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Box-covering algorithm is a widely used method to measure the fractal dimension of complex networks.
Existing researches mainly deal with the fractal dimension of unweighted networks. Here, the classical box
covering algorithm is modified to deal with the fractal dimension of weighted networks. Box size length is
obtained by accumulating the distance between two nodes connected directly and graph-coloring algorithm
is based on the node strength. The proposed method is applied to calculate the fractal dimensions of the
“Sierpinski” weighted fractal networks, the E.coli network, the Scientific collaboration network, the
C.elegans network and the USAir97 network. Our results show that the proposed method is efficient when
dealing with the fractal dimension problem of complex networks. We find that the fractal property is
influenced by the edge-weight in weighted networks. The possible variation of fractal dimension due to
changes in edge-weights of weighted networks is also discussed.

omplex networks have attracted growing interest in various fields of science since they can be used to

describe the structure and physical properties of many real complex systems' . The small-world® and the

scale-free” have been shown as two fundamental properties of complex networks. Recently, fractal and
self-similarity properties of complex networks have attracted much attention, since Song et al. found that a variety
of real complex networks exist self-similarity property®. Especially, the box-covering algorithm is applied to
calculate the fractal dimension of many real networks’.

Though the box-covering algorithm for the complex networks is extensively studied by researchers'®', exist-
ing works mainly focus on dealing with the fractal dimension of unweighted networks. In the traditional box-
covering algorithm for complex networks (BCAN), a box size is given in terms of the network distance, which
corresponds to the number of edges on the shortest path between two nodes. This means the sizes of these boxed
are the integers from 1 to the size of the network. However, the values of edge-weights in weighted networks could
be any real numbers excluding zero. For weighted networks, enough numbers of boxes are not been obtained by
BCAN. Even the number of box is always one when the size of the weighted network less than one. Thus, using the
BCAN to calculate the accurate fractal dimension of weighted networks is unfeasible. Actually, many real-world
networks are weighted ones'®*'. Some definitions in unweighted networks are extended to weighted net-
works**, and some relevant properties and methods of weighted networks are proposed***’. We believe that
the fractal property of weighted networks can be revealed* . In this paper, an improved box-covering algorithm
for weighted networks (BCANw) is proposed.

In what follows, we describe the proposed methodology, depict the diversity between BCAN and BCANw,
calculate fractal dimension of weighed fractal model such as the “Sierpinski” weighted fractal networks, and apply
BCANw to analysis the fractal properties of some real weighted networks.

10-15

Results

BCANw for unweighted networks. For unweighted network, both BCANw and BCAN are the same method.
The fractal dimension of unweighted networks by using the BCANw is same as that by using the BCAN. For
example, a unweighted network such as the E.coli network with 2859 proteins and 6890 interactions is
considered”. The correlations between box size (I3) and number of box (Ng) by using BCAN and BCANw are
shown in Figure (1). By means of the least square, the fractal dimension of the E.coli network is obtained as
follows
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Figure 1| Fractal scaling analysis of the E.coli network. Symbols refer to: + and * indicate the relationship between minimal number of box and box size
by using BCAN and by using BCANw, respectively. By means of the least square fit, the reference line has slope —3.351, i.e. dg = dg(w) = 3.351.

dB(W) =d3 =3351,

where dp(w) and dp represent the fractal dimension of complex
network by using BCANw and BCAN, respectively.

From Figure (1), the result of BCANw is same as the result of
BCAN. The fractal dimension of this network are 3.45 * 0.10 and
3.50in the Ref. 15 and Ref. 9 respectively. Our results almost matched
the results given in Refs. 9, 15

BCANw for weighted networks. To further check the validity of our
algorithm, we first apply our method to the “Sierpinski” weighted
fractal networks in Figure (2)**.

The weighted fractal networks are built by Iterated Function
Systems®, IFS for short, whose Hausdorff dimension is completely
characterized by two main parameters, the number of copies s > 1

G1 GZ

and the scaling factor 0 < f <1 of the IFS. In Figure (2), the fractal
dimension of the weighted fractal network is called similarity dimen-
sion, and given as follows*®

logs
— ~1.5850.

&
logf
In general, the edge-weights of G; equal to one in Figure (2). The
“Sierpinski” weighted fractal network G, with 3280 nodes and 3279
edges is considered. The edge-weights of G, are equal to 1, 1/2, 1/4, 1/
8,1/16, 1/32 and 1/64, respectively. The diameter of G is less than 4.
Thus, numbers of boxes are 10, 3, 3 and 1 when the boxes sizes are 1,
2, 3 and 4 respectively by using the BCAN. In this case, the accurate
fractal dimension of G is not obtained because there are so few valid
statistical cases. More dots are given by using BCANw. Fractal scaling
analysis of G is shown in Figure (3).

dfract =

Gs

Figure 2 | The “Sierpinski” weighted fractal networks, s = 3, f= 1/2. From the left to the right G,, G, and G;. G, is composed by 4 nodes and 3 edges, G,
and G; are built by IFS once and twice, respectively. The thicker line, the larger weight. The fractal dimension of the “Sierpinski” weighted fractal networks

is log3/log2 ~ 1.5850.
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From Figure (3), by means of the least square fit, the reference line
has slope —1.4489, i.e. the fractal dimension of G, is 1.4489. The
result of our method is closer to the similarity dimension of the
“Sierpinski” weighted fractal networks in Ref. 28.

In the “Sierpinski” weighted fractal networks, the edge-weight is
only a number without obvious physical meaning. Thus, the shortest
path is the measure of finding a path between two nodes such that the
sum of values of its edge-weights is minimized**. In real weighted
networks, however, we can face two opposite cases. The first case
appears in this way: the higher edge-weight is, the further distance is.
For instances, the edge-weight is represented by Euclidean distance
between two cities in real city network and the edge-weight is only a
number without physical meaning in the “Sierpinski” weighted frac-
tal networks. The other case is reversed. The bigger edge-weight is,
the less distance is. For instance, the edge-weight corresponds to the
number of seats available on the scheduled flights in the airline
network. Thus, for weighted networks, the shortest path between
node i and node j is denoted by d;;, and defined as follows

(1)

where w;; is the edge-weight between nodes i and j connected directly,
jm(m=1,2,---) are IDs of nodes, and p is a real number. The higher
weight is, the further distance is (p > 0). The higher weight is, the less
distance is (p < 0). Especially, the definition is same as the definition
of shortest path in the unweighted network® if p equal to zero. In this
section, collaboration network such as the Scientific collaboration
network®, biological networks such as the C.elegans network®, and
information network such as the USAir97 network (http://vlado.fmf.
unilj.si/pub/networks/data/), are considered.

The edge-weight of the Scientific collaboration network with 1589
nodes and 2742 edges, is given as follows™

— 1 p p
d;j = min (Wij, +wi,

cogw? P
oW +W]m]>,

where 7y is number of co-author of the kth paper (excluding single
authored papers), (5:-‘ is defined as 1 when the ith scientist is one of the
co-author of the kth paper, and 0 otherwise. The values of edge-
weights are various, such as 0.0526316, 0.1111, 1.5333, 1, etc. If
two persons share many papers, the weight is higher, the distance
is less. Thus, p should be a negative number in Equation (1). For
instance, the value of p equals to — 1 in Ref. 23 The unweighted (i.e. all
edge-weights equal to one) and the weighted network of Scientific
collaboration network are considered. Fractal scaling analysis of
these networks is shown in a) of Figure (4). From a) of Figure (4),
the fractal dimension of unweighted Scientific collaboration network
is less than the fractal dimension of weighted Scientific collaboration
network. The fractal dimension of unweighted Scientific collabora-
tion network and the weighted Scientific collaboration network using
BCAw are 0.173 and 0.376 respectively. The value of fractal dimen-
sion respond to changes in edge-weight. In weighted Scientific col-
laboration network, the fractal dimension by using BCAN is almost
consistent with the fractal dimension by using BCANw.

For the C.elegans network with 306 nodes and 2148 edges, the
edge-weights are the numbers of synapses and gap junctions®. The
higher weight is, the less distance is. The shortest path is obtained
by Equation (1) when p < 0. Fractal scaling analysis of the
C.elegans network is shown in b) of Figure (4). From b) of
Figure (4), the dots of the relationship between minimal number
of box and box size are too little to have statistical power using
BCAN. It indicates that is unfeasible using the BCAN to calculate
the accurate fractal dimension of this network. The more numbers
of it are obtained by BCANw, and the fractal dimension of
weighted C.elegans is 0.785. And that, the fractal scaling law of
unweighted C.elegans network is obvious, and the fractal dimen-
sion of unweighted C.elegans network is 1.704. The fractal dimen-
sion of unweighted C.elegans network is more than the fractal
dimension of weighted C.elegans network network. It is different
with the Scientific collaboration network.

k sk
Wy = Z o; (Sj (2) For the USAir97 network (network of direct flight connec-
! T n—1 tions between US airports) with 332 nodes and 2126 edges, the
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Figure 3 | Fractal scaling analysis of the finite approximation G, with 3280 nodes and 3279 edges of the “Sierpinski” weighted fractal networks.
Symbols refer to: * and + indicate the relationship between number of box and box size by using BCAN and by using BCANw, respectively. By means of

the least square fit, the reference line has slope —1.4489.
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Figure 4 | Fractal scaling analysis of real weighted networks. Fractal scaling analysis of the Scientific collaboration network, the C.elegans network
and the USAir97 network are shown in (a), (b) and (c) respectively. Symbols refer to: + and * indicate the relationship between minimal number of box
and box size by using BCAN and by using BCANw respectively; . indicates the the relationship between minimal number of box and box size of

unweighted network, i. e., p = 0.

edge-weight corresponds to the number of seats available on the
scheduled flights(in million/year). The shortest path is obtained by
Equation (1) when p < 0. Fractal scaling analysis of the USAir97
network is shown in c) of Figure (4). The minimum box number is
always one because the diameter of the weighted USAir97 network is
0.97 by using BCAN. Thus, the BCAN is useless for the weighted
USAIir97 network. However, from c) of Figure (4), the number of
minimum box is 119 by using BCANw. The fractal dimension of the
unweighted USAir97 network and weighted USAir97 network are
3.09 and 1.075 respectively. The fractal dimension of the unweighted
USAir97 network is more than the weighted USAir97 network.

From what have been studied above, the fractal phenomena of
weighted network even is not found such as the weighted USAir97
network by using BCAN. Nevertheless, fractal property of this net-
work is revealed by using BCANw. In a word, BCANw method is
better suited than BCAN method for fractal scaling analysis of
weighted networks. And that the fractal dimension is influenced by
the edge-weight of weighted network. The fractal dimension of
unweighted case is more than the fractal dimension of weighted case
for the C.elegans network and USAir97 network. It is the opposite
way for the Scientific collaboration network.

Fractal dimension and edge-weight for weighted networks. In
unweighted networks, the fractal dimension is determined only by
the topology of network. However, in weighted networks, the fractal
dimension is affected by edge-weight except the topology of weighted
network. In the section, the relationship between fractal dimension
and edge-weight of these real weighted networks are discussed. Some
interest results are found when relationships between values of
fractal dimension and values of p are considered. The fractal
dimensions of different values of p are computed and shown in
Figure (5) for these real weighted networks.

Let dp(w;)(px) represents the value of fractal dimension when p =
prand w = w;, we have 0 < |dg(w;)(pr) — dp(w))(—pp)| < 0.2. Tt
includes two meanings: on the one hand, fractal dimension has no

strictly equal value when p is negated; On the other hand, the values
of fractal dimensions are almost symmetric about the vertical, about
zero. From Figure (5), the special values of fractal dimensions of p =
0 are always obtained, which illustrates the fractal character have
different between unweighted network and weighted network for
given topology. The C.elegans network and the USAir97 network
have large variations of fractal dimension in three networks. The
value of fractal dimension decreases with increasing the absolute
value of p in the C.elegans network and the USAir97 network.
However, the difference is not significant in the Scientific collabora-
tion network. And that, the value of fractal dimension increase with
increasing the absolute value of p € (—1, 1) in the Scientific collab-
oration network. To determine the effects of edge-weights on fractal
of weighted networks, the C.elegans network and the USAir97 net-
work with variation edge-weight are considered. For the USAir97
network, two cases are considered. One is the value of edge-weights’
distributions is uniformed (u(0,1)), denoted as w(u). The other is the
value of edge-weights times ten based on w(u), denoted as w(u).
These relationships between dg(w) and p are shown in a) of
Figure (6). For the C.elegans network, the raw edge-weights times
ten, denoted as w/, is considered. The relationships between dp(w)
and p are shown in b) of Figure (6).

From Figure (6), the values of fractal dimensions are almost sym-
metric about the vertical, about zero although distributions of edge-
weights are different. And that, the values of fractal dimensions are
changed although the values of edge-weights magnified same times.
Why are the fractal dimensions almost symmetric for weighted net-
works? In Ref. 36, the metastrengths defined by s;(q) = zj: WZ, where

q is a real number. The distribution function of metastrengths is
almost symmetric about value of p**. By analogy, the distribution
of edge-weights of weighted networks is consider in these real net-
works. The number of w; is denoted by m(w;). We have m(w;) =
m(w/), i.e. the number of w; is not changed with different values of p.

The probability of edge-weights is given for any p as follows
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Figure 6 | The effects of edge-weights on fractal of weighted networks. (a): For the USAir97 network, the value of edge-weights’ distributions are
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fractal dimension and p of raw date, w(u) and w(u'), respectively. (b)For the C.elegans network, the value of edge-weights times ten based on raw date,
denoted as w'. Symbols refer to: . and + indicate the relationship between the fractal dimension and p of raw date and W', respectively.
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p(w)=p(w"),

where p(w; F *) represent the probability of edge-weight with wlk,
And that, the edge-weights are broken symmetry with the values of
p are opposite. For instance, the minimum values will change as the
maximum values when the values of p are opposite. Thus, the dis-
tribution of edge-weights of weighted networks is symmetric about p
with opposite values. The symmetry variation of edge-weights is the
major causes of symmetry variation of fractal dimension. However,
the fractal dimension has no strictly equal values when p is negated.
In fact, the fractal dimension is affected by other variations too. For
instance, the shortest paths have many variations with p changing. In
unweighted network, the shortest path between any two nodes are
determined only by topology of network. However, in weighted net-
work, the shortest path is affected by edge-weights between two
nodes except topology of weighted network. In Equation (1), the
shortest path is determined by the value of p. The change of the
shortest path has no regulation based on the non-linear change of
edge-weight. Two examples are given and shown in Figure (7).

From Figure (7), the shortest path may be changed when the
weight edge is changed. The shortest path is always same path
whether p = 2 or p = —2 in a) of Figure (7). However, the shortest
path is changed between p = 2 and p = —2 from b) of Figure (7). The
shortest paths have different variation in a weighted networks when p
has opposite values. In word, the change of the shortest path is
complicated for weighted networks. Thus, the fractal dimension
has no strictly equal values although p is negated.

Discussion

The fractal characteristics of unweighted networks are studied
recently, their fractal dimensions are usually computed by using
BCAN method. However, BCAN is not applicable for weighted net-
works. In this paper, BCANw is generalized for weighted networks.
The most important difference between the BCAN and BCANw is
that the initial box size is not one and not increased by one in the
BCANw. In BCANw, the box size is obtained by accumulating the
value of distance between two nodes connected directly. It can
directly calculate the fractal dimension of weighted networks, and
more corresponding points between box size and number are
obtained. In order to avoided random selection processes, the order

<§ o

The shortest path:ACB

\‘/ \60\\9 of@x
), o~
@ C N %:

The shortest path: @
7 N
5 Y

ACB and ADB

The shortest path:ACB

of graph-coloring algorithm is obtained by descending order accord-
ing to the node strength in BCANw method. The computational
results of real networks and the “Sierpinski” weighted fractal net-
works show that the proposed method is efficient and flexible.

The fractal dimensions of weighted network is determined by
topology and edge-weight of weighted network. The fractal dimen-
sion depends strongly on the definition of the metrics based on the
weight. Our present work shows edge-weights can change the value
of the fractal dimension. For weighted networks, edge-weight can be
divided into two classes: the higher weights is, the further distance is;
the higher weights is, the less distance is. Thus, distances between
any two nodes is proposed by Equation (1). The two aspects of
relationship between weights and distance are represented by pos-
itive and negative number, respectively. A non-line relationship
between the shortest path and the edge-weight are obtained by
Equation (1). The influence of fractal dimension based on the chan-
ging of edge-weight is different for different network. However, our
results show the fractal dimensions of these real weighted networks
have almost symmetry.

Methods
For given complex network G = (N, V) and N=(1,2,---n), V=(1,2,---,m),
where 7 is the total number of nodes, and m is the total number of edges. G is
defined as unweighted network when the cell x;(i,j=1,2,---,n) of edge is defined
as 1 if node i is connected to node j, and 0 otherwise. G is defined as weighted
network if values of edge-weights (w;;) could be any real numbers excluding zero if
node i is connected to node j, and 0 otherwise’>*’. Degree has generally been
extended to the sum of weights when analyzing weighted networks and this
measure has been defined as follows

DERINITION 0.1.%* [node strength] Denoting s; as the strength of node i, which satisfies

n
Si= E Wij
J

where i is the focal node, and j represents all other nodes.

The shortest path is the measure of finding a path between two nodes in complex
network such that the sum of values of its edges is minimized*. For unweighted
networks, the shortest path is defined as follows

DEFINITION 0.2.%* [the shortest path in the unweighted networks] Denoting d;; as the
shortest path of between node i and node j, which satisfies

®3)

dyj= min(xj, +x;,), + - X, +X,7)

(4)

For weighted networks, the shortest path is defined as Equation (1) (p = 1).

@ >

The shortest path:ADB

b)

//
2/ e
The shortest path: ADB i

The shortest path:ACB

&3/

Figure 7 | The shortest path is changed with value of p. (a) The shortest path between node A and B is path ACB or path ADB in left map
(p = 1 in Equation (1)). The shortest path is changed as path ACB when p = 2 or p = —2. (b) The shortest path between node A and B is path ADB
in the original map. The shortest path is not changed when the obtained weight edges square value are represented as weight edges (i.e., p = 2). However,

the shortest path is changed as path ACB when p = —2.
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Figure 8 | Idea of the BCANw. (a) A weighted network W; with 6 nodes and 6 edges. The shortest path of W; is given by equation 1(p = 1). (b) A
weighted W, is obtained when node i is connected to node j with d}j >0.85 in W). (c) Graph-coloring algorithm bases on the strength of nodes for W,.
Assigning color of nodes 3-5 is same as color of node 2 because the strength of node 2 is maximum. (d) As one color for one box, the minimum number of

box of W is obtained, and is three.

Question of BCAN for weighted networks. Weighted networks have different edge-
weights, which can be non-integers. Thus, the shortest path may be non-integers too.
It is possible that the maximum of shortest path is less than one. In this case, the
minimum number of boxes is obviously always one. For example, the weighted
network W is considered and shown in a) of Figure (8).

Suppose p = 1 in Equation (1), values of the shortest path of the network W are
obtained. We have, max(d;;) = 0.95 < 1.In this case, the minimum number of box is a
constant for any g = 1 in BCAN method. The fractal dimension of W, can not be
obtained. There is an easy and simple way that the values of edge-weights multiply by
a same constant so that the edge-weights can always be integral numbers when the
maximum distance between two nodes is less than one. Unfortunately, based on the
edge-weights of originality and computational complexity, increasing the edge-
weights is inappropriate in that way. The chief reason is that the fractal dimension will
change with edge-weights times a constant. For instance, this case is shown in
Figure (6). And that, the edge-weights of a real network are defined according to their
practical implications.

BCANw method. In BCANw method, values of the box size neither increase by one
in turn nor the initial value equals one and they are obtained by accumulating the
value of distance until the value is more than the value of mux(dij) (ij=1,2,---,n).
For example, in the network W, the value of I is obtained from 0.05, 0.05 + 0.1 =
0.15,0.15 + 0.3 = 0.45,0.45 + 0.4 = 0.85 until 0.85 + 0.5 = 1.35 > 0.95. Idea of the
BCANw is shown in Figure (8). Let [z = 0.85 in the network W, a new weighted
network W is obtained when node i is connected to node j with djf >0.85 in network
W), and shown in b) of Figure (8). For the modified BCAN method, graph-coloring
algorithm is based on the degree of nodes in Ref. 13 Similarly, graph coloring is based
on the strength of node for weighted networks. Using Equation (3), the nodes strength
of W, are obtained. We have

8§, >81>8>8=8,=35s.

According to the rules of graph-coloring algorithm, nodes 1, 2 and 6 have different
colors, and the color of nodes 3-5 is same, and it is randomly the same as one of nodes
1, 2 and 6. In our method, the order of graph coloring is given by descending order
based on the strength of nodes. Thus, assigning color of nodes 3-5 is the same as color
of node 2 as shown in c) of Figure (8). Finally, as one color for one box, the number of

box is obtained. From c) of Figure (8), Ny = 3. The box covering is shown in d) of
Figure (8).
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