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Abstract: Complement factor D (Df) is a serine protease well known for activating the alternative
pathway (AP) in mammals by promoting the cleavage of complement component 3 (C3), thus
becoming involved in innate defense. In teleost fish, however, the functional mechanisms of Df
in the AP and against pathogen infection are far from clear. In the present study, we cloned and
characterized the Df gene, CiDf, from grass carp (Ctenopharyngodon idella) and analyzed its function
in promoting C3 cleavage and expression changes after grass carp reovirus (GCRV) infection. The
open reading frame of CiDf was found to be 753 bp, encoding 250 amino acids with a molecular
mass of 27.06 kDa. CiDf harbors a conserved Tryp_SPc domain, with three conserved residues
representing the catalytic triad and three conserved binding sites in the substrate specificity pocket.
Pairwise alignment showed that CiDf shares the highest identity (96%) and similarity (98%) with
Df from Anabarilius grahami. Phylogenetic analysis indicated that CiDf and other fish Dfs formed a
distinct evolutionary branch. Similar to most Dfs from other vertebrates, the CiDf gene structure is
characterized by four introns and five exons. The incubation of recombinant CiDf protein with grass
carp serum significantly increased the C3b content, demonstrating the conserved function of CiDf in
the AP in promoting C3 cleavage, similar to Dfs in mammals. CiDf mRNA expression was widely
detected in various tissues and levels were relatively higher in the liver, spleen, and intestine of grass
carp. During GCRV infection over a 168-hour period, a high level of CiDf mRNA expression in the
liver, spleen, and intestine was maintained at 144 and 168 h, suggesting AP activity at the late stage
of GCRV infection. Collectively, the above results reveal the conserved structure and function of CiDf
and its distinct expression patterns after GCRV infection, which provide a key basis for studying the
roles of Df and AP during GCRV infection in the grass carp C. idella.

Keywords: complement factor D; Ctenopharyngodon idella; cleavage of C3; GCRV; expression patterns

1. Introduction

The complement system is considered one of the most important components of the
innate immune system. It plays a pivotal role in the immune defense of animal hosts against
pathogens, including bacteria and viruses [1,2]. This system is composed of more than
35 secreted serum proteins and membrane-bound proteins that undergo cascade hydrolysis
or activation upon microbial pathogen invasion, ultimately triggering the activation of the
complement system to eliminate these pathogens [1–3]. It has generally been accepted that
there are three pathways of complement system activation: the classical pathway (CP),
the lectin pathway (LP), and the alternative pathway (AP) [1,2,4]. The CP is activated
by the binding of a plasma protein called C1 (the first component of the complement
system) to antibodies (IgG or IgM) bound to the surface of a microbe [5]; the LP is initiated
by a plasma protein called mannose-binding lectin, which identifies terminal mannose

Int. J. Mol. Sci. 2021, 22, 12011. https://doi.org/10.3390/ijms222112011 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-3539-6661
https://doi.org/10.3390/ijms222112011
https://doi.org/10.3390/ijms222112011
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms222112011
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms222112011?type=check_update&version=1


Int. J. Mol. Sci. 2021, 22, 12011 2 of 20

residues on microbial glycoproteins and glycolipids, or by ficolin, which displays lectin
activity and is usually specific for N-acetylglucosamine [6], and the AP is triggered by
the direct recognition of certain microbial surface structures [7]. All three pathways can
cleave complement component 3 (C3) into two fragments, namely C3a, a pro-inflammatory
factor, and C3b, which shows opsonization and contributes to the formation of C3 and
complement component 5 convertases [8]. C3 is the central component of the complement
system, and the cleavage of C3 is often considered the marker of complement system
activation [9,10].

The AP is regarded as the most evolutionary ancient complement activation path-
way [11], appearing early in echinoderm such as sea urchins [12,13]. Many components
of the AP have been identified in echinoderm sea urchins [12,13], tunicate ascidians [14],
cephalochordate amphioxus [15], jawless fish lampreys [16], cartilaginous fish [17], teleost
fish [18], amphibians [19], reptiles [20], birds [21], and mammals [22]. In mammals, the
activation mechanism of the AP has been clearly defined. Unlike in the CP and LP, the
activation of C3 in the AP relies on complement factor B (Bf) [22]. Bf is an important serine
protease, and its partial fragment Bb can recruit C3b and form the C3 convertase (C3bBb),
which finally promotes the cleavage of C3 and complement system activation [23,24]. Com-
plement factor D (Df), another serine protease in the AP, can hydrolyze Bf at the amino acid
site of Arg–Lys and cleave Bf into two fragments of Ba and Bb [25,26]. Therefore, the Df
protein is effective in promoting the activation of the AP. In humans, it has been reported
that the deficiency of Df weakens the immune responses against Neisseria meningitidis,
leading to meningitis [27]. In mice, the deficiency of Df brings about the widespread
replication of Escherichia coli in the intestinal tract and induces colitis [28]. In addition, Df
has also been demonstrated to participate in antiviral immunity. During virus infection, Df
upregulation enhances the production of the C3bBb complex and promotes C3 cleavage
and activation of the AP [8]. Further studies show that Df-enhanced AP activation can
lead to the destruction of virus-infected cells via the membrane attack complex of the
complement system, which helps the hosts eliminate the invading virus [29]. This evidence
indicates that Df plays a vital role in the antibacterial and antiviral immune responses
of mammals.

Dfs have been identified in teleost fish, such as Cyprinus carpio [30], Salvelinus fonti-
nalis [31], Oncorhynchus mykiss [32], Paralichthys olivaceus [33], Ictalurus punctatus [34],
Oryzias latipes [35], Oplegnathus fasciatus [36], Megalobrama amblycephala [37], and Caras-
sius auratus [38], and structural information and the mRNA expression profiles during
pathogen infection were revealed in these studies. Compared to Dfs in mammals, the
structure of Dfs in teleost species is highly conserved, with a Tryp_SPc domain, three
substrate binding sites, and three catalytic sites [25,39]. It has been reported that the mRNA
expression level of Df in various teleost species is significantly changed after pathogen
infection. For example, Df transcript levels are significantly increased in the kidney, liver,
and spleen of P. olivaceus after viral hemorrhagic septicemia virus (VHSV) infection [33].
The expression profiles of Df in O. fasciatus show significant upregulation at 6 and 12 h
after rock bream iridovirus (RBIV) infection [36]. After Aeromonas hydrophila challenge, the
expression of Df in M. amblycephala was also upregulated 3.7-fold and 16-fold in the liver
and kidney, respectively [37]. This evidence strongly suggests the involvement of Df in the
immune defense against bacteria and viruses in teleost species. However, the functional
mechanisms of Df in the AP and in withstanding pathogen infection are far from being
clarified in these species.

Grass carp, Ctenopharyngodon idella, is a very important freshwater teleost fish cultured
in China, and its production reached 5.53 million tons in 2019 [40]. However, grass carp
aquaculture is severely restricted by grass carp hemorrhagic disease, which is caused by
a double-stranded RNA virus known as grass carp reovirus (GCRV) [41–44]. In order to
better control grass carp hemorrhagic disease, the molecular basis of grass carp resistance to
GCRV should be urgently investigated. Based on transcriptome analysis in C. idella, we have
previously found that the mRNA expression of Df (designated as CiDf) was significantly
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upregulated 2.18-fold at 72 h after GCRV infection, suggesting the involvement of CiDf
in immune defense against GCRV infection [45]. In the present study, we cloned the full-
length CiDf cDNA sequence and explored its functions. The aims of this study were to
(1) analyze the structural and evolutionary characteristics of CiDf, (2) verify whether its
function in the AP is conserved, and (3) reveal its potential functional mechanism after
GCRV infection, which can provide a fundamental basis for studying the roles of Df and
the AP in grass carp during GCRV infection.

2. Results
2.1. Sequence Characteristics of CiDf

The full-length cDNA sequence of CiDf (GenBank accession number: KF672346.1) is
922 base pairs (bp), with a 38 bp 5′ terminal untranslated region (UTR), an open reading
frame (ORF) of 753 bp that encodes 250 amino acids, and a 131 bp 3′ UTR containing an
“AATAAA” mRNA tail (Figure 1). Based on prediction using the Compute pI/Mw tool
in ExPASy, the molecular weight of the CiDf protein is about 27.06 kDa, with a deduced
theoretical isoelectric point of 6.30.
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Figure 1. The full-length cDNA and amino acid sequence of CiDf. The single Tryp_SPc domain
(20–244 aa) is marked with a gray shadow, the initiation codon and stop codon are marked with a
black box, and the “AATAAA” mRNA tail is underlined.

The multiple sequence alignment results showed that three residues for substrate
binding (198Asp, 219Ser, and 221Gly), three residues of the catalytic triad (61His, 109Asp, and
204Ser), and four cysteine residues probably involved in disulfide pairing (62Cys, 175Cys,
191Cys, and 225Cys) were all conserved in CiDf (Figure 2). The pairwise alignment analyses
revealed that the deduced amino acid sequence of CiDf shared 52.0–98.0% similarity and
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33.0–96.0% identity with those of the known Dfs and exhibited the highest similarity (98%)
and identity (96%) with Df from Anabarilius grahami (Figure 3).
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Figure 3. The amino acid sequence identity and similarity of Dfs among different vertebrates. The selected Dfs were from
vertebrates including Ctenopharyngodon idella (AHB81535.1), Anabarilius grahami (ROK15838.1), Danio rerio (NP001018368.1),
Ictalurus punctatus (AEW10547.1), Oreochromis niloticus (XP003447819.1), Larimichthys crocea (KKF28223.1), Oplegnathus fascia-
tus (AIZ96981.1), Cynoglossus semilaevis (XP008314450.1), Paralichthys olivaceus (ACV89350.1), Takifugu flavidus (TWW72489.1),
Channa striata (SSC14279.1), Gallus gallus (XP_040548688.1), Sus scrofa (XP_013850255.1), Bos taurus (NP001029427.1), Rattus
norvegicus (NP001071110.1), and Homo sapiens (NP001919.2). The values of similarity and identity are backgrounded in
yellow and orange respectively.

2.2. The Domain Architecture and Three-Dimensional Structure Model of CiDf

The amino acid sequence of the CiDf protein was input into the online software
SMART for the prediction of protein domain architecture. The results showed that CiDf
contained a highly conserved Tryp_SPc domain ranging from 20 to 244 amino acids, similar
to Dfs from I. punctatus, O. fasciatus, Takifugu flavidus, and Rattus norvegicus (Figure 4A).
Three-dimensional homology modeling of the CiDf protein was conducted using I-TASSER
based on human Df (GenBank accession number: NP001919.2) as the template, and the
results reveal that the CiDf protein consists of 3 α-helices and 13 β-sheets, three conserved
residues (61His, 109Asp, and 204Ser) as the catalytic triad, and three conserved binding sites
(198Asp, 219Ser, and 221Gly) in the substrate specificity pocket (Figure 4B).

2.3. The Phylogenetic Tree

To determine the evolutionary feature of the CiDf protein, a phylogenetic tree was
constructed based on full-length Df amino acid sequences from various vertebrates. The
results showed that Dfs from mammalians, birds, reptiles, amphibians, and fishes were
obviously separated into five branches in the phylogenetic tree. The CiDf was firstly
clustered with that of A. grahami (ROK15838.1) and then clustered with Cyprinidae Dfs
of Danio rerio (NP001018368.1), C. carpio (AYD42292.1), and C. auratus (XP_026079875.1).
Finally, these five Dfs together with 21 other Dfs, mainly from Sciaenidae, Cichlidae, and
Clupeidae species, formed a distinct fish branch (Figure 5).
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2.4. The Analysis and Comparison of CiDf Genomic Structure

In order to identify features of the CiDf genomic structure, we constructed the genomic
structure schematic arrangements of CiDf and its counterparts from 15 other vertebrates.
The results revealed that the genomic sequence of CiDf (2451 bp) comprised five exons
interrupted by four introns. Although the full-length genomic DNA sequences of CiDf and
its counterparts from other vertebrates obviously varied, CiDf possessed the same number
of exons and introns as those from most vertebrates, except for the Dfs from duck (Anas
platyrhynchos) (four exons and three introns), cat (Felis catus) (four exons and three introns),
common carp (C. carpio) (six exons and five introns), and chicken (Gallus gallus) (six exons
and five introns) (Figure 6).
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from Anas platyrhynchos platyrhynchos (ENSAPLG00000023562), Felis catus (ENSFCAG00000007308), Carassius auratus
(ENSCARG00000016075), Ictalurus punctatus (ENSIPUG00000006895), Danio rerio (ENSDARG00000039579), Oncorhynchus
mykiss (ENSOMYG00000016711), Cynoglossus semilaevis (ENSCSEG00000015236), Takifugu rubripes (ENSTRUG00000028684),
Oreochromis niloticus (ENSONIG00000029006), Salmo salar (ENSSSAG00000064487), Sus scrofa (ENSSSCG00060010731), Rattus
norvegicus (ENSRNOG00000033564), Homo sapiens (ENSG00000197766), Cyprinus carpio (ENSCCRG00000029196), and Gallus
gallus (ENSGALG00000040832), were obtained from the ensemble database.

2.5. The Enhancement of rCiDf to Cleave C3 Protein in Grass Carp Serum

Prediction using the SignalP-5.0 tool revealed the residues of 1Met~20Cys for a signal
peptide in CiDf protein (with the probability of 0.5595, Figure 7A). To study the function of
the CiDf protein in vitro, a recombinant CiDf protein (rCiDf) of the mature peptide fragment
of CiDf (21Ile~250Gln) with a GST-tag was constructed, expressed, and then purified using
a GST resin column. As shown in SDS-PAGE, a main band of rCiDf with a molecular mass
of about 52 kDa was observed in Lane 3, which corresponded approximately with the
predicted molecular mass of CiDf fused to a GST-tag (Figure 7B).

It has been demonstrated that Df can promote the cleavage of C3 into C3a and C3b.
In order to verify whether the function of the CiDf protein was conserved, the puri-
fied rCiDf protein was incubated with grass carp serum overnight, and western blot
analysis was conducted using the rabbit-anti-grass-carp C3 polyclonal antibody for the
detection of C3 cleavage in grass carp serum. rGST proteins and PBS incubated with
grass carp serum were set as the negative and blank control group, respectively. The
results of the rCiDf group (rDf), the blank control group (PBS), and the negative con-
trol group (GST) all revealed two distinct bands of C3 and C3b in grass carp serum
(Figure 8A). In addition, gray intensity analysis with β-actin as an internal reference pro-



Int. J. Mol. Sci. 2021, 22, 12011 8 of 20

tein showed that the relative content of the C3b protein in grass carp serum incubated
with rCiDf was significantly higher than those in the negative control group (2.22-fold,
p < 0.05) and the blank control group (1.74-fold, p < 0.05) (Figure 8B).
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2.6. The Distribution of CiDf mRNA Transcript in Grass Carp Tissues

Quantitative real-time polymerase chain reaction (qPCR) was carried out to detect
the mRNA expression level of CiDf in different tissues of uninfected grass carp, including
the gill, head kidney, liver, spleen, intestine, and muscle. There was only one peak at the
corresponding melting temperature for CiDf in the dissociation curves (data not shown).
CiDf transcripts were most abundant in the liver, where their levels were 3.53-fold higher
than in muscle (p < 0.05). The expression levels in the intestine and spleen were also
relatively high—2.43- and 2.31-fold higher than in muscle, respectively (p < 0.05). The
lower expressions were observed in the gill and head kidney—1.62- and 1.17-fold lower
than in muscle, respectively (Figure 9).
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2.7. The Fold Changes in CiDf mRNA Expression during GCRV Infection

To investigate the dynamic changes in CiDf during GCRV infection, its mRNA ex-
pression levels in the liver, spleen, and intestine of grass carps after GCRV challenge at
12, 24, 48, 72, 96, 120, 144, and 168 h were characterized by qPCR. In the liver, the mRNA
expression level of CiDf gradually increased and then decreased at the time periods of
12–48 h and 48–120 h, while it was sharply upregulated at 120 h after the GCRV challenge,
reached a maximum at 144 h, at which point its levels were significantly higher (p < 0.05)
than at other time points, except 168 h (Figure 10A). In the intestine, there was no extremely
significant change in CiDf mRNA expression at 12–120 h post-GCRV challenge, while the
mRNA expression level of CiDf sharply increased and reached a maximum at 144 h, and
it was significantly higher than at all other time points post-GCRV challenge (p < 0.05)
(Figure 10B). In the spleen, the expression level of CiDf gradually increased from 12 to
120 h and decreased at 144 h post-GCRV challenge, while it steadily increased and reached
a maximum at 168 h (p < 0.05) (Figure 10C).

Int. J. Mol. Sci. 2021, 22, x  11 of 21 
 

 

2.7. The Fold Changes in CiDf mRNA Expression during GCRV Infection 
To investigate the dynamic changes in CiDf during GCRV infection, its mRNA 

expression levels in the liver, spleen, and intestine of grass carps after GCRV challenge at 12, 
24, 48, 72, 96, 120, 144, and 168 h were characterized by qPCR. In the liver, the mRNA 
expression level of CiDf gradually increased and then decreased at the time periods of 12–48 
h and 48–120 h, while it was sharply upregulated at 120 h after the GCRV challenge, reached 
a maximum at 144 h, at which point its levels were significantly higher (p < 0.05) than at 
other time points, except 168 h (Figure 10A). In the intestine, there was no extremely 
significant change in CiDf mRNA expression at 12–120 h post-GCRV challenge, while the 
mRNA expression level of CiDf sharply increased and reached a maximum at 144 h, and 
it was significantly higher than at all other time points post-GCRV challenge (p < 0.05) 
(Figure 10B). In the spleen, the expression level of CiDf gradually increased from 12 to 120 
h and decreased at 144 h post-GCRV challenge, while it steadily increased and reached a 
maximum at 168 h (p < 0.05) (Figure 10C). 

 
Figure 10. The mRNA expression patterns of CiDf in the liver (A), intestine (B), and spleen (C) during 
GCRV infection. Vertical bars represent the mean ± SD. The letters a–c represent significant differences 
among the expressions in the liver, spleen, and intestine at various time points post-GCRV challenge 
(p < 0.05). 

Figure 10. The mRNA expression patterns of CiDf in the liver (A), intestine (B), and spleen (C)
during GCRV infection. Vertical bars represent the mean ± SD. The letters a–c represent significant
differences among the expressions in the liver, spleen, and intestine at various time points post-GCRV
challenge (p < 0.05).



Int. J. Mol. Sci. 2021, 22, 12011 11 of 20

3. Discussion

The complement system is the humoral backbone of innate immune defense, and it
is a link between innate and adaptive immune responses, which comprise. More than
35 distinct plasma and membrane-bound proteins, forming three convergent pathways
of activation: the CP, LP, and AP [46,47]. An activated complement system marked by
the cleavage of C3 plays multiple immune roles, including in the elimination of invading
pathogens [48], promotion of inflammatory response [49,50], and clearance of apoptotic cell
and necrotic cell debris [51,52], in addition to the modulation of adaptive immunity [53–55].
From an evolutionary perspective, the AP is regarded as the most ancient complement
activation pathway, appearing early in echinoderms [11]. The AP can be triggered by
the direct recognition of certain microbial surface structures [7,56], and AP-regulating
proteins, including Bf [57], Df [58], and complement P factor [59], tightly control this
pathway. Df, a member of the chymotrypsin family of serine proteases, plays a pivotal role
in both initiation and amplification loops of complement system activation by continuously
promoting C3 cleavage in the AP [60,61]. It has been reported in many human and mouse
disease models that the deficiency or dysfunction of Df weakens the host immune killing
ability to foreign pathogens, including viruses and bacteria [8,27–29,62,63]. There is also
substantial evidence that Df mRNA expression is upregulated after pathogen infection
in various fish species such as O. fasciatus [36], M. amblycephala [37], and C. auratus [38],
suggesting its importance in fish immune defense. In our previous study, the transcriptome
data show that CiDf mRNA expression is significantly upregulated 2.18-fold after GCRV
infection in C. idella [45], so we infer that CiDf is involved in the immune defense during
GCRV infection. In the present study, we cloned the full-length cDNA of CiDf, ascertained
its structure and functional characteristics, investigated its expression patterns after GCRV
infection, and attempted to further reveal its potential mechanism in defense against GCRV
infection.

It has been confirmed that Df is structurally different from other serine proteases in
the complement system and only contains a single serine protease superfamily domain,
called the Tryp_SPc domain, which can cleave Bf into Ba and Bb [25,26]. In addition,
Df is unique among serine proteases in that it requires neither enzymatic cleavage for
the expression of proteolytic activity nor inactivation by a serpin for its control [64]. To
understand this unique functional characteristic, the crystal structure of human Df was
resolved, and two features essential for catalysis are shown within the spatial structure of
Df: (1) a catalytic triad and (2) a substrate specificity pocket [65,66]. The crystal structure
data suggest that the regulation of Df activity may be achieved by a novel mechanism
that depends on reversible conformational changes for the expression and control of
catalytic activity [65,66]. These conformational changes are believed to be induced by a
single natural substrate, Bf, and result in the realignment of the catalytic triad and the
specificity pocket [67–69]. The importance of Asp, His, and Ser, the three residues that
form the “catalytic triad” of human Df, has recently been established by kinetic analyses
and chemical modification experiments [68]. The essential function of these three residues
in the substrate specificity pocket of human Df has also been verified by site-directed
mutagenesis [70]. In the present study, the results of amino acid sequence similarity and
phylogenetic tree analyses show that CiDf shares an amino acid sequence similarity of
52.0–98.0% with Dfs from the selected vertebrates and that it is evolutionarily divergent
from the Dfs of mammalians, birds, reptiles, and amphibians. Nevertheless, we find
that the CiDf also harbors a single Tryp_SPc domain (20Cys~244Ser) with three conserved
residues, 61His, 109Asp, and 204Ser, as the catalytic triad, and three conserved binding sites,
198Asp, 219Ser, and 221Gly, in the substrate specificity pocket, similarly to the Dfs reported
from mammalians. Therefore, the results show that CiDf possesses the key residues for
catalysis and substrate binding, suggesting its functions in the complement system are
conserved in grass carp.

In mammals, the function of Df in the AP is relatively clear. Df catalyzes the hydrolysis
of the single Arg–Lys bond of Bf—the only known natural substrate of Df in the AP—into
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Ba and Bb fragments and forms a complex with Bb and C3b that is an alternative C3
convertase [25,26,71–73]. Subsequently, activity of this C3 convertase leads to the cleavage
of C3 and the activation of terminal complement components and to the formation of a
membrane attack complex that eliminates invading microbes or host cells infected with
viruses [10,74]. In addition, Df is a component absolutely required for the AP, since
it is the only enzyme in mammalian blood able to catalyze C3bBb formation [61,62,75].
Therefore, Df plays an important role in the complement system against invading pathogens
and is considered a vital target for the pharmaceutical control of complement activation.
Fish possess complement systems similar to those in mammals, and the identified fish
complement proteins have many similarities to their mammalian counterparts. However,
few studies have been conducted on teleost fish Df, particularly with regard to its functional
aspects and regulation after pathogen infection. The sequence properties of Dfs from
C. carpio [30] and P. olivaceus [33] as well as the sequence properties and expression analysis
of Dfs in I. punctatus [34] and S. fontinalis [31] have been reported. The maternal transfer of
the Df protein to offspring has also been confirmed in O. mykiss [32]. Although the protease
activity of the Df protein has been detected in O. fasciatus [36], the activities of teleost
Dfs in relation to functions in the AP remain unverified. In the present study, in vitro
experiments reveal that the incubation of rCiDf significantly increases the C3b protein
content in grass carp serum, directly demonstrating the functional conservation of CiDf in
the AP, which can promote the cleavage and activation of C3 in the grass carp complement
system, similarly to Dfs in mammals.

The expression profiles of immune molecules during pathogen infection may reflect
the process of host–pathogen interaction. Substantial data have shown quite different
expression patterns for Dfs from various fish. For example, the mRNA transcripts of Df
are mainly distributed in the liver of C. auratus, and few are distributed in the blood [38],
while the mRNA transcripts of Dfs from M. amblycephala [37] and I. punctatus [34] are
most abundant in the kidney and spleen, respectively. Our results in the present study
show that the mRNA expression of CiDf is highest in the liver and lowest in the muscle of
grass carp. These observations indicate differences in the main sites where Df mRNAs are
synthesized and where proteins exert immune functions from various fish species, which
probably contributes to the complex host complement system–pathogen interaction in
fish. Investigating the dynamic changes in Df expression during pathogen infection may
be helpful for understanding AP activity in host defense. Evidence in teleost fish reveals
that the expression of Df mRNA is significantly upregulated after pathogen infection and
responds to various pathogens with different patterns. During VHSV infection within
24 h in P. olivaceus [33], the expression of Df mRNA in the kidney, liver, and spleen is first
upregulated and then downregulated in all cases, peaking more sharply in the kidney at
6 h post-VHSV challenge than in the liver and spleen. In addition, bacterial infection seems
to arouse more rapid AP activity than VHSV infection, as observed in P. olivaceus, since Df
mRNA expression in the kidney and spleen peak significantly at 1 h after the Streptococcus
iniae challenge, representing an early stage of infection. In O. fasciatus, the AP activity
appears to be relatively intense in the middle stage of pathogen infection because the Df
mRNA expression peaks at 6 or 12 h after the challenge of Streptococcus iniae and RBIV
when assayed over a 24 h period [36]. In the present study, we attempted to characterize the
levels of CiDf mRNA expression in the liver, spleen, and intestine after the GCRV challenge
at 12, 24, 48, 72, 96, 120, 144, and 168 h by qPCR in order to further investigate the dynamic
activities of AP during GCRV infection. The results reveal the maintenance of a high level
of CiDf mRNA expression in the liver, spleen, and intestine of grass carp at 144 and 168 h
after GCRV challenge, representing the late stage of GCRV infection in grass carp. Because
of the important roles of Df in the AP, our expression data collectively indicate that the AP
activity still exerts intense defense effects at the late stage of GCRV infection in grass carp.
These findings offer useful information for understanding the interaction between the host
complement system and GCRV infection in grass carp.
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In conclusion, this study identifies an AP-regulating protein, CiDf, from C. idella.
CiDf harbors the conserved structure, which features a single Tryp_SPc domain, three
conserved residues as the catalytic triad, and three conserved binding sites in the substrate
specificity pocket. CiDf protein can promote the cleavage and activation of C3, similar to
what has been reported for mammalian Dfs. The expression of CiDf mRNA was found to
be maintained at a high level until the late stage of GCRV infection, suggesting a distinct
functional pattern related to its involvement in the immune defense against GCRV infection
compared to other teleost species. These results may provide a key basis for studying the
roles of Df and AP during GCRV infection in grass carp.

4. Materials and Methods
4.1. Cloning of CiDf Full-Length cDNA by Using Rapid Amplification of cDNA Ends
(RACE) Technique

An assembled unigene (Unigene5167) of 657 bp annotated as Df from our previous
transcriptome data [45] was selected for further cloning of the full-length cDNA of CiDf.
Two specific primers, Df 5′ and Df 3′ (Table 1), were designed to amplify the full-length
cDNA of CiDf by RACE technology. The total volume of the PCR was 50 µL, including
1 µL of cDNA, 25 µL of 2× EasyTaq PCR SuperMix (Vazyme, Nanjing, China), 1 µL of each
gene-specific primer Df 5′ (Df 3′), 1 µL of Universal Primer A Mix, and 22 µL of H2O. The
PCR programs were run as follows: 5 cycles at 94 ◦C for 30 s, 72 ◦C for 3 min; 5 cycles at
94 ◦C for 30 s, 70 ◦C for 30 s, and 72 ◦C for 3 min; 25 cycles at 94 ◦C for 30 s, 68 ◦C
for 30 s, and 72 ◦C for 3 min. The PCR products were gel-purified using the MiniBest
Agrose Gel DNA Extraction Kit Ver. 4.0 (Takara, Kyoto, Japan), cloned into the pUCm-T
vector (Kanglang, Shanghai, China), and then sequenced by M13F(-47) and RV-M primers
(Table 1).

Table 1. Information regarding primers used in this study.

Primer Name Primer Sequence (5′-3′) Application

Df 5′ AGGTTATCCCCACAGCAACGCCCTT RACE
Df 3′ AGGCTGATGCTCACTCCCGTCCGT RACE

UPM CTAATACGACTCACTATAGGGCAAGCAGTGG
TATCAACGCAGAGT RACE

M13F(-47) CGCCAGGGTTTTCCCAGTCACGAC Sequence
RV-M GAGCGGATAACAATTTCACACAGG Sequence
rDf F CCGGGATCCATTACAGGAGGAAGTGAG Prokaryotic expression
rDf R CCCGAATTCTTACTGGGTGGTTGTGCT Prokaryotic expression

CiDf YF ACGACCGGACAAATTGCAAG qPCR
CiDf YR TGCTGGTGAACTTCGTCCCAT qPCR
β-actin YF GGCTGTGCTGTCCCTGTATG qPCR
β-actin YR CTCTGGGCACCTGAACCTCT qPCR

18S RNA YF ATTTCCGACACGGAGAGG qPCR
18S RNA YR CATGGGTTTAGGATACGCTC qPCR

Note: F—forward primer; R—reverse primer.

4.2. Sequence Analysis of CiDf

The open-reading frames and deduced amino acid sequences of CiDf were predicted
using the online ExPASy Translate tool (http://web.expasy.org/translate/, accessed on
9 September 2019). The molecular weight and theoretical isoelectric point were calcu-
lated using the ExPASy Compute pI/Mw tool (http://web.expasy.org/compute_pi/,
accessed on 9 September 2019). The domain architecture of the CiDf protein was pre-
dicted using the Simple Modular Architecture Research Tool (SMART) (http://smart.embl-
heidelberg.de/, accessed on 9 September 2019). The signal peptide was predicted using
the SignalP-5.0 tool (https://services.healthtech.dtu.dk/service.php?SignalP-5.0, accessed on
31 October 2019). Multiple amino acid sequence alignment of Dfs from different species
including C. idella (AHB81535.1), I. punctatus (AEW10547.1), O. fasciatus (AIZ96981.1),
P. olivaceus (ACV89350.1), S. scrofa (XP_013850255.1), B. taurus (AAI02480.1), M. musculus

http://web.expasy.org/translate/
http://web.expasy.org/compute_pi/
http://smart.embl-heidelberg.de/
http://smart.embl-heidelberg.de/
https://services.healthtech.dtu.dk/service.php?SignalP-5.0
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(AAI38779.1), and H. sapiens (AAH57807.1) was performed using DNAman software 8.0. A
comparative homology analysis was performed using the MatGat program 2.03 to assess
the identity and similarity of CiDf with other Dfs. A phylogenetic tree was constructed us-
ing the neighbor-joining method and MEGA 6.06 software based on full-length Df protein
sequences from different species (information shown in Table 2). A bootstrapping test was
adopted with 1000 replications, and the phylogenetic tree was then edited online using the
iTOL tool (http://itol.embl.de, accessed on 2 September 2020). The entire cDNA and genomic
DNA sequences of CiDf were aligned together to determine the exon–intron organiza-
tion using the Spidey genomic alignment tool (http://www.ncbi.nlm.nih.gov/spidey/,
accessed on 15 August 2021) available at NCBI. Other genomic structures of Dfs used
for comparison were obtained through the Ensemble Genome Browser database (http:
//asia.ensembl.org/index.html, accessed on 15 August 2021). Respective genomic arrange-
ments were viewed using the Gene Structure Display Server (http://gsds.gao-lab.org/,
accessed on 15 August 2021).

Table 2. The information of Dfs from different vertebrates used in phylogenetic analysis.

Species GenBank Number

Larimichthys crocea KKF28223.1
Oplegnathus fasciatus AIZ96981.1
Ictalurus punctatus AEW10547.1

Channa striata SSC14279.1
Oreochromis niloticus XP003447819.1

Cynoglossus semilaevis XP008314450.1
Maylandia zebra XP004554830.1

Fundulus heteroclitus XP012727595.1
Clupea harengus XP012693684.1

Danio rerio NP001018368.1
Nothobranchius furzeri SBP53828.1
Ophiophagus hannah ETE68974.1

Terrapene mexicana triunguis XP026510843.1
Ursus arctos horribilis XP026336632.1

Dromaius novaehollandiae XP025964073.1
Canis lupus dingo XP025312436.1

Zonotrichia albicollis XP014130555.1
Poecilia reticulata XP008397016.1
Lipotes vexillifer XP007460509.1

Alligator mississippiensis XP006272575.1
Bos taurus NP001029427.1

Erinaceus europaeus XP007524916.2
Homo sapiens NP001919.2

Rattus norvegicus NP001071110.1
Camelus dromedarius KAB1259241.1

Castor canadensis JAV41751.1
Leptonychotes weddellii XP_006740829.1

Echinops telfairi XP_004717028.1
Delphinapterus leucas XP_022421399.2
Triplophysa tibetana KAA0717797.1
Strigops habroptila XP_030364968.1
Takifugu flavidus TWW72489.1
Serinus canaria XP_030086118.1

Aquila chrysaetos chrysaetos XP_029888753.1
Liparis tanakae TNN52007.1

Protobothrops mucrosquamatus XP_015665549.1
Esox lucius XP_010877625.1

Collichthys lucidus TKS87224.1
Ornithorhynchus anatinus XP_028905544.1

http://itol.embl.de
http://www.ncbi.nlm.nih.gov/spidey/
http://asia.ensembl.org/index.html
http://asia.ensembl.org/index.html
http://gsds.gao-lab.org/
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Table 2. Cont.

Species GenBank Number

Macaca mulatta XP_014977796.2
Peromyscus leucopus XP_028714389.1

Lynx pardinus VFV21436.1
Balaenoptera acutorostrata scammoni XP_028020846.1

Ovis aries XP_012033825.1
Marmota flaviventris XP_027779348.1

Falco cherrug XP_027668635.1
Tupaia chinensis XP_014440966.1

Penaeus vannamei ROT85320.1
Lagenorhynchus obliquidens XP_026941784.1

Anabarilius grahami ROK15838.1
Acinonyx jubatus XP_026905297.1
Urocitellus parryii XP_026269752.1

Apteryx rowi XP_025920610.1
Nothobranchius kuhntae SBR24004.1
Nothobranchius kadleci SBQ40315.1
Paralichthys olivaceus ACV89350.1

Nothobranchius rachovii SBR75430.1
Cyprinus carpio AYD42292.1

Carassius auratus XP_026079875.1

4.3. Prokaryotic Expression, Purification of Recombinant CiDf Protein

A pair of specific primers (rDf F and rDf R, Table 1) were designed to amplify the
cDNA sequence encoding the mature peptide of CiDf (21Ile~250Gln) with BamH I and EcoR
I cleavage site sequences added to the 5′ end. The PCR fragment was digested using
the BamH I and EcoR I restriction enzymes (New England Biolabs, Ipswich, UK) and
ligated into the expression vector pGEX-4T-1 (Vazyme, Nanjing, China). The recombinant
plasmid of pGEX-4T-1-CiDf was transformed into Escherichia coli BL21(DE3) and cultured
overnight. The positive transformants were picked and incubated in LB medium containing
100 µg/mL ampicillin (Beyotime, Shanghai, China) at 37 ◦C via shaking at 220 rpm for 4 h.
When the OD600 reached 0.4–0.6, isopropyl-β-d-thiogalactopyranoside (IPTG) (Beyotime,
Shanghai, China) was added to the LB medium at a final concentration of 1 mM and
incubated at 16 ◦C via shaking at 140 rpm. After inducible expression for 24 h, the bacterial
culture was sonicated and centrifuged to obtain the supernatant. The supernatant was
further filtered using a 0.45 µm filter membrane for protein purification. rCiDf was purified
using a GST resin column and dialyzed against PBS buffer at 4 ◦C for 24 h. The protein was
separated by reducing 12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis
(SDS-PAGE) (GenScript, Nanjing, China) and visualized with Coomassie Bright Blue R250
(Bio-Rad, Hercules, CA, USA). The concentration of purified rCiDf was quantified using
the BCA method. The obtained rCiDf was stored at −80 ◦C for subsequent experiments.

4.4. The Incubation of rCiDf with Grass Carp Serum

The activity of rCiDf to promote the cleavage of C3 protein was analyzed according to
previous descriptions [23]. Briefly, 25 µL of rCiDf protein (40 µg/mL) were incubated with
the serum of grass carp at 16 ◦C overnight. Equivalent rGST (40 µg/mL) proteins and PBS
incubated with grass carp serum were set as the negative and blank control, respectively.
Western blot analysis was conducted for the detection of C3 protein cleavage in grass carp
serum. These three sample types were detected by first separating proteins using 10%
SDS-PAGE followed by transfer to a polyvinylidene difluoride membrane (Millipore, MA,
USA). The membranes were blocked in a QuickBlock Blocking Buffer (Beyotime, Shanghai,
China) for 15 min at 25 ◦C and incubated with the rabbit-anti-grass-carp C3 polyclonal
antibody (diluted by 1:1000) overnight. After washing three times with Tris-buffered saline
containing 0.05% Tween-20, the membrane was incubated with a 1:2000 dilution of HRP
AffiniPure goat anti-rabbit IgG (Abclonal, Wuhan, China) for 1 h at 25 ◦C. The membranes
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were finally incubated in the BeyoECL Plus substrate system (Beyotime, Shanghai, China)
for imaging under the GeneSys Imaging System (Alcatel, Paris, France). The band intensity
was quantified and analyzed using ImageJ software. The β-actin was used as an internal
reference protein.

4.5. Grass Carps, the GCRV Challenge Experiment, and Sampling

Grass carps (C. idella, 10~15 cm in body length) were collected from the Institute of
Fisheries Science in Xiangyin County, Hunan Province, China. The fish were acclimated for
one week in recirculating freshwater tanks at 28 ◦C and fed a commercial diet according to 3%
of their body weight twice a day before processing. The animal experiments were according to
the rules of the Animal Care and Use Committee of Hunan Agricultural University (Changsha,
China; Approval Code: 201903295; Approval Date: 13 September 2019).

A total of 80 grass carps were employed for the GCRV challenge experiment, and they
were randomly divided into two groups. One group was intraperitoneally injected with
200 µL of GCRV 918 (0.2 µL/g body weight, kindly provided by professor Zeng Lingbing
from the Yangtze River Fisheries Research Institute of the Chinese Academy of Fishery
Sciences) and set as the experimental group. The other group was intraperitoneally injected
with the equivalent volume of PBS buffer for use as the control group. The grass carps
were randomly sampled (five individuals per time point) at 12, 24, 48, 72, 96, 120, 144, and
168 h post-GCRV challenge in the experimental group and the control group. The spleen,
intestine, and liver tissues of every individual were collected and stored at −80 ◦C before
RNA extraction.

4.6. Quantitative Real-Time Polymerase Chain Reaction Analysis of CiDf Expression in
Different Tissues

For the analysis of gene expression patterns in different tissues, the gill, head kidney,
liver, spleen, intestine, and muscle were collected from five uninfected individuals. Total
RNA was extracted from these tissues using Total RNA Kit II (Omega, Norcross, GA, USA)
following the manufacturer’s instructions. The concentration of RNA was measured
with a spectrophotometer (Eppendorf BioSpectrometer basic, Hamburg, Germany), and
RNA integrity was evaluated using 1.0% agarose gel electrophoresis. Total RNAs with
an OD260/280 value ranging from 1.8 to 2.0 were used for cDNA synthesis. The total
RNA samples from various tissues were treated with DNase I and reverse-transcribed
into cDNA using a Revert Aid First Strand cDNA Synthesis kit (Thermo Fisher Scientific,
Waltham, MA, USA).

qPCR was performed on a CFX96 Touch Real-Time PCR Detection System (Bio-Rad,
Hercules, California, USA). A pair of specific primers, CiDf YF and CiDf YR (Table 1), were
used to amplify a DNA fragment of 92 bp from CiDf. β-actin and 18S RNA genes were
employed as internal controls (Table 1). Amplifications were performed in triplicate in a
total volume of 10 µL, which contained 5 µL of ChamQTM Universal SYBR qPCR Master
Mix (Vazyme, Nanjing, China), 1 µL of diluted cDNA, 0.4 µL of each primer, and 3.2 µL of
H2O. The cycle conditions were as follows: 1 cycle of 95 ◦C for 3 min, 40 cycles of 95 ◦C
for 15 s, 60 ◦C for 15 s, and 72 ◦C for 15 s. The relative expression levels of genes were
analyzed with the Ct method (2−∆∆Ct method) [76].

4.7. Temporal Expression Analysis of CiDf in Response to GCRV Infection

Total RNA was isolated from the spleen, intestine, and liver of grass carps in the
experimental group and control group at different time points of the GCRV challenge and
reverse-transcribed into cDNA. SYBR Green fluorescent qPCR was performed as described
above to detect the mRNA expression levels of CiDf post-GCRV infection.

4.8. Statistical Analysis

All data are indicated as mean ± standard deviation (N = 3 or 6) and were analyzed
with Statistical Package for Social Sciences Version 25.0 (SPSS Inc., Chicago, IL, USA).
The significant differences among groups were tested by one-way analysis of variance
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(ANOVA) and multiple comparisons. Differences were considered statistically significant
at p < 0.05.
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