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Abstract: In the era of large genetic and genomic datasets, it has become crucially important to
validate results of individual studies using data from publicly available sources, such as The Cancer
Genome Atlas (TCGA). However, how generalizable are results from either an independent or a large
public dataset to the remainder of the population? The study presented here aims to answer that
question. Utilizing next generation sequencing data from endometrial and ovarian cancer patients
from both the University of Iowa and TCGA, genomic admixture of each population was analyzed
using STRUCTURE and ADMIXTURE software. In our independent data set, one subpopulation was
identified, whereas in TCGA 4–6 subpopulations were identified. Data presented here demonstrate
how different the genetic substructures of the TCGA and University of Iowa populations are.
Validation of genomic studies between two different population samples must be aware of, account
for and be corrected for background genetic substructure.

Keywords: population substructure; genetic admixture; endometrial cancer; ovarian cancer;
The Cancer Genome Atlas

1. Introduction

The Cancer Genome Atlas (TCGA) was launched in 2008 as a collaboration between the National
Institutes of Health (NIH) and the National Human Genome Research Institute (NHGRI) with an initial
aim to catalogue genomic alterations of three cancers: glioblastoma multiforme, lung, and ovarian
cancer. Shortly thereafter, the project expanded to profiling 30 cancer genomes. This initiative opened
doors for a wide variety of research efforts with the long-term goal of improving diagnosis, treatment,
and cancer prevention [1]. Thousands of publications have been made possible using data derived
from TCGA. One of the many advantages of having such a large set of publicly available data is study
validation. Prior to the introduction of such large databases, in order to validate findings from a study,
the study would have had to be repeated in an independent dataset. However, with the availability
of genomic data from TCGA, validating findings of genomic studies has become much more readily
available and less labor intensive than repeating the study in another institution.
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Although TCGA and other publicly available datasets have made these validations much simpler,
the limitations of doing so have yet to be fully addressed. For example, in our previous studies
designed to predict clinical outcomes by integrating clinical, pathological and molecular features of
patients with cancer, we found that the best prediction models, developed using our internal patient
cohort (University of Iowa), performed 10–20 percentage points worse in TCGA datasets [2,3]. Based
on the characteristics of our population (northern European origin), it was obvious that our patients’
backgrounds seemed to be more homogeneous than the population from which TCGA derived their
datasets. Furthermore, emerging studies in breast cancer have detected differences in gene expression
and clinical outcomes based in ethnicity, even after accounting for other clinical and social factors [4].
Similar effects of ethnicity in cancer outcomes have been reported in endometrial cancer, despite
accounting for other clinical and social factors [5,6]. Thus, we started to question the generalizability
of TCGA data as a validation platform for populations with dissimilar compositions.

Therefore, we hypothesized that populations in different regions of the United States and the
world that are ethnically different are likely genetically different than the population from which
TCGA samples were derived. This has the potential to limit the power of TCGA data to validate data
from independent datasets. The goal of the present study is to determine the genetic composition
derived from sequencing ovarian and endometrial cancer samples of a patient population from our
institution and compare it to the genetic composition derived from sequencing the same tumor types
in TCGA population.

2. Results

ADMIXTURE analysis of the University of Iowa Hospitals and Clinics (UIHC) population revealed
the lowest cross-validation errors with a K of 1. STRUCTURE analysis with the ∆K method does not
show any structure and this is confirmed by the highest Ln probability with a K of 1 and decreasing
with higher K values. The results for the UIHC analyses are summarized in Figure 1.

Figure 1. STRUCTURE and ADMIXTURE subpopulations structure analysis of UIHC patients.
(a). ADMIXTURE analysis: Cross-validation error is minimal when K = 1; (b). STRUCTURE analysis:
b.1. K method does not show any structure; b.2. Ln probability is higher for K = 1 and decreases for
higher K values; both these results support the idea that UI sample of the population has no structure.

ADMIXTURE analysis of the TCGA population revealed the lowest cross-validation error with a
K of 4, and STRUCTURE analysis with the ∆K method reveals an optimal K of 6. When stratifying
TCGA data to account for the different origins of cancer, ADMIXTURE analysis of endometrioid
endometrial cancer patients revealed an optimal K of 3, and STRUCTURE analysis revealed an optimal
K of 2. For high grade serous ovarian cancer, ADMIXTURE analysis revealed an optimal K of 2,
and STRUCTURE analysis revealed an optimal K of 4. These data are summarized in Figures 2
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and 3. In Supplementary Tables we detailed the membership coefficient matrix, termed the individual
Q-matrix, for each analysis of TCGA cohort. The Q-matrix is generated with rows for the number of
individuals analyzed and columns for K clusters. All coefficients in a row sum to 1. Because UIHC has
one K cluster, the Q-matrix only would have a column with all “1” and we did not include them.

The mean FST for our comparison between both UIHC and TCGA cohorts was 0.015. Considering
that the potential range of FST statistics goes from 0 (for genetically similar populations) to 1 (for
divergent populations), we interpreted that there were some differences between both populations.
However, is difficult to make further inferences from these data (Supplementary figures has more
details of this analysis).

Figure 2. STRUCTURE and ADMIXTURE subpopulations structure analysis of TCGA patients:
(a). ADMIXTURE analysis: Cross-validation error is minimal when K = 4; (b). Bar plot of admixture
results for admixture proportions organized by origin of tumor; (c). STRUCTURE analysis: K methods
shows a best K = 6; (d). Bar plot of STRUCTURE results for admixture proportions organized by origin
of tumor.
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Figure 3. STRUCTURE and ADMIXTURE subpopulations structure analysis of TCGA patients based
on the origin of cancer: (a). ADMIXTURE analysis and bar plot with an optimal K = 3 subpopulation
substructure for endometrial cancer patients of endometrioid type; (b). STRUCTURE analysis and bar
plot with an optimal K = 2 subpopulation substructure for endometrial cancer patients of endometrioid
type; (c). ADMIXTURE analysis and bar plot with an optimal K = 2 subpopulation substructure
for serous ovarian cancer patients; (d). STRUCTURE analysis and bar plot with an optimal K = 4
subpopulation substructure for serous ovarian cancer patients.

3. Discussion

The goal of our study was not to perform a comprehensive subpopulation structure analysis of all
our patients. Rather, our aim was to assess the genetic background of patients with endometrial and
ovarian cancer that we diagnose and treat, and compare them with the genetic background of patients
with the same cancer types in TCGA. The motivation of this study stemmed from the need to validate
a prediction model of clinical outcomes that integrated clinical, pathological, and diverse molecular
data: gene and miRNA expression, gene copy number and somatic mutations [2,3]. The validation of
these prediction models in TCGA datasets was not ideal, so we wanted to investigate possible reasons
for this discordance. We chose to study population substructure because it seemed that UIHC patients
came from a more homogeneous population than TCGA patients, who were more diverse. The final
population admixture analysis confirmed our hypothesis that the genetic backgrounds of both cohorts
of patients were not similar. Therefore, validation of genetic studies of UIHC patients within TCGA
dataset may be limited.

These results demonstrate differences in the genetic composition of Iowa patients with ovarian and
endometrial cancer from the TCGA patients with similar cancers. Given that the general population
of the state of Iowa is very homogeneous and composed primarily of Caucasians (>90%) according
to the United States Census Bureau these results are not surprising [7]. The TCGA cohort, on the
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other hand, was derived from patients receiving treatment at multiple institutions across the United
States. A racial/ethnic breakdown of the TCGA showed that the uterine cancer sample was nearly
20% African American while the ovarian cancer sample was only 6% African American [8]. Further,
the proportion of both sample populations that is Hispanic is 2% to 3% which is far below the 17% to
20% figure that is generally reported for the US population. These differences in genomic admixture
should not be ignored as they may impact the generalizability of the findings of a TCGA study to other
populations. It may also limit one’s ability to use data derived from TCGA to validate results from
an independent data set. Further, the issue of racial disparities and how it affects cancer is one that
merits attention.

Cote et al wrote about the racial disparity in endometrial cancer [9]. Basing their analysis on
SEER data that reports for four racial/ethnic groups: Non-Hispanic White (NHW), Non-Hispanic
Black (NHB), Hispanic and Asian, there is a clear disparity in both rate of increase in diagnosis and
in histology/aggressiveness among these groups. NHB have a much greater proportion of their
cancers being either serous histology or malignant mixed mullerian tumors versus the other groups.
NHB also have a much higher proportion of higher grade tumors and, not surprisingly, significantly
lower survival rates. The Cote et al paper cites numerous other studies to back up their analyses.
One of these cited studies showed that deaths from endometrial cancer actually exceeded deaths
from ovarian cancer among NHB women [10]. They also observed that the experience of NHB
women for endometrial cancer extends to breast cancer as well with significantly higher mortality
and lower 5-year survival rates as compared with NHW women. In ovarian cancer, NHB women
routinely experience poorer 5-year survival from ovarian cancer compared with other racial/ethnic
groups [6]. Recently, racial/ethnic disparities in endometrial cancer were extended to include molecular
differences leading to the suggestion that such differences could present therapeutic opportunities
that are racial/ethnic group-specific [5]. However, this only becomes useful if the patient population
composition is well defined.

So, higher incidence, more aggressive histologies and lower survival rates among NHB women
translates into the very relevant question: What is the racial/ethnic composition of your endometrial
cancer sample? In the state of Iowa the African American population is estimated to be 2.68% while
states like Maryland and Mississippi it exceeds 30%. Similarly, the Hispanic population of Iowa
is estimated to be around 6% while California, New Mexico and Texas all exceed 35%. Moreover,
the term Hispanic/Latino is a loosely used amalgam. Historically, there is a substantial Native
American contribution to the Hispanic populations of the American Southwest while those whose
ancestors originated in the Caribbean or some Central American countries have a substantial African
contribution [11].

In the present study we have shown that there are differences in the genetic background between
patients with cancer in the UIHC and TCGA cohorts. What are some of the strategies that we could use
to account for these differences and make our study more generalizable? In general, we could use the
same strategies that have been used in genome-wide association studies (GWAS) to address this same
problem [12]. First, we could stratify the validation analysis by subpopulation. In our case, we would
validate our prediction model, built with a majority of patients with northern European ancestry,
with TCGA patients of similar background. This approach may have limitations depending in the
sample size of both cohorts to be used. Another strategy would be to adjust our expected validation
threshold based on previous results of differences in prediction model performance. For example,
we would expect that a prediction model built using UIHC data would have a 10–20 percentage point
lower performance than validated models using TCGA data. A third strategy would be to create a
correction factor that accounts for the variation of the genetic background of each subpopulation and
apply this correction factor to each of the individuals introduced in the model. Principal component
analysis (PCA) would be a type of correction factor that could be applied. We could co-opt these
GWAS strategies for our purposes because the prediction analysis is, basically, also an association
study of multiple variables with an outcome.
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Our study is limited by the retrospective nature of its design. Biases may have influenced patient
selection and recruitment. However, as noted previously, the population sampled and analyzed in
our study represents the general population of the State of Iowa. Furthermore, there is no definitive
answer in how to choose the optimal number of clusters. The choice of an appropriate value for K is a
notoriously difficult statistical problem and is somehow subjective [13]. It must be informed by the
knowledge of the underlying population history. In our study we used one approximation for each
method used, STRUCTURE and ADMIXTURE. Because the estimation of the K subpopulation analysis
is subjected to interpretation, we cannot conclude that the differences in TCGA results are significant.

4. Materials and Methods

The goal of our study was to assess whether the genetic composition of UIHC patients was
different from TCGA patients. This study stemmed from the observation that our prediction models of
clinical outcomes in cancer were not validating completely in TCGA data. Also, we observed that our
population was predominantly from northern European descent in comparison to TCGA population.
We wanted to perform the genetic admixture comparison with the available molecular material already
processed, sequenced RNA, without having to process and sequence more samples. We thought that
this same problem may present to other researchers and our methods may therefore be useful for their
research. Herein, we describe a sequence of procedures that will extract genotypes from sequenced
RNA and perform subpopulation structure analysis. In order to compare the UIHC data to TCGA data,
we performed the same analyses in files resulting from RNA sequencing (BAM files) from both cohorts.

4.1. Tissue Procurement

A primary tumor cohort consisting of 112 patients diagnosed and treated for endometrial or
ovarian cancers at the University of Iowa Hospitals and Clinics (UIHC), retained under informed
consent (IRB# 200910784 and 200209010), was assembled from the Gynecologic Tumor Bank of the
Department of Obstetrics & Gynecology Women’s Health Tissue Repository [9]. Sixty-two of these
patients were diagnosed with endometrioid endometrial cancer and 50 were diagnosed with high
grade serous ovarian cancer. A summary of clinical characteristics, including self-declared race,
are displayed in Table 1.

Table 1. Patient clinical characteristics. Data is divided by tumor type and by origin of samples
(University of Iowa, UIHC, or TCGA). * Self-reported race and ethnicity.

UIHC TCGA

Cancer Ovarian Endometrial Ovarian Endometrial

Histological Type High grade serous Endometrioid High grade serous Endometrioid

Samples 50 62 351 395

Age (mean) 59 61 59 65

* Race:
White 48 57 302 288
Black 1 0 25 61
Asian 0 0 10 17
Pacific Islander 0 1 1 7
American Indian 0 0 2 3
Unknown 1 4 12 20

* Ethnicity
Hispanic 0 0 8 9
Non-Hispanic 49 58 201 275
Unknown 1 4 142 111

Stage:
I 0 44 1 281
II 0 4 20 34
III 34 11 274 66
IV 13 3 53 14
Unknown 3 0 1 1
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4.2. RNA Purification and Sequencing

Total cellular RNA was purified from individual tumors using the mirVANA mRNA isolation
kit following manufacturer’s recommendations (Thermo Fisher Scientific, Waltham, MA, USA).
RNA concentration and purity of the collected RNAs were assessed using a Nanodrop 1000
spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA) and a Model 2100 Bioanalyzer
(Agilent, Santa Clara, CA, USA). RNA preparations with sufficient mass and integrity (RIN >7.0)
were submitted to the Genomics Division of the University of Iowa Institute for Human Genetics for
RNA sequencing (RNAseq) [10]. Total cellular RNA (500 ng) was fragmented, converted to cDNA
and ligated to sequencing adaptors containing indexes using the Illumina TruSeq stranded total RNA
library preparation kit (Illumina, Inc., San Diego, CA, USA). Molar concentrations of the indexed
libraries were measured on the Model 2100 Agilent Bioanalyzer and combined equally into pools for
sequencing (Agilent, Santa Clara, CA, USA). The concentration of the pools were measured using the
Illumina Library Quantification Kit (KAPA Biosystems, Wilmington, MA, USA) and sequenced on the
Illumina HiSeq 4000 genome sequencer using a 150 bp paired-end SBS chemistry.

4.3. TCGA Cohort

Endometrial and ovarian cancer data were downloaded from The Cancer Genome Atlas (TCGA)
from the National Cancer Institute, following TCGA Human Subject Protection and Data Access
Policies. Molecular data from RNAseq were obtained for 395 samples of endometrioid endometrial
cancer and 351 samples of high grade serous ovarian cancer (Table 1).

4.4. File Pre-Processing

BAM files were obtained from RNAseq alignments and converted to VCF files for genotype
extraction [14,15]. PLINK software was then implemented to filter the VCF files by minor allele
frequency at q > 0.05 and by linkage disequilibrium (LD) < 0.1 r2 for pairs of markers inside 200
kb [16,17]. The filtering process was performed to identify independent markers within the sequenced
samples and resulted in 39,900 markers in the UIHC cohort and in 15,599 in TCGA cohort. Then,
we imputed missing genotypes for all samples utilizing BEAGLE 4.1 to obtain genotype coverage of
>99% for all markers [18]. 96% of all genotypes were imputed for the UIHC cohort and 97% for TCGA
cohort. After imputation 109 markers were dropped from the UIHC dataset, 15 markers dropped from
TCGA cohort, and there were no missing genotypes in either UIHC or TCGA cohorts.

4.5. Data Analysis

For the subpopulation analysis we used ADMIXTURE and STRUCTURE software packages.
Both ADMIXTURE and STRUCTURE are programs that perform model-based estimation of ancestry,
or population structure, using large genotype datasets from unrelated individuals [19,20]. They are
model-based methods because they assume a model in which there are K populations, while K may
be unknown. Each of these K populations is characterized by a set of allele frequencies at each
locus. We selected these well-known algorithms not only because they are widely used, but because
they model the probability of the observed genotypes using ancestry proportions and population
allele frequencies. Ancestry proportions may be used to account for subpopulation structure in
validation of prediction models. Other types of approaches based on algorithmic ancestry estimation
use multivariate analysis techniques, like cluster analysis and principal component analysis (PCA),
and do not provide individual ancestry proportions [19].

STRUCTURE takes a Bayesian approach and relies on a Markov chain Monte Carlo (MCMC)
algorithm to sample the posterior distribution [20]. ADMIXTURE uses the same likelihood model
but focuses on maximizing the likelihood rather than on sampling the posterior distribution.
ADMIXTURE runs faster than STRUCTURE due to a fast block relaxation scheme [19]. Utilizing
STRUCTURE package, subpopulation analysis was performed assuming varying numbers of clusters,
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or subpopulations (K) from 1 to 15 and inferring the best K using the Evanno K method [20,21].
Next, genomic admixture was determined utilizing the ADMIXTURE package. The “best fit” model
was then determined based on the K that exhibited a low cross-validation error compared to other
values. The best model for both STRUCTURE and ADMIXTURE methods was used to determine
the percentage of each subpopulation in each sample and then all of them were reported in bar plot
representation [22]. The same analysis was carried out for both the UIHC and TCGA cohorts.

Also, as measure of genetic variation in different populations, and to compare to the other
methods, we determined the fixation index (or FST) [23]. FST statistic can be estimated from genetic
polymorphism data, such as single-nucleotide polymorphisms (SNPs) or microsatellites. However,
interpretation of results may be difficult with highly variable markers and different population
sizes [24]. For this analysis we used the R package SNPRelate [25].

5. Conclusions

Understanding patient population substructure is important to better understand their disease
process and to lend context to differences seen therein. Further, gaining knowledge of the composition
of the study population is essential to sensibly stratifying the results. The implications of genetic
heterogeneity at the subpopulation level are noteworthy, including the potential for sub-population
stratification in therapeutic interventions.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/5/
1192/s1.
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