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Abstract

Membraneless pericentromeric heterochromatin (PCH) domains play vital roles in chromo-

some dynamics and genome stability. However, our current understanding of 3D genome

organization does not include PCH domains because of technical challenges associated

with repetitive sequences enriched in PCH genomic regions. We investigated the 3D archi-

tecture of Drosophila melanogaster PCH domains and their spatial associations with the

euchromatic genome by developing a novel analysis method that incorporates genome-

wide Hi-C reads originating from PCH DNA. Combined with cytogenetic analysis, we reveal

a hierarchical organization of the PCH domains into distinct “territories.” Strikingly,

H3K9me2-enriched regions embedded in the euchromatic genome show prevalent 3D inter-

actions with the PCH domain. These spatial contacts require H3K9me2 enrichment, are

likely mediated by liquid-liquid phase separation, and may influence organismal fitness. Our

findings have important implications for how PCH architecture influences the function and

evolution of both repetitive heterochromatin and the gene-rich euchromatin.

Author summary

The three dimensional (3D) organization of genomes in cell nuclei can influence a wide

variety of genome functions. However, most of our understanding of this critical architec-

ture has been limited to the gene-rich euchromatin, and largely ignores the gene-poor and

repeat-rich pericentromeric heterochromatin, or PCH. PCH comprises a large part of

most eukaryotic genomes, forms 3D membraneless PCH domains in nuclei, and plays a

vital role in chromosome dynamics and genome stability. In this study, we developed a

new method that overcomes the technical challenges imposed by the highly repetitive

PCH DNA, and generated a comprehensive picture of its 3D organization. Combined
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with image analyses, we reveal a hierarchical organization of the PCH domains. Surpris-

ingly, we showed that distant euchromatic regions enriched for repressive epigenetic

marks also dynamically interact with the main PCH domains. These 3D interactions are

likely mediated by liquid-liquid phase separation (similar to how oil and vinegar separate

in salad dressing) and the resulting liquid-like fusion events, and can influence the fitness

of individuals. Our discoveries have strong implications for how seemingly “junk” DNA

could impact functions in the gene-rich euchromatin.

Introduction

Nuclear architecture and dynamics regulate many important genome functions (reviewed in

[1–4]). The development of Hi-C, which combines chromosome conformation capture (3C)

[5] with genome-wide sequencing [6], has led to major breakthroughs in our understanding of

global nuclear architecture (reviewed in [7]). However, analyses of Hi-C results have focused

on single-copy sequences in euchromatic regions (e.g., [6,8–10]), and virtually all have

excluded the large Peri-Centromeric Heterochromatin (PCH) portion of genomes due to its

enrichment for large blocks of repetitive DNAs [11,12]. Despite being gene-poor, the PCH

plays a vital role in chromosome dynamics [13,14] and genome integrity [15–17].

A defining characteristic of heterochromatin is its enrichment for ‘repressive’ epigenetic

features, such as Histone H3 lysine 9 di- and tri-methylation (H3K9me2/3) and its reader pro-

tein, Heterochromatin Protein 1a (HP1a) [18,19]. Interestingly, PCH DNA/chromatin from

different chromosomes coalesce into one or a few membraneless PCH ‘domains’ (or chromo-

centers) in the 3D cell nucleus [20,21]. Recent studies have shown that specific biophysical

properties of HP1a and liquid-liquid phase separation (LLPS) may mediate the formation of

PCH domains [22,23]. This widely observed spatial organization of PCH domains could sig-

nificantly influence transcription and other genome functions [24], such as silencing of

euchromatic genes transposed near or in PCH genomic regions [25–27]. Furthermore,

PCH-PCH interactions have recently been proposed to drive global genome architecture [28].

In addition to PCH and peritelomeric heterochromatin, regions of H3K9me2/3 enrichment

are also present in the euchromatic portion of the genome [29–31]. Previous studies of a large

block (~1 Mb) of Drosophila heterochromatin inserted in subtelomeric euchromatin (BwD)

revealed that large, repetitive, H3K9me2/3 and HP1a-enriched regions in the euchromatic

genome can spatially interact with the main PCH domain despite their separation by a large

linear distance along the chromosome [32,33]. However, it remains unknown whether the

more prevalent, smaller (tens of kbs), and naturally occurring H3K9me2/3 enriched regions in

the euchromatic genome (or “H3K9me2 islands”), such as those associated with epigenetically

silenced transposable elements (TEs) [34,35], also spatially contact the larger PCH domain.

We currently lack a global and in-depth understanding of the 3D organization of PCH

domains, their interactions with the euchromatic genome, and the associated functional

importance. To address these questions, we developed a novel method that tackles the

sequence complexity of PCH to analyze Hi-C data and used it to study the 3D organization of

PCH domains. Combined with cytological fluorescence in situ hybridization (FISH) analysis,

we provide a comprehensive picture of the 3D structure of PCH domains in late-stage D. mela-
nogaster embryos. Our analysis reveals highly heterogeneous contact frequencies among PCH

regions, suggesting hierarchical ordering within the domain. Surprisingly, despite being far

from PCH on linear chromosomes, euchromatic loci enriched with H3K9me2/3 can dynami-

cally interact with the main PCH domain, and such interactions show properties consistent
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with liquid-liquid phase separation and may influence individual fitness. Our study demon-

strates that the spatial interactions among H3K9me2/3 enriched regions both in PCH and the

euchromatic genome can have a fundamental impact on genome organization and, potentially,

genome function.

Results

Hierarchical organizations of PCH domains

To decipher the 3D organization of PCH domains, we overcame technical limitations inherent

to analyzing repeated DNA sequences and developed a new analysis method of Hi-C data that

includes repetitive DNAs highly represented in PCH regions (Fig 1A and S1 Fig). The Release

6 D. melanogaster genome is the most complete genome among all multicellular eukaryote and

includes a nearly full assembly of the non-satellite PCH DNA [36,37]. The genomic boundaries

between PCH and euchromatin have also been epigenetically identified [31]. The annotated

assembly allowed us to include three types of Hi-C reads that originate from PCH DNA (Fig

1A): 1) unique single-copy sequences within PCH (e.g., protein-coding genes, “unique”), 2)

simple and complex repeats enriched in PCH (“repeat”, S1 Table), and 3) sequences that map

to multiple sites in the PCH (i.e., non single-locus mapping, “multi”). While “repeat” and

“multi” categories both arise from multi-copy PCH DNA, we separated them into two catego-

ries because their identification requires different computational approaches (see Materials

and Methods). We used these sequence classifications to assess contact frequencies between

Fig 1. New approaches for analyzing 3D organization of PCH domains. (A) Three types of PCH-derived sequences

were included in the Hi-C analysis: 1) reads mapped to single-copy sequence in the epigenetically defined PCH regions

(“unique” reads, 2.4% of filtered Hi-C reads (see S1 Fig)), 2) reads mapped to known heterochromatic simple and

complex repeats (“repeat” reads, 6.44%), or 3) reads mapped to non-unique sequences (dark blue) that are present

within epigenetically defined PCH regions (“multi” reads, 3.0%). (B) Methods for assessing if an H3K9me2-enriched

euchromatic region displays exceptional 3D contacts with PCH. The observed percentage of euchromatin-PCH read

pairs for an H3K9me2 enriched euchromatic region is compared to a null distribution generated using randomly

selected, non-H3K9me2 enriched euchromatic regions to estimate p-value.

https://doi.org/10.1371/journal.pgen.1008673.g001
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PCH regions, and between PCH and H3K9me2/3-enriched regions in the euchromatic

genome (Fig 1B and below), using published Hi-C data from 16-18hr D. melanogaster
embryos [38].

Analyses of the formation and function of 3D PCH domains generally assume they are

homogeneous, despite the fact that they contain coalesced PCH regions from different chro-

mosomes that have high sequence heterogeneity. To investigate potential substructures within

the PCH domains, we restricted the analysis to Hi-C read pairs whose both ends mapped

uniquely to PCH genomic regions (“unique” PCH reads, Fig 1A) because the chromosomal

locations of these reads are known. In addition to PCH regions on the 2nd, 3rd, and X chromo-

somes, the entire 4th and Y chromosomes were included in the analysis because enrichment

for heterochromatic marks extends across both chromosomes [31,39]. We estimated the num-

ber of Hi-C read pairs coming from any two of the 100kb PCH regions. Using a sequential

exclusion approach (see Materials and Methods), we identified three types of prevalent spatial

interactions among PCH regions: within an arm (intra-arm), between arms of the same chro-

mosome (inter-arm), and between arms of different chromosomes (inter-chromosome). The

most frequent interactions were among PCH windows on the same chromosomal arm, which

accounts for 98.08% (replicate 1, Fig 2A) and 97.15% (replicate 2, S2 Fig; and see S3 Fig) of

parsed Hi-C read pairs (see S2 Table for the number of read pairs supporting each interac-

tion). Interactions among windows within PCH arms are stronger than PCH-euchromatin

interactions on the same arm (S4 Fig), suggesting that PCH arms (e.g., 2L PCH) are organized

into distinct “territories.”

Exclusion of intra-arm interactions reveals strong spatial interactions between PCH regions

flanking the centromeres (inter-arm, i.e., 2L-2R, 3L-3R), which accounted for 34.72% and

35.88% (replicate 1 and 2) of the remaining read pairs (0.67% and 1.02% of total unique

PCH-PCH read pairs respectively), and specific inter-chromosome interactions, mainly 3L-4

(9.68% and 9.49% of non-intra-arm read pairs). To quantitatively investigate whether these

interactions are exceptional, we compared the observed percentage of read pairs against expec-

tations that are based on either theoretical mappability [40] or empirically observed number of

reads mapped to PCH on each chromosome arm (see Materials and Methods, Fig 2B). We

also performed permutation tests for the latter to evaluate statistical significance. Contact fre-

quencies between 2L-2R, 3L-3R, and 3L-4 are indeed significantly more than expected (com-

pared to both expectations, permutation p-value< 0.0001). Finally, we excluded all intra-

chromosome interactions to specifically study contact frequencies between PCH regions on

different chromosomes (Fig 2B). The relative frequencies of most inter-chromosome associa-

tions did not exceed expectations (e.g., 2L-3L), suggesting random contacts across cell popula-

tions. However, frequencies of 3D contacts between 3rd chromosome PCH and the 4th

chromosome (3L-4, 3R-4) were exceptionally high (compared to both expectations, permuta-

tion p-value< 0.0001). Contact frequencies between 2L-4, 2R-4, and 3R-Y were also signifi-

cantly more than expected.

The spatial interactions detected with Hi-C represent a superimposition of different chro-

mosome conformations within cell populations. To investigate the prevalence and cell-to-cell

variability of identified 3D interactions, we performed single-cell FISH on embryos of the

same genotype and stage as those used for Hi-C. In D. melanogaster, different simple repeats

are specifically enriched in the PCH regions of certain chromosomes [41]. This allowed us to

ask if chromosome-specific probes that label simple repeats from PCH regions that display

exceptional Hi-C spatial interactions (e.g., 3R-4) colocalize more often than probes from the

same chromosomes with lower frequency 3D interactions (2R-4 and 2R-3R). We measured

the distance between centers of FISH signals in optical sections of 16-18hr embryos (Fig 2C).

The distance between 3R (dodeca)-4th chromosome (AATAT) is significantly shorter than 2R
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(AACAC)-4 or 2R-3R (Mann-Whitney test, p< 10−6 (3R-4 vs. 2R-4) and <10−4 (3R-4 vs. 2R-

3R), Fig 2D). For all three pairs of interactions, the distribution of the distance between FISH

signals is bimodal (Fig 2E), with a sharp peak near zero, and reveals a “natural threshold”

dividing the nuclei into two groups (dashed line in Fig 2E). We defined two foci as ‘overlap-

ping’ when their distances were shorter than this threshold. Consistent with the Hi-C results,

the proportion of nuclei with overlapping foci was higher for 3R-4 than for 2R-4 and 2R-3R

(Fisher’s Exact test, p = 0.001 and 0.22, respectively, Fig 2E). Overall, both Hi-C and FISH anal-

yses demonstrate a hierarchical 3D organization of PCH domains.

Fig 2. Differential spatial interactions between PCH regions on different chromosomes. (A) Heatmap for the number of Hi-C read pairs supporting the spatial

interactions between pairs of 100kb PCH windows (total 189 windows). Replicate 1 is shown (see S2 Fig for replicate 2). Centromeres are denoted by arrowheads, and

only PCH regions are shown. (B) Barplots for the observed and expected proportion of read pairs supporting spatial interactions between PCH on different

chromosomes, excluding intra-arm (above) and inter-arm (below) interactions. Interactions that are more than expected and have significant permutation p-values (all

p< 0.0001) are denoted with arrows. obs: observed proportion, exp: expected proportion (C) An example showing how the distance between foci was estimated (top)

and representative slice images of embryonic cells stained with DAPI (DNA, blue) and FISH probes recognizing indicated PCH regions (3R-4, 2R-4, and 2R-3R, pink

and yellow) (bottom). (D, E) Boxplot (D) and histogram (E) showing the 3D distance between PCH foci in optical sections. Orange box/bars are for exceptional PCH

interactions (3R-4), while gray ones are for other interactions. In (D), the numbers of nuclei counted are in parentheses. Centerlines: median, box limits: upper and

lower quartile. Points: outliers. In (E), the threshold for nuclei with overlapping foci is denoted with a dashed line, and the percentages denote nuclei with overlapping

foci. ��� p< 0.001.

https://doi.org/10.1371/journal.pgen.1008673.g002
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Euchromatic regions enriched for H3K9me2 show 3D contacts with PCH

The coalescence of PCH regions and large blocks of translocated heterochromatin in the

euchromatic genome (e.g., BwD, [32,33]), as well as the observations of the formation of HP1a

liquid droplets both in vitro and in vivo [22,23], led us to predict that small regions enriched

for H3K9me2/3 and HP1a in the euchromatic genome could also spatially associate with the

main PCH domains. To test this hypothesis, we identified euchromatin-PCH Hi-C read pairs,

which contain sequences from single-copy, euchromatic regions paired with any PCH

sequence (i.e., all three categories of PCH sequences, Fig 1A). We then estimated, among Hi-C

read pairs whose one end mapped uniquely to a specific euchromatic region, the percentage of

euchromatin-PCH read pairs (Fig 1B). We generated null distributions for the percentage of

euchromatin-PCH Hi-C read pairs using randomly chosen euchromatic regions that lack

H3K9me2/3 enrichment to calculate empirical p-values (Fig 1B). Euchromatic regions with

exceptional percentages of euchromatin-PCH Hi-C read pairs (empirical p-values< 0.05)

were considered to interact spatially with PCH (see Materials and Methods).

We identified by ChIP-seq 496 H3K9me2-enriched regions (defined as “H3K9me2 islands,”

290bp—21.63Kb, with an average size of 3.84 kb) in the euchromatic genome (>0.5 Mb distal

from the epigenetically defined euchromatin-PCH boundaries) in embryos of the same geno-

type and stage as the Hi-C data (see Materials and Methods). Of these H3K9me2 islands,

13.91% (n = 69) and 8.67% (n = 43) displayed significant spatial associations with PCH in

either or both Hi-C replicates, respectively (Fig 3A). These numbers are significantly higher

than expected (i.e., 5% of the H3K9me2 islands would be significant under null expectation;

binomial test, p = 3.04x10-14 (either) and 0.00059 (both)). Thus, we conclude that H3K9me2

islands are more likely to spatially interact with PCH than euchromatic regions without

H3K9me2 enrichment. For subsequent analyses, we focused on H3K9me2 islands that signifi-

cantly interacted with PCH in both Hi-C replicates (hereafter referred to as “EU-PCH”

associations).

We found that H3K9me2 islands with PCH interactions have shorter linear distance to

PCH regions along the chromosome when compared to H3K9me2 islands that lacked PCH

interactions (Mann-Whitney U test, p< 10−4, S5 Fig), suggesting that proximity to PCH on a

linear chromosome is a strong defining feature for the tendency to spatially interact with PCH.

For each H3K9me2 island, we calculated the percentage of unique PCH reads from each chro-

mosome arm (e.g., percentage of EU-2L PCH read pairs). For PCH region on a particular arm,

H3K9me2 islands on the very same arm always have the highest such percentage (e.g., 2L

euchromatic regions have the highest percentage of EU-2L PCH read pairs), followed by those

on the other arm of the same chromosome (Fig 3B and S6 Fig). This echoes the observed

strong tendency of “intra-arm” PCH-PCH interactions, followed by “inter-arm” PCH-PCH

interactions (Fig 2A and 2B).

Interestingly, H3K9me2 islands that show spatial interactions with PCH have higher frac-

tions of coding sequences when compared to H3K9me2 islands without PCH interactions

(Mann-Whitney U test, p = 0.0015, median: 70.1% (with) and 30.4% (without)). In addition,

these regions are more likely located within active Topologically Associated Domains (TADs)

identified at the same embryonic stage [8] than H3K9me2 islands without PCH interactions

(Fisher’s Exact Test, p = 0.0078, S3 Table). Surprisingly, we also found that significant

EU-PCH contacts are more likely to involve euchromatic regions in active combinatorial chro-

matin states [42,43]: Red or Yellow chromatin (Fisher’s Exact test, p = 0.021) or modEncode

States 1–4 (p< 10−4 (S2) and = 0.011 (BG3), S3 Table). These regions are also depleted for

chromatin states that lack obvious enrichment for histone modifications and/or protein bind-

ing: “null” TADS (Fisher’s Exact test, p = 0.03), black chromatin (p< 10−3), and modEncode
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State 9 (p = 0.008 (S2), S3 Table). Similarly, analysis using modEncode expression data from

the same developmental stage (16-18hr embryos [44]) showed that genes in H3K9me2 islands

with PCH interactions have higher expression than genes in H3K9me2 islands without PCH

contacts (Mann-Whitney U test, p = 0.0007). It is surprising that PCH associations would be

enhanced for H3K9me2 islands containing coding genes, active chromatin marks, or higher

gene expression. However, since the chromatin states and expression data analyzed are from

strains that likely have different H3K9me2/3 distributions from those of the Hi-C strain, addi-

tional studies are needed. It is worth noting that PCH associations were not correlated with

the following properties of H3K9me2 islands: autosome or sex chromosome linkage (Fisher’s
Exact test, p = 0.27), size of the enriched region (Mann-Whitney U test, p = 0.31), or the average

level of H3K9me2 enrichment (Mann-Whitney U test, p = 0.91). Analysis of significant

EU-PCH interactions in either replicate reached the same conclusions (S4 Table).

To validate the EU-PCH 3D interactions identified by Hi-C analysis, we performed FISH

using Oligopaint probes [45–47] targeting 30.5–42.9kb euchromatic regions (S5 Table) and

probes that broadly mark PCH (AAGAG, a satellite enriched in PCH regions of all chromo-

somes, [48,49]). We focused on three 2R windows covering H3K9me2 islands that spatially

interact with PCH (EU1-3). Because we observed that the linear distance to PCH genomic

regions is a strong predictor for whether an H3K9me2 island interacts with PCH (see above),

for each of these regions, we chose a matching “control” window located at a similar linear dis-

tance from PCH genomic regions that do not have H3K9me2 enrichment (c.EU1-3, see Fig

3C for genomic locations of chosen regions, see S7 Fig for their H3K9me2 enrichment level,

and Fig 3D and S8 Fig for representative FISH images). Consistently, we observed that

H3K9me2 islands displaying PCH interactions in the Hi-C analysis are closer to PCH in 3D

space than linearly equidistant euchromatic regions that lack H3K9me2 enrichment (Mann-
Whitney U test, p< 10−5 (EU1 vs. c.EU1), < 10−10 (EU2 vs. c.EU2), and 0.03 (EU3 vs. c.EU3),

Fig 3E), confirming the Hi-C results. This difference is also reflected in the higher proportion

of cells in which the two foci overlap when compared to the control regions (Fig 3F). It is

worth noting that the comparatively lower frequency of overlapping foci for EU2 and EU3,

when compared to EU1, could result from the fact that these two regions are much farther

from the PCH on a linear chromosome, and thus less likely to spatially interact with PCH than

EU1 (see above). This could lead to lower statistical power, and thus the comparison of pro-

portion of overlapping foci between focused and control regions is only statistically significant

for EU1 (Fisher’s Exact test, p = 0.01 (EU1 vs. c.EU1), 0.53 (EU2 vs. c.EU2), and 0.15 (EU3 vs.

c.EU3)). Overall, the Hi-C and FISH analyses reveal that even short stretches of H3K9me2-en-

richment in the euchromatic genome can coalescence with the main PCH domains. Note that

the focused regions (EU1-3) and control regions (c.EU1-3), though similar in distance to

PCH, are not on the same chromosome, and unknown biases could have led to the observed

results. Stronger evidence will come from comparing the 3D organization of homologous

sequences with and without H3K9me2 enrichment (see below).

Fig 3. H3K9me2 islands are in 3D contacts with PCH domains. (A) Genomic distribution and average H3K9me2 enrichment level of

H3K9me2 islands with (green) and without (gray) 3D interactions with PCH (blue). (B) The percentage of Hi-C reads coming from PCH

regions on a particular chromosome (y-axis) is compared between H3K9me2 islands on the same (orange) or other (white) chromosomes.

Replicate 1 is shown and see S6 Fig for replicate 2. (C) Locations of H3K9me2 islands and TEs (see below) chosen for FISH analysis.

Euchromatin (gray), PCH (blue). (D) Representative slice images of nuclei stained with DAPI (DNA, blue) and FISH probes for EU1

(Oligopaint probe, yellow) and PCH (AAGAG, pink). Also see S8 Fig. (E, F) Boxplot (E) and histogram (F) showing the 3D distance between

PCH and indicated euchromatic regions on optical sections (with PCH interaction = green, without = gray). In (E), the numbers of nuclei

counted are in parentheses. In (F), the threshold for nuclei with overlapping foci is denoted with a dashed line, and the percentages denote

nuclei with overlapping foci. In (B, E) Centerlines: median, box limits: upper and lower quartile. Points: outliers. � p< 0.05, ��� p< 0.001.

https://doi.org/10.1371/journal.pgen.1008673.g003
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3D PCH contacts include euchromatic TEs enriched for H3K9me2

Naturally occurring TE insertions in the euchromatic genome can acquire H3K9me2/3 marks

that often extend into flanking regions, including genes [34,35,50,51], and we predict that

these could also spatially contact the main PCH domains. While non-TE induced H3K9me2/3

enriched regions in the euchromatic genome are commonly shared between individuals (e.g.,

S7 Fig), most TE insertions are polymorphic (i.e., not present in all individuals) in the Dro-
sophila population [52–54], leading to varying H3K9me2 enrichment between individuals and

strains (e.g., S9 Fig [35]). Accordingly, to identify TE-induced H3K9me2 islands, we compared

the H3K9me2 enrichment level around euchromatic TE insertions in the strain used for Hi-C

(ORw1118) with that of homologous sequences in strains without the respective TEs (wild-

type), as performed previously for other strains [35]. This approach identifies H3K9me2

enrichments that are broad and/or low in enrichment level, and therefore often missed by cus-

tom pipelines that rely on identifying “sharp peaks” (reviewed in [55,56]). Our analyses were

restricted to 106 TEs that displayed H3K9me2 spreading into at least 1kb of flanking DNA

(65% of identified TEs in strain ORw1118, see Materials and Methods), with an average of 4kb

and maximum of 18kb of H3K9me2 spread. Among these TEs, 13.21% (n = 14) and 7.55%

(n = 8) displayed significant spatial interactions with PCH (p< 0.05) in either or both Hi-C

replicates respectively (see S10 Fig for their genomic distribution), which is significantly more

than expected (binomial test, p = 8.38x10-4 (either) and 0.26 (both)). As a contrast, only 1.75%

of TEs without H3K9me2 enrichment (n = 1) display PCH interactions. We focused on analyz-

ing the 14 TEs showing significant PCH-contact in either replicate, while analyses restricted to

eight TEs significant for both replicates were qualitatively similar (S6 Table). Similar to non-

TE induced H3K9me2 islands, TEs spatially interacting with PCH are closer to PCH genomic

regions on the linear chromosome than those that do not interact with PCH (Mann-Whitney
U test, p = 0.037, S10 Fig). PCH-interacting TEs include those from roo, pogo, 17.6, mdg3, FB,

and S families. However, they were not significantly enriched for any specific TE family (Fish-
er’s Exact Test for individual TE family, p> 0.26), class, type, or sex-chromosome linkage (S6

Table).

The polymorphic nature of TEs offers a rare opportunity to compare the 3D conformations

of homologous sequences with and without TE-induced H3K9me2/3 enrichment. To validate

the Hi-C results, we performed FISH analysis focusing on two TEs that are present in the Hi-C

strain (ORw1118) but absent in another wildtype strain (RAL315). These two TEs also induced

ORw1118-specific enrichment of H3K9me2 (S9 Fig) and spatially interact with PCH (TE1,2,

Fig 3C). If the 3D proximities between the euchromatic neighborhood of these two TEs and

PCH are indeed due to TE insertions instead of other properties of the regions, we would

observe such spatial proximity only for the Hi-C strain, but not for the homologous region in

the strain without the TE insertion. As controls, we also included two additional ORw1118-

specific TEs that do not interact with PCH and do not have H3K9me2 enrichment (c.TE1,2,

Fig 3C, S9 Fig). We predicted that the spatial distance between TE euchromatic neighborhood

and PCH would not differ between strains with and without these two control TEs. We

performed FISH using Oligopaint probes that target unique regions flanking the selected

euchromatic TE insertions (S5 Table) and probes that broadly mark PCH (see S8 Fig for rep-

resentative cell images). For TE1 and TE2, the distance to PCH signals is shorter in ORw1118

than in wildtype (Mann-Whitney U test, p = 0.0008 (TE1) and p = 0.07 (TE2), Fig 4A). Inter-

estingly, the distribution of the distances between TE1/TE2 and PCH is bimodal for ORw1118

nuclei but unimodal for wildtype, which lacks the peaks near zero, or nuclei with overlapping

foci (Fig 4B). Indeed, there are more nuclei with overlapping foci in ORw1118 than in the

wildtype strain (Fisher’s Exact Test, p = 0.0007 (TE1) and 0.070 (TE2)). Importantly, these
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between-strain differences were not observed for control TEs that lacked PCH interactions

(Mann-Whitney U test, p = 0.24 (c.TE1) and 0.87 (c.TE2), Fisher’s Exact test, p = 0.49 (c.TE1)

and 1 (c.TE2), Fig 4A and 4B). This comparison of homologous euchromatic regions with and

without TEs strongly indicates that H3K9me2 enrichment is required for spatial contacts

between euchromatic regions and PCH domains.

Euchromatin-PCH 3D contact is sensitive to perturbing liquid-liquid phase

separation

The coalescence of PCH regions located on different chromosomes into 3D PCH domains inDro-
sophila exhibits properties characteristic of liquid-liquid phase separation. This includes sensitivity

to 1,6-hexanediol [23], which is a mild perturbant of hydrophobic interactions [57]. To investigate

if the 3D contacts between H3K9me2 islands and PCH domains is mediated by similar biophysi-

cal mechanisms, we used FISH to compare the 3D distance between PCH and H3K9me2 islands

that displayed significant PCH interactions (see above) in permeabilized embryos with and with-

out 1,6-hexanediol treatment (see Materials and Methods). We focused on TE1 because it is

ORw1118-specific and leads to strain-specific H3K9me2 enrichment. This allows comparisons

between genotypes with and without TEs to investigate whether the sensitivity to 1,6-hexanediol

treatment is H3K9me2-enrichment dependent (see Materials and Methods, see S11 Fig for re-

presentative cell images). Compared to untreated controls, we observed significantly longer

TE1-PCH distance (orange in Fig 4C,Mann-Whitney test, p< 10−4) and fewer nuclei with over-

lapping foci (orange in Fig 4D, Fisher’s Exact test, p = 0.02) in ORw1118 embryos treated with

1,6-hexanediol. In contrast, no such difference was observed in wildtype embryos, which do not

have the TE insertion and thus no frequent TE1-PCH 3D contacts (green in Fig 4C and 4D,

Mann-Whitney test, p = 0.91, and Fisher’s Exact test, p = 1). Importantly, the significant difference

in TE1-PCH 3D distance between genotypes with and without TE insertion is only observed for

embryos without 1,6-hexanediol treatments (Mann-Whitney test, p = 0.001, Fisher’s Exact test,
p = 0.057), and not for those with the treatment (Mann-Whitney test, p = 0.44 and Fisher’s Exact
test, p = 0.55, Fig 4C and 4D). Changes in nuclear volume upon 1,6-hexanediol treatment were

previously reported in cell culture [23], although we did not observe such changes in embryos

with 1,6-hexanediol treatment (S12 Fig). Nevertheless, analysis based on the relative distance

between foci (absolute distance divided by nuclear size, see Materials and Methods) gave consis-

tent results (S11 Fig). The sensitivity of TE-PCH 3D contacts to 1,6-hexanediol is consistent with

the spatial interactions between H3K9me2 islands and PCH domains being mediated by liquid

fusions, an emergent property of liquid-liquid phase separation [23].

Euchromatin-PCH 3D contacts may influence individual fitness

A dominant factor governing the population frequencies of TEs (presence/absence in a popu-

lation) is natural selection against their deleterious fitness impacts [52,58,59]. We estimated

Fig 4. Euchromatic TEs show 3D contacts with PCH, and such interactions are sensitive to 1,6-hexanediol treatment. (A,

B) Boxplot (A) and histogram (B) showing the 3D distance between euchromatic TE neighborhood and PCH on optical

sections. The distance was estimated for ORw1118 (ORw, orange, TE present) and wild type (WT, green, no TE present)

embryonic cells. (C, D) Boxplot (C) and (D) histogram comparing TE1-PCH distance between genotypes and between

treatments. The distance was estimated for permeabilized ORw and WT embryos (EPS, see Materials and Methods) and

permeabilized ORw and WT embryos with 1,6-hexanediol treatments (EPS+HD). In (A, C), the numbers of nuclei counted are

in parentheses. In (B, D), the threshold for nuclei with overlapping foci is denoted with a dashed line, and the percentages

denote nuclei with overlapping foci. (E) Population frequencies of TEs with and without PCH interaction. Note that high

frequency TE insertions (population frequency> 0.05, arrows) all show no PCH interactions. In (A, C), Centerlines: median,

box limits: upper and lower quartile. Points: outliers. ��� p< 0.001, n.s p> 0.05.

https://doi.org/10.1371/journal.pgen.1008673.g004
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the population frequencies of studied TE insertions (in ORw1118 genome) in a large panmic-

tic African population ([60], see Materials and Methods). TEs with PCH interactions have sig-

nificantly lower mean population frequencies than TEs without (t-test, p = 0.0042, mean

frequency 9.7x10-4 (with spatial interaction) and 9.6x10-3(without), see Materials and Meth-

ods) and their frequency spectrum is more skewed towards rare variants (Fig 4E). Both of

these observations support stronger selection against TEs with PCH interactions than other

TEs [52,58,59], which could result from the negative functional consequences of TE-PCH 3D

interactions. It is worth noting that even 0.01% variation in fitness, which could be rarely

detected in a laboratory, can result in large differences in population frequencies in nature.

Multiple other factors have been correlated with TE population frequencies, such as TE type,

chromosome linkage, and recombination rate [53,61], and could also contribute to the low pop-

ulation frequencies of TEs displaying PCH interactions. However, TEs with and without PCH

interactions do not differ in their class, type, chromosome linkage (S6 Table) or local recombi-

nation rate (Mann-Whitney U test, p = 0.40). On the other hand, we observed that TEs with

PCH interactions tend to be closer to genes than TEs without such interactions, although the

analysis is only marginally significant (Mann-Whitney U test, p = 0.065). The stronger selection

against TEs with PCH interactions could thus result from either the direct functional impact of

PCH spatial contacts on adjacent genes (see Discussion) and/or other TE-mediated functional

impacts along the linear chromosome (such as disrupting regulatory non-coding sequences).

Discussion

An appreciable fraction of most eukaryotic genomes comprises constitutive heterochromatin,

which is enriched for megabases of repetitive DNA localized predominantly around centro-

meres (PCH). However, because of technical difficulties associated with repetitive DNA, we

have lacked a global and in-depth understanding of the 3D organization of the PCH domain,

which encompasses at least a fifth of the human [62] and a third of the D. melanogaster
genomes [37]. In this study, we provide a comprehensive and detailed picture of the 3D orga-

nization of PCH domains in D. melanogaster by combining genome-wide Hi-C analyses and

cytological FISH studies. We developed a novel analysis approach that overcomes the chal-

lenges posed by repeated DNAs when determining 3D contact frequencies from Hi-C reads.

Specifically, we relaxed the single-locus mapping restriction to include reads originating from

the abundant repetitive DNA in PCH and used different combinations of PCH reads (single-

locus mapping or not) depending on the question being addressed. Our investigations reveal

significant, new insights into the interactions between different PCH regions and their 3D

contacts with the euchromatic genome.

The coalescence of PCHs on different D. melanogaster chromosomes contributes to the for-

mation of a large PCH domain in 3D nuclear space. However, we found that DNA contacts

within the PCH domain are far from homogeneous. Our Hi-C analysis reveals the strongest

interactions (~98%) involve PCH regions on the same chromosome arm (e.g., 2L), suggesting

PCH regions from each arm are organized into distinct “territories” (Fig 5). This is similar to

identified chromosome territories for the euchromatic genome [6,8,63–65]. It is clear from

both the fusion of multiple PCH domains from different chromosomes [23] and our Hi-C and

FISH analyses presented here that PCH regions from all the chromosomes do interact. How-

ever, some interactions occur more often than random, in particular the inter-arm (2L-2R, 3L-

3R) and specific inter-chromosomal (3L/3R-4) 3D associations. Most strikingly, ~14% of iden-

tified H3K9me2-enriched regions in epigenomically defined euchromatin display preferential

3D contacts with the central PCH domains. Our quantitative FISH analysis further provides

cytogenetic support for the Hi-C results. The bimodal distributions of PCH-PCH or EU-PCH
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distances in nuclei (Figs 2E, 3F and 4B) demonstrate that these 3D contacts are dynamic and

can vary among cells, similar to what has been previously shown for the euchromatic Hox loci

in mouse [66]. Importantly, polymorphic TE insertions in euchromatin allowed us to directly

compare homologous sequences with and without H3K9me2 enrichment, which strongly sup-

ports the conclusion that H3K9me2 enrichment is required for EU-PCH 3D contacts.

Overall, the Hi-C and FISH analyses reveal a previously unknown picture of the 3D architec-

ture of the PCH domains (Fig 5): the spatial interactions within the domains, instead of being ran-

dom, are hierarchical. In addition, despite the separation of euchromatic and PCH territories on

the same chromosome arm [67], short stretches of H3K9me2/3 enrichment in the euchromatic

genome (with and without TEs) also dynamically interact with the main PCH domains. Both

PCH-PCH and EU-PCH interactions happen most often within chromosome arms, which is con-

sistent with the predictions of polymer physics on chromosome folding [68,69]. Importantly, the

tendency of H3K9me2 islands to interact with PCH strongly depends on their distance to PCH

on a linear chromosome. This suggests that euchromatic regions and PCH could be in spatial

proximities transiently with a frequency that largely follows the polymer physics of chromosome

folding. The enrichment of H3K9me2/3 and the reader protein HP1a at specific euchromatic loci

would then inevitably lead to their liquid-like fusion with HP1a-enriched PCH, resulting in fre-

quent and/or maintained EU-PCH 3D interactions. Alternatively, this association with PCH may

be an active process, regulating gene expression in specific subsets of cells. Indeed, in mice, the

spatial clustering of olfactory receptor genes into heterochromatin domains silences all except for

one receptor gene that spatially loops out from the cluster [70].

Our observed specific spatial contacts between PCH regions located on different chromo-

somes are surprising, but nevertheless consistent with the coalescence of PCH of all chromo-

somes into chromocenters [23]. The varying frequencies of inter-chromosomal interactions

could result from non-random positioning of PCH regions upon mitotic exit [32] or con-

straints imposed by other nuclear structures. For example, nucleoli, whose formation is driven

Fig 5. Proposed spatial architecture of D. melanogaster genome. PCH genomic regions located on different

chromosomes coalesce to form the 3D PCH domains, or chromocenters. PCH regions (darker color) and the

euchromatic genome (lighter color) form their own separate territories. PCH regions on different chromosomes

interact, with inter-arm (2L-2R, 3L-3R) and inter-chromosomal 3rd-4th chromosome 3D interactions being more

frequent than random expectations. 3D contacts between polymorphic H3K9me2/3-enriched regions in the

euchromatic genome (potentially due to TEs, gray bar) and PCH lead to varying 3D genome conformations between

individuals (arrows). 3D structures of the euchromatic genome were based on [67] and the positions of PCH regions

are inferred from data in Fig 2B.

https://doi.org/10.1371/journal.pgen.1008673.g005
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by the transcription of rDNA arrays on the X chromosome, may impose structural constraints

that lead to less frequent than expected spatial contacts involving X PCH. In addition, variation

in biophysical properties (e.g., viscosity or varying protein compositions [71]) among PCH

domains arising from specific chromosomes could result in different frequencies of liquid-liq-

uid fusion. Indeed, the 4th chromosome has a unique composition of histone modifications

and chromatin proteins [31,43] and depends on a specific suite of genes for its regulation

[72,73] (e.g., requirement of Egg for histone methylation [74]), both of which could result in

biophysical properties that promote frequent 3D contacts between 4th chromosome and spe-

cific PCH regions (e.g., 3L PCH).

Importantly, the population genetic analysis reveals that euchromatic TEs with PCH interac-

tions have lower population frequencies than TEs lacking frequent PCH contacts (Fig 4E), sug-

gesting that EU-PCH 3D interactions may influence individual fitness. What are the potential

functional consequences of TE-PCH interactions that could influence individual fitness?

TE-PCH interactions could lead to increased TE-induced enrichment of repressive epigenetic

marks on neighboring sequences/genes. However, we found no difference in the extent or the

magnitude of H3K9me2 spread around TEs with and without PCH interactions (Mann-Whitney
U test, p = 0.30 (extent) and 0.53 (magnitude), S13 Fig), suggesting that TE-PCH interactions

influence other aspects of nuclear organization critical for gene regulation and/or other genome

functions. For instance, 3D interactions between PCH and TEs could bring neighboring euchro-

matic genes into the PCH domains and result in aberrant or enhanced silencing. On the other

hand, the enrichment of HP1a, and likely spatial localization in the PCH domains, can promote

the expression of genes in both PCH [24,75,76] and the euchromatic genome [77–79]. Still

another possibility is that the spatial contact with PCH on one chromosome may “drag” its

homolog to the same nuclear compartment due to somatic homolog pairing (reviewed in [80]),

resulting in trans-silencing [81]. A preliminary analysis found that ~15% of heterozygous TEs

induced H3K9me2 enrichment not only in cis, but also in trans on the homologous chromosome

without the TE insertion (i.e., trans-epigenetic effects, S1 Text). Accordingly, the fitness conse-

quences of TE-PCH spatial interactions could potentially result from their positive or negative

impacts on the expression of genes in cis or in trans to TEs, or from influencing other genome

functions, such as replication and repair. Further studies are needed to test these hypotheses.

It is important to note that TEs comprise an appreciable fraction of the euchromatic

genomes of virtually all eukaryotes [82]. For instance, more than 50% of assembled human

euchromatin contains TEs or TE-derived sequences [62,83], many of which are interspersed

with actively transcribed genes and can influence gene expression through H3K9me2/3

spreading [50]. Moreover, the presence of many TE insertions at specific locations are poly-

morphic between individuals in natural populations (e.g., human [84,85], Caenorhabditis
[86,87], Drosophila [53,54,88], and Arabidopsis [89–91]). Spatial interactions between euchro-

matic TEs and PCH can thus generate polymorphic 3D organization of the euchromatic

genomes (Fig 5), leading to variation in critical biological functions that depend on chromo-

some conformations and even varying fitness between individuals. Our investigation of the

spatial architecture of PCH domains could thus have strong implications for how such 3D

organizations could influence gene regulation, genome function, and even genome evolution

of both heterochromatin and the gene-rich euchromatin.

Methods

Fly strains

Three D. melanogaster strains were used: Oregon-R w1118 (abbreviated ORw1118, [8]) and

two wildtype strains, RAL315 (Bloomington Drosophila Stock Center (BDSC) 25181) and
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RAL360 (BDSC 25186). The latter two are part of a large collection of genomically sequenced

natural D. melanogaster strains [92], whose TE insertion positions were previously identified

[88]. Flies were reared on standard medium at 25˚C with 12hr light/12hr dark cycle.

Euchromatin-heterochromatin boundaries

To identify Hi-C reads coming from PCH genomic regions, we used epigenetically defined

euchromatin-heterochromatin boundary in [31] and converted those to Release 6 coordinates

using liftover (https://genome.ucsc.edu). For defining H3K9me2-enriched euchromatic

regions and euchromatic TE insertions, we used 0.5 Mb inward (distal to PCH) of the epige-

netically defined euchromatin-heterochromatin boundary to be conservative about what is

defined as euchromatin. The entirety of 4th and Y chromosomes are enriched with heterochro-

matic marks [31,39] and are considered to be entirely heterochromatic.

Generation and analysis of H3K9me2 ChIP-seq data

We performed ChIP-seq using antibody targeting H3K9me2 (Abcam 1220) on 16-18hr

embryos of ORw1118 and two wildtype strains (see above). Embryo collections and ChIP-seq

experiments were performed following [35], except that sequencing libraries were prepared

using NEBNext Ultra DNA Library Prep Kit for Illumina (NEB cat#E7370L) following manu-

facturer’s protocol and sequenced on Illumina Hi-Seq 4000 with 100bp paired-end reads. Each

sample has two ChIP replicates (biological replicates) with matching inputs.

Raw reads were processed with trim_galore [93] to remove adaptors, low-quality bases, and

single-end reads. Processed reads were mapped to release 6D.melanogaster genome with bwa

mem with default parameters. Reads with a mapping quality lower than 30 were removed using

samtools [94]. To have enough noise for the IDR analysis (see below), we ran Macs2 [95] using

broad-peak and pair-end mode, and a liberal p-value threshold (0.5). This was followed by per-

forming Irreproducible Rate (IDR) analysis [96] to identify H3K9me2 enriched regions that are

consistent between replicates. We defined H3K9me2-enriched regions as those with low IDR

(IDR< 0.01). IDR plots for replicates for three ChIP-seq samples can be found in S14–S16 Figs.

Identification and analysis of TE insertions

TEs in wildtype strains. All potential TE insertions in RAL315 and RAL360 strains were

previously identified using TIDAL [88]. We used the recommended coverage ratio (read num-

ber supporting TE presence/TE absence, coverage ratio at least three) to identify TEs with high

confidence in these two wildtype strains. TEs in wildtype strains are used to identify

ORw1118-specific TEs (see below).

Identification of TEs in ORw1118. To identify TEs in the ORw1118 strain, we performed

genomic sequencing. Genomic DNA was prepared from 100 ORw1118 adult female flies for

each biological replicate (three biological replicates in total) with Gentra Puregene Cell kit

(Qiagen cat#158388) according to the manufacturer’s instructions. Whole-genome sequencing

was done with overlapping 165bp pair-end Illumina sequencing on 230-240bp size genomic

fragments.

We combined all three replicates of ORw1118 genomic sequencing to call TEs and quality

filtered reads with Trim_galore. We identified TEs in ORw1118 also using TIDAL [88], which

calls TEs with split-read methods and requires input reads to have the same length. Accord-

ingly, we used two approaches to generate single-end reads from the original pair-end data (1)

treating pair-end reads as single-end and (2) use SeqPrep (https://github.com/jstjohn/

SeqPrep) to merge overlapping reads and trimmed reads to 200bp. We used the same TIDAL

parameters (default) and coverage ratio (at least three) as those used in calling TEs in wildtype

PLOS GENETICS Hierarchical organization of heterochromatin domains and their 3D contacts with the euchromatic genome

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008673 March 23, 2020 15 / 27

https://genome.ucsc.edu/
https://github.com/jstjohn/SeqPrep
https://github.com/jstjohn/SeqPrep
https://doi.org/10.1371/journal.pgen.1008673


strains [88]. 249 called TEs overlap between the two approaches (89.2% and 89.9% of the called

TEs, respectively). We further removed TEs in shared H3K9me2-enriched euchromatic

regions of wildtype strains (see above) or shared with wildtype strains, with the idea that local

enrichment of H3K9me2 in ORw1118 cannot be unambiguously attributed to the presence of

TE insertions. In total, 166 euchromatic TEs in ORw1118 were identified with these criteria.

To identify TE-induced local enrichment of H3K9me2, we used methods described in [35],

which leverages between strain differences to identify TE-induced H3K9me2 enrichment regions

with any shape, which oftentimes do not resemble peaks (e.g., S9 Fig). This approach is more sen-

sitive than other custom pipelines, which look for enrichment with “peak” shape, followed by ad
hocmerging of sharp peaks to generate “broad peak” calls (reviewed in [55,56]). We compared

the enrichment of H3K9me2 in euchromatic TE neighborhoods in ORw1118 against wildtypes

strains to estimate (1) the extent of TE-induced H3K9me2 enrichment (in kb) and (2) % of

increase of H3K9me2 enrichment. We identified 106 ORw1118 TEs leading to at least 1kb spread

of H3K9me2, with only 13 of them overlap with H3K9me2 enriched regions identified by Macs2.

We used the same approach as in [35] to estimate the population frequencies of ORw1118

TEs in an African population [60]. Similar to previously reported low population frequencies

of TEs in Drosophila [52–54], only 36.36% of the 106 euchromatic TEs that induced H3K9me2

enrichment are present in a large African population [60] (i.e., 63.64% of those TEs are unique

to ORw1118). This generally low population frequency of TEs is expected to limit the statistical

power of comparison between TEs with and without PCH interactions. Indeed, we found that

the median population frequencies for both TEs with and without PCH interactions are zero

and not significantly different (Mann-Whitney U test, p = 0.10). Accordingly, we instead inves-

tigated whether the mean of their population frequencies differs (see main text).

Analysis of Hi-C data

Raw Hi-C reads (two biological replicates) of 16-18hr embryos of ORw1118 from [38] were

downloaded from GEO and quality filtered with trim_galore. TEs are abundant in both

euchromatin and heterochromatin in Drosophila [37,97], and we were unable to unambigu-

ously define which genomic compartment a TE-mapping read is from. Accordingly, we fil-

tered reads that mapped to canonical TEs using bwa [98] and samtools [94]. Because simple

and complex repeats posed serious challenges for genome assembly and are usually not

included, filtered reads were then mapped to release 6 D. melanogaster reference genome (to

identify “unique” and “multi” reads) or a list of known heterochromatic repeats (to identify

“repeat” reads) using bwa with default parameters. Three types of reads are defined as from

heterochromatin. (1) “unique” reads: reads that uniquely mapped (mapping quality at least 30)

within epigenetically defined PCH regions in the assembled reference genome. (2) “repeat”

reads: reads mapped to known heterochromatic repeats (S1 Table). (3) “multi” reads: reads

that mapped to epigenetically defined PCH in the assembled reference genome but have map-

ping quality equals zero, which bwa assigns to multiple-mapped reads. Mapping locations of

unique PCH reads are recorded and used for both PCH-PCH and PCH-EU analysis. The

other two types of PCH reads were only used for PCH-EU analysis and their mapping loca-

tions, which are multiple in the genome, are not used. All the reads parsing were done with

samtools. S1 Fig shows the flow chart for the filtering, mapping, and identification of PCH Hi-

C reads, and the number of reads at each step. Genome-wide contact maps for both PCH and

euchromatic regions (S4 Fig) were generated using HOMER with simple normalization [99].

Spatial interaction between PCH regions. Hi-C read pairs whose both ends mapped

uniquely to epigenetically defined PCH were included in the analysis. Read pairs whose map-

ping locations are within 10kb to each other were removed, as our analysis focuses on long-
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range spatial interactions. We performed three sequential analyses (all read pairs, excluding

intra-arm read pairs, excluding intra-chromosome read pairs) to identify three types of

PCH-PCH interactions: within arm, within chromosome between arms (e.g., 2L-2R, 3L-3R),

and between chromosomes. It is worth noting that not enough sequences have been assembled

on the short arms of X, Y and 4th chromosomes, thus precluding within chromosome, between

arms analysis for these chromosomes. A theoretical percentage of each pairwise interaction

among PCH regions on different chromosomes was estimated based on a mappability track of

D. melanogaster Release 6 genome, which was generated using GEM mappability tool (using

read length 50 and other default parameters, [40]). We then counted the number of bases with

mappability one (i.e., can be unambiguously mapped in the genome) in the PCH regions of

each chromosome. Expected percentage of each pairwise interaction was also estimated empiri-

cally from the percentage of reads mapping uniquely to the PCH on each chromosome arm,

ignoring read pair information. Because the Hi-C data were generated using unsexed embryos,

we assumed equal sex ratio when estimating expectations. To assess whether the observed per-

centage is more than the empirical expectation, we randomly permuted 10,000 times read pair

labels, generated an empirical distribution of the percentage, and calculated one-sided p-values.
Spatial interaction between euchromatic regions and heterochromatin. We used sam-

tools to parse out read pairs whose one end mapped uniquely (with mapping quality at least

30) within the focused euchromatin regions and estimated the percentage of PCH reads at the

other end. All three categories of heterochromatic reads were included. Regions with less than

1,000 Hi-C read pairs were excluded from the analysis. We found strong correlations between

replicates for both the percentage of euchromatin-PCH reads and the associated p-values (see

below) for H3K9me2-enriched regions and TEs (Spearman rank ρ> 88%, p< 10−16, S17 and

S18 Figs). To assess whether the percentage of euchromatin-PCH read pairs is significant, we

randomly selected euchromatic regions without H3K9me2 enrichment, performed the same

analysis to get a null distribution of the percentage, and estimated the p-values. We simulated

200 sets of non-H3K9me2 enriched random euchromatic regions that are of the same sample

size, on the same chromosome and, for H3K9me2 enriched regions, of the same size as the

focused set. This was done separately for H3K9me2 enriched regions and TEs and separately

for the two replicates. Because of the tendency of within chromosome interactions (see main

text) and the difference in the PCH sizes among chromosomes [36,37], the percentage of

euchromatin-PCH read pairs varies between randomly selected regions on different chromo-

somes (S19 Fig). Also, smaller euchromatic regions have fewer Hi-C read pairs included in the

analysis, which translates into smaller sample size and thus larger variance of the estimated

percentage (S20 Fig), leading to the estimates more likely to hit the boundary condition (i.e.,

no euchromatin-PCH read pairs, S20 Fig, red circles). Accordingly, for each euchromatic

region, the p-value is estimated using random regions that are on the same chromosome and

of the same size quantile. For H3K9me2-enriched euchromatic regions, we used +/-1kb of the

enriched region as the defined window. Because, unlike H3K9me2 enriched regions, euchro-

matic TEs were identified as a small interval with possible insertions within [88], we used +/-

2kb of the TE insertion site/interval as the defined window.

Generation of FISH probes

Heterochromatic repeat probes. LNA probes [100] targeting AAGAG (bulk heterochro-

matin), AACAC (2R PCH), dodeca (3R PCH), AATAT (4th and Y), and AATAGAC (Y) were

ordered from Integrated DNA Technologies (IDT).

Oligopaint FISH probes. We designed Oligopaint probes that target single copy genome

regions, following [45,101]. Each targeted euchromatic region has at least 500 probes designed
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to label it, with at least 12 probes/kb (S5 Table). For euchromatic TEs, designed Oligopaint

probes target the “flanking” unique sequences instead of the TE itself. Within the total oligo

library, each pool of probes targeting a genomic region was designed with an appended spe-

cific barcode (https://github.com/gnir/OligoLego, [102]), and an additional Universal barcode

that were appended to the very 5’ and 3’ ends, both were used for PCR amplification of the spe-

cific/total library. Primary Oligopaint libraries were ordered from CustomArray (Bothell,

WA), and amplified and synthesized into Oligopaint probes following [47]. To label specific

subsets of oligos within the library, complementary "bridge" oligos were hybridized against

their barcode, followed by hybridization with fluorophore-labeled secondary oligos comple-

mentary to an overhang of the bridge oligo. Bridge oligos and fluorescence-labeled secondary

Oligopaint probe were ordered from IDT.

Embryo collections, treatments, and fixations

Embryo collections. Flies laid eggs on fresh apple juice plate for 1hr (pre-lay), followed by

2hr egg-laying on new apple juice plates. Collected embryos were incubated at 25˚C for 16hr

to harvest 16-18hr embryos, which were then fixed immediately.

Embryo permeabilization and 1,6-hexanediol treatment. To allow effective permeabili-

zation of 16-18hr late stage embryos for 1,6-hexanediol treatment, 0-2hr embryos were incu-

bated at 18˚C for 32hr, which equals to 16hr development at 25˚C [103]. Embryos were

dechorionated in 50% bleach for 90s, washed with water for 1 min, and treated with EPS, a d-

limonene based solvent with low toxicity [103,104], for 2 min. Permeabilized embryos were

either fixed immediately or incubated in 10% 1,6-hexanediol (dissolved in PBS) for 4 min, fol-

lowed by a quick wash with PBS and fixed immediately.

Fixation of embryos. 16-18hr embryos (without treatment) were dechorionated in 50%

bleach for 90s, washed with water for 1 min. Dechorionated embryos, embryos with EPS treat-

ment, or embryos with EPS and 1,6-hexanediol treatments were transferred to biphasic fixa-

tion solution with 4% formaldehyde (1.2mL Heptane, 75μL 16% formaldehyde, and 225 μL

PBS), and shake for 20 min at room temperature. Embryos were then transferred to tubes with

biphasic solution of equal volume of heptane and methanol, followed by vigorous shaking for

30-45s to crack the embryos, three washed with methanol, and stored in -20˚C in methanol.

FISH

Repeat probes. Embryos (stored in methanol) were rehydrated sequentially into PBT

(1xPBS, 0.1% Tween-20), incubated with 100 μg/mL RNAseA in PBT for two hours at room

temperature, washed twice with PBT, post-fixed with 4% formaldehyde in PBT for 20min,

washed three times with PBT, and then sequentially transitioned into hybridization buffer

(50% formamide, 5x SSC, 100 μg/mL Heparin, 100 μg/mL sheared salmon sperm DNA, and

0.1% Tween-20). Before hybridization, embryos were incubated with pre-hybridization solu-

tion (hybridization buffer boiled at 100˚C for 5 min, chilled on ice) at 56˚C for at least two

hours. Embryos were then incubated with 25 ng/μL of LNA repeat probes (denatured at 70˚C

for 3 min) at 80˚C for 15 min and then 37˚C with shaking overnight. For FISH with AATAT

probe, embryos were incubated at 37˚C for three hours, then 25˚C overnight. Embryos were

washed with hybridization buffer twice at 37/25˚C, followed by a sequential transition into

PBT, two PBT washes at room temperature, DAPI staining, two PBS washes, resuspended in

Prolong Gold Antifade (Life Technologies), and mounted on slides.

We used AATAT to mark 4th chromosome heterochromatin. Because this repeat is also

abundant on the Y [41], embryos were also stained with Y-specific repeat, AATAGAC, and

only female embryos were analyzed for PCH-PCH FISH analysis.

PLOS GENETICS Hierarchical organization of heterochromatin domains and their 3D contacts with the euchromatic genome

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008673 March 23, 2020 18 / 27

https://github.com/gnir/OligoLego
https://doi.org/10.1371/journal.pgen.1008673


Oligopaint probes and AAGAG probe. Embryo FISH with both Oligopaint and

AAGAG (for bulk heterochromatin) LNA probe followed [105], except for staining nuclei

with DAPI and resuspension in Prolong Gold Antifade (Life Technologies).

Imaging and data analysis

Single optical sections of 16-18hr embryos were collected on Zeiss LSM710 confocal fluores-

cence microscope, using a 1.4NA 63X oil objective (Zeiss), and analyzed manually in Fiji

[106]. Distances between centers of FISH signals were measured using Fiji linetool in a single

optical section. Only nuclei with FISH signals for both probes visible in an optical section were

included in the analysis. There are usually one or two chromocenters in Drosophila nuclei,

which is reflected in the number of AAGAG foci. For FISH using Oligopaint and AAGAG

probes, when there is more than one AAGAG focus, the distance was measured between the

Oligopaint focus and the nearest AAGAG focus. Because there is no difference between test

and control groups in the number of AAGAG foci (% of nuclei with two AAGAG foci:

ORw1118 (25%) vs. wildtype (22.9%), Fisher’s Exact test p = 0.82; EPS treatment (14.6%) vs.

EPS+1,6-hexanediol treatment (13.6%), Fisher’s Exact test p = 1), no biases should arise due to

the presence of multiple AAGAG foci. We investigated whether the nuclear volume changed

upon 1,6-hexanediol treatment by measuring the radii of the DAPI region in optical sections.

Although no changes in nuclear volume were observed upon 1,6-hexanediol treatment (S12

Fig), we also performed analysis using “relative distance” between foci, which is the absolute

3D distance divided by the radius of the DAPI region, and observed the same results (S11 Fig).

At least 70 nuclei were counted for each treatment/genotype.

Supporting information

S1 Fig. Flow chart for identification of PCH Hi-C reads

(TIFF)

S2 Fig. Heatmap for the number of Hi-C read pairs supporting the spatial interactions

between pairs of 100kb PCH windows for Hi-C replicate 2. Note that only the PCH regions

are shown.

(TIFF)

S3 Fig. Circular plots showing inter-arm and inter-chromosomal interactions. Circular

plot showing inter-arm and inter-chromosomal interactions supported by 95, 99, and 99.9 per-

centile of Hi-C reads. Average mappability of each window is shown in the inner track.

(TIFF)

S4 Fig. Genome-wide normalized contact map of replicate 1 (left) and replicate 2 (right).

Both unique euchromatic and PCH regions are shown. Blue bars are PCH regions while gray

bars are euchromatic regions. Centromeres are denoted as triangles. Each element in the

matrix represents the log ratio between the number of observed contact (Hi-C read pairs) and

the number of expected contacts under the assumption that each 500kb window would have

equal number of total interactions across the genome. The number of observed contacts

involving Y chromosome is too low for proper normalization and thus excluded from repre-

sentation in the figure. Note that this normalization may be biased against interactions involv-

ing PCH regions (EU-PCH and PCH-PCH) because much fewer reads uniquely mapped to

PCH regions than euchromatic regions.

(TIFF)
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S5 Fig. Boxplot for the linear distance between H3K9me2 islands and PCH. H3K9me2-en-

riched with and without PCH interactions are in green and gray respectively.

(TIFF)

S6 Fig. Percentage of uniquely mapped heterochromatic Hi-C reads coming from a partic-

ular chromosome for euchromatic regions on different chromosomes. Data for replicate 2

is shown.

(TIFF)

S7 Fig. H3K9me2 enrichment level for euchromatic regions chosen for FISH analysis.

There is H3K9me2 enrichment in both ORw1118 and wildtype strains for EU1-3, but none for

control regions c.EU1-3. The fourth tracks (below RAL360, blue) are broad peaks called by

Macs2 in ORw1118.

(TIFF)

S8 Fig. Representative FISH images for chosen euchromatic regions and PCH.

(TIFF)

S9 Fig. H3K9me2 enrichment level in euchromatic TE neighborhood. Strain-specific

H3K9me2 enrichment was observed for TE1 and TE2. Third track (one below RAL315, green)

shows the insertion position of TEs in ORw1118 identified by TIDAL.

(TIFF)

S10 Fig. Genomic distribution of TEs with and without PCH interactions. (A) The extent

of local H3K9me2 enrichment at TEs is shown on the y-axis for TEs with (green) and without

(gray) local H3K9me2 enrichment, and with (dark green) and without (light green) PCH inter-

action. (B) The linear distance between PCH and TEs with (dark green) and without (light

green) PCH interactions are shown in boxplots.

(TIFF)

S11 Fig. FISH validation for the influence of 1,6-hexanediol on the spatial associations

between euchromatic TE and PCH using relative distance. (A) Representative FISH images

for permeabilized embryos (EPS) and permeabilized embryos with 1,6-hexanediol treatment

(EPS+HD). (B) Boxplot and (C) histogram showing the relative distance between TE1 and

PCH. Comparisons of the distance between pairs of foci were tested with Mann-Whitney test
(p-values in (A)) and Fisher’s exact test (for proportion of overlapping foci, p-values = 0.02

(ORw, EPS vs. EPS+HD), 1 (WT, EPS vs. EPS+HD), 0.057 (ESP treatment, ORw vs. WT), 0.55

(HD treatment, ORw vs. WT)). Threshold for nuclei with overlapping foci is denoted with a

dashed line.

(TIFF)

S12 Fig. Nuclear size of embryos with and without 1,6-hexanediol treatment. EPS: permea-

bilized embryos; EPS+HD: permeabilized embryos with 1,6-hexanediol treatments.

(TIFF)

S13 Fig. Extent and magnitude of H3K9me2 enrichment of TEs with and without PCH

interactions.

(TIFF)

S14 Fig. IDR plots for ORw1118.

(TIF)

S15 Fig. IDR plots for RAL315.

(TIF)
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S16 Fig. IDR plots for RAL360.

(TIF)

S17 Fig. X-Y plots for the estimated proportion of euchromatin-PCH reads, and the asso-

ciated p-values, between Hi-C replicates for H3K9me2-enriched regions. ���p< 0.001.

(TIFF)

S18 Fig. X-Y plots for the estimated proportion of euchromatin-PCH reads, and the asso-

ciated p-values, between Hi-C replicates for euchromatic TEs. ���p< 0.001.

(TIFF)

S19 Fig. Distribution of the estimated euchromatin-PCH read pairs for random regions

on different chromosomes.
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S20 Fig. Distribution of the estimated euchromatin-PCH read pairs for random regions of

different size.
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