant diff erences were 

analyzed using the unpaired Student ’ s  t  test and by analysis of variance using 

the Student-Newman-Keuls test and the Bonferroni  t  test for multiple com-

parison procedures. P  <  0.05 was considered signifi cant. 

  Online supplemental material.    Fig. S1 depicts the expression of TLR4 

and associated signaling molecules in confl uent mpkCCD cl4  cells. Fig. S2 

provides an illustration of mpkCCD cl4  cells forming domes and the mRNA 

expression of TLR4 and associated signaling molecules. Fig. S3 illustrates the 

antagonist eff ect of Ser/Thr protein phosphatases and CFTR on the inhibi-

tory action of dDAVP on LPS-mediated cytokine secretion. Table S1 sum-

marizes the eff ects of dDAVP infusion on the volume of urine excreted by 

 Lps n   and  Lps d   mice housed in metabolic cages. Tables S2 and S3 show blood 

and urinary osmolality values 24 h after the inoculation of UPECs to un-

treated and dDAVP-treated mice or SR121463B-treated mice, respectively. 

Supplemental materials and methods provides information about the condi-

tions of retrograde infection studies, dDAVP infusion, urine collection of 

mice acclimatized to metabolic cages, and administration of the V2R antag-

onist and TLR4 siRNA studies. Online supplemental material is available at 

http://www.jem.org/cgi/content/full/jem.20071032/DC1. 
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