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Abstract

The rapid digitization of genealogical and medical records enables the assembly of

extremely large pedigree records spanning millions of individuals and trillions of pairs of rela-

tives. Such pedigrees provide the opportunity to investigate the sociological and epidemio-

logical history of human populations in scales much larger than previously possible. Linear

mixed models (LMMs) are routinely used to analyze extremely large animal and plant pedi-

grees for the purposes of selective breeding. However, LMMs have not been previously

applied to analyze population-scale human family trees. Here, we present Sparse Cholesky

factorIzation LMM (Sci-LMM), a modeling framework for studying population-scale family

trees that combines techniques from the animal and plant breeding literature and from

human genetics literature. The proposed framework can construct a matrix of relationships

between trillions of pairs of individuals and fit the corresponding LMM in several hours. We

demonstrate the capabilities of Sci-LMM via simulation studies and by estimating the herita-

bility of longevity and of reproductive fitness (quantified via number of children) in a large

pedigree spanning millions of individuals and over five centuries of human history. Sci-LMM

provides a unified framework for investigating the epidemiological history of human popula-

tions via genealogical records.

Author summary

The advent of online genealogy services allows the assembly of population-scale family

trees, spanning millions of individuals and centuries of human history. Such datasets

enable answering genetic epidemiology questions on unprecedented scales. Here we pres-

ent Sci-LMM, a pedigree analysis framework that combines techniques from animal and

plant breeding research and from human genetics research for large-scale pedigree analy-

sis. We apply Sci-LMM to analyze population-scale human genealogical records, spanning

trillions of relationships. We have made both Sci-LMM and an anonymized dataset of mil-

lions of individuals freely available to download, making the analysis of population-scale
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human family trees widely accessible to the research community. Together, these

resources allow researchers to investigate genetic and epidemiological questions on an

unprecedented scale.

Introduction

Genealogical records can reflect social and cultural structures, and record the flow of genetic

material throughout history. In recent years, very large pedigree records have come into exis-

tence, owing to collaborative digitization of large genealogical records [1,2] and to digitization

of large cohorts collected by healthcare providers, spanning up to millions of individuals [3–

7]. Such population-scale pedigrees allow investigating the sociological and epidemiological

history of human populations on a scale that is orders of magnitude larger than existing

studies.

Traditional human pedigree studies collect a large number of independent families which

are analyzed separately and then meta-analyzed. However, this approach is not suitable for

population-scale pedigrees, because such pedigrees cannot be decomposed into mutually

exclusive families [1]. Hence, the analysis of such pedigrees requires modeling complex covari-

ance structures between trillions of pairs of individuals.

Pedigree studies often employ LMMs to decompose the phenotypic variation among indi-

viduals into variance components such as genetic effects and shared environment [8]. LMMs

have been the statistical backbone of animal and plant breeding programs for almost six

decades [9], and have been continuously developed over the years [10–22]. LMMs are rou-

tinely used nowadays to analyze pedigrees of millions of animals and plants [13,23], hundreds

of thousands of which are often genotyped (e.g. [22,24,25]).

LMMs and their extensions have recently gained considerable popularity in human genetics

studies for the purposes of estimating heritability [26–32] and genetic correlation [33–37], pre-

dicting phenotypes [38–41] and modeling sample relatedness [42–46]. Unlike classical animal

and plant studies, human studies typically do not include pedigree data, but instead measure

genetic relatedness via dense genotyping of single nucleotide polymorphisms (SNPs).

In recent years, animal and human studies have been using different techniques to scale

LMMs to datasets with millions of individuals. Animal studies typically fit large-scale LMMs

via restricted maximum likelihood (REML) [12], by exploiting the sparsity of pedigree data.

Specifically, a pair of individuals with no known common ancestor can be regarded as having

no genetic similarity. Consequently, these pairs induce a zero entry in the genetic similarity

matrix. Such sparse matrices can be stored and analyzed efficiently with suitable numerical

techniques [21,47,48].

Human genotyping studies do not give rise to sparse data structures. Instead, human stud-

ies have managed to scale LMMs to large datasets via two approaches. The first approach

applies REML, either via supercomputers with thousands of CPUs and terabytes of memory

[46], or by approximating the restricted likelihood gradient via Monte-Carlo techniques [28].

However, the latter technique is only suitable for specific types of covariance matrices whose

decomposition is known beforehand.

The second approach to scale LMMs uses the method of moments rather than REML, by

solving a set of second moment matching equations [49–53]. Such approaches have become

increasingly popular recently [30–35,54–60] owing to their computational tractability and

their compatibility with privacy-preserving summary statistics [61]. Although moment estima-

tors are less statistically efficient compared to REML estimators, they have several advantages:

the loss of efficiency has been found to often be small [56]; they are more robust to modeling
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violation because they make fewer distributional assumptions; and they are more flexible,

which enables applying techniques to limit confounding factors such as assortative mating

(Methods). Moment estimators have also recently been explored in animal breeding studies

[62–64] and were found to be faster than REML while providing similar accuracy, but they

have not been widely adopted in animal studies to date.

Here we present Sci-LMM, a statistical framework for analyzing population-size pedigrees that

combines techniques from animal and human genetic studies. Sci-LMM uses sparse data struc-

tures as is common in animal studies, and supports both moment and REML estimators. The

moment estimator is based on a common technique called Haseman-Elston (HE) regression

[65,66] (Methods). Sci-LMM scales HE regression to population-sized pedigrees via sparse matrix

tools [67]. The REML estimator combines a direct sparse REML solver [47] with Monte-Carlo

gradient approximation [68]. Importantly, existing packages for pedigree-based REML [69–73]

cannot handle the analyses performed in this paper because they require the inverse of the epi-

static interactions matrix [47,74,75], which is extremely difficult to compute in large pedigrees

[76]. Hence, Sci-LMM provides a comprehensive solution for LMM-based pedigree analysis.

To demonstrate the capabilities of Sci-LMM, we carry out an extensive analysis of simulated

data with millions of individuals, which we complete within a few hours. We additionally esti-

mate the heritability of longevity and of reproductive fitness (quantified via number of chil-

dren), using a large cohort spanning millions of genealogical records and several centuries of

human history. We estimate that both traits have a substantial heritable component, with an

estimated 22.1% heritability for longevity and 34.4% for reproductive fitness. Sci-LMM enables

analysis of large pedigree records that was not previously possible.

Material and methods

Linear mixed models

Consider a sample of n individuals with observed phenotypes y1,. . .,yn, and covariates vectors

C1,. . .,Cn, and consider a set of n×n covariance matrices M1,. . .,Md, where Mk
i;j encodes the

covariance between the phenotypes of individuals i and j according to the kth covariance struc-

ture, up to a scaling constant. We assume that the vector y = [y1,. . .,yn]T follows a multivariate

normal distribution:

y � N ðCβ;ΣÞ ð1Þ

Σ ¼ Gþ s2

eI ð2Þ

G ¼
Xd

k¼1

s2

kM
k: ð3Þ

Here, C = [C1,. . .,Cn]T is an n×c matrix of covariates (including an intercept), β is a c×1 vec-

tor of fixed effects, S is the covariance matrix of the vector y, s2
k is the kth variance component,

and I is the identity matrix. The parameters to estimate are the fixed effects β and the variance

components s2
1
; . . . ; s2

d; s
2
e . The Sci-LMM software can currently compute an identity by

descent (IBD) matrix, an epistatic covariance matrix and a dominance matrix, as described

below.

The restricted log-likelihood ‘Rðβ; s2
1
; . . . ; s2

d; s
2
eÞ is given by [77]:

‘R β; s2

1
; . . . ; s2

d; s
2

e

� �
¼ ‘ β; s2

1
; . . . ; s2

d; s
2

e

� �
þ

c
2
logð2pÞ þ

1

2
logjCTCj �

1

2
logjCTΣ� 1Cj ð4Þ
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‘ β; s2

1
; . . . ; s2

d; s
2

e

� �
¼ �

1

2
y � Cβð ÞΣ� 1 y � Cβð Þ �

1

2
logjΣj �

n
2
logð2pÞ; ð5Þ

where ‘ðβ; s2
1
; . . . ; s2

d; s
2
eÞ is the non-restricted likelihood and c is the number of covariates.

An alternative form of Eq 4 often used in animal breeding literature is:

‘R β; s2

1
; . . . ; s2

d; s
2

e

� �
¼ �

1

2
logjBj þ logjΣj þ yTPyð Þ; ð6Þ

where B ¼
s� 2
e CTC s� 2

e CT

s� 2
e C s� 2

e I þ G� 1

" #

; P ¼ s� 2
e I � s� 4

e WB� 1WT; W ¼ ½C I� and we ignored

additive constants. This form is particularly convenient when the inverse of each of the matri-

ces M1,. . .,Md is known, as it can be solved efficiently using mixed model equations via Gauss-

ian elimination, without having to directly invert or factorize the matrix S [47,72]. This makes

it particularly convenient to use this form in the presence of only an additive IBD matrix,

because the inverse of this matrix is sparse and can be computed analytically [78,79].

Restricted maximum likelihood (REML) estimation

REML estimation consists of finding the parameters β; s2
1
; . . . ; s2

d; s
2
e that maximize Eq 4.

When the inverse of each of the matrices M1,. . .,Md is known, the REML can be found effi-

ciently by using Eq 6, using the so-called mixed model equations method [47,72]. Here we

describe a direct solution that can be applied when the inverse of M1,. . .,Md is unknown.

Our solution combines several ideas: (1) we maximize Eq 4 directly, rather than the equiva-

lent form of Eq 6; (2) instead of directly inverting S, we compute its Cholesky factorization S

= LLT via sparse matrix routines; (3) any product of the form S−1v for some vector v is com-

puted using L and two triangular solvers (forward and backward substitution); and (4) the gra-

dient of Eq 4 is approximated using Monte Carlo techniques. We now describe our REML

approach in detail.

We first describe a solution to the unrestricted log-likelihood (Eq 5) and then extend the

solution to the restricted log-likelihood (Eq 4). To compute Eq 5 we need to compute the

terms S−1(y−Cβ) and log|S|. The first term can be computed exactly via either conjugate gra-

dient iterations or by explicitly computing the Cholesky factorization of S and then applying

forward and back substitution. The second term can be computed via the Cholesky factoriza-

tion of S. The Cholesky factorization can be computed efficiently via the CHOLMOD routines

[80]. It remains to find the maximum likelihood estimates of the model parameters.

To find the MLE of β̂ we note that given S, β̂ can be computed analytically by deriving Eq 5

with respect to β as follows:

@‘ðβ; s2
1
; . . . ; s2

d; s
2
eÞ

@β
¼ �

1

2
y � CβÞTΣ� 1C ð7Þ
�

By setting the transpose of the gradient to 0, we obtain the MLE:

β̂ ¼ ðCTΣ� 1CÞ� 1CTΣ� 1y: ð8Þ

The MLEs of the variance components ŝ2
1
; . . . ; ŝ2

d; ŝ
2
e are estimated via an optimization pro-

cedure, which requires computing the gradient of Eq 5. The partial derivative with respect to
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each variance component s2
k is given by:

@‘ðβ; s2
1
; . . . ; s2

d; s
2
eÞ

@s2
k

¼ �
1

2
yTΣ� 1MkΣ� 1y �

1

2
Tr Σ� 1Mk
� �

: ð9Þ

The first term on the right-hand side of Eq 9 can be computed efficiently given the Cholesky

factorization of S. Unfortunately, the second term cannot be solved efficiently via the above

technique because it requires solving n different linear equations, where n can be in the mil-

lions. Instead, we use the approximation technique used in [28,68,81]. We first rewrite this

term as an expectation (ignoring the scaling factor) as follows:

Tr½Σ� 1Mk� ¼ Tr½Σ� 1MkΣ� 1Σ�

¼ Tr½Σ� 1MkΣ� 1E½y0y0T��

¼ E½Tr½Σ� 1MkΣ� 1y0y0T��

¼ E½Tr½y0TΣ� 1MkΣ� 1y0��

¼ E½y0TΣ� 1MkΣ� 1y0�;

ð10Þ

where y0 � N ð0;ΣÞ and we used the fact that the trace of a scalar is equal to the scalar. We

therefore approximate Eq 10 by sampling a small number of y0 vectors to approximate the

expectation. These vectors can be sampled efficiently given the Cholesky factorization S = LLT

by sampling a vector yΣ � N ð0; IÞ and then using the fact that LyΣ � N ð0;ΣÞ. The Cholesky

factorization can be computed efficiently via the CHOLMOD routines. We found that 100 vec-

tors often yields a very good approximation at a modest computational cost.

We note that [28] proposes an alternative estimation method by completely foregoing the

likelihood computation, and instead only trying to minimize the squared gradient elements.

However, we found that in sparse settings, this solution often converges into local maxima at

the edge of the parameter space (where many variance components are equal to zero) rather

than the true maximum likelihood estimate.

We now extend the solution to handle restricted maximum likelihood (Eq 4). Clearly, the

restricted maximum likelihood estimate of β is the same as the MLE. The derivative of the

restricted log likelihood with respect to each variance component s2
k is given by:

@‘Rðβ; s2
1
; . . . ; s2

d; s
2
eÞ

s2
k

¼
@‘ðβ; s2

1
; . . . ; s2

d; s
2
eÞ

s2
k

þ
1

2
Tr ðCTΣ� 1CÞ� 1CTΣ� 1MkΣ� 1C
� �

: ð11Þ

The term S−1C can be computed by solving c different linear equations, which can be per-

formed efficiently given the Cholesky factorization of S. All the other terms can be computed

efficiently, assuming that c is small compared to n.

The standard errors of s2
1
; . . . ; s2

d can be approximated via the average information REML

(AI-REML) procedure [82], which consists of approximating each entry of the Hessian of the

restricted log likelihood as follows:

@‘ðβ; s2
1
; . . . ; s2

d; s
2
eÞ

s2
ks

2
l

� �
1

2
yTPMkPMlPy; ð12Þ

where P = S−1− S−1C(CTS−1C)−1CTS−1. Afterwards we approximate the standard errors via

the square roots of the diagonal entries of the inverse of the negative Hessian. Following [28],

we multiply these entries by 1þ 1

100

� �
to account for sampling variance introduced by the 100

y0 vectors sampled in the Monte-Carlo approximation.
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Implementation details

We implemented our REML solver in Python, using an L-BFGS-B algorithm [83] as imple-

mented in the SciPy package [67]. To prevent the parameters from inducing a non positive-

definite matrix, We enforced non-negative parameters by using a log-transformation, which

transforms the problem into an unconstrained optimization problem.

Haseman-Elston regression

HE regression estimates variance components via the method of moments, by finding the set

of variance components s2
1
; . . . ; s2

d; s
2
e that minimize the expression:

X

i;j

ðcovðyi � Ciβ; yj � CjβÞ � SijÞ
2
: ð13Þ

Typically, the fixed effects β are first estimated without considering the covariance matrices,

by solving the multivariate linear regression problem y ¼ Cβþ �; � � N ð0; s2
e IÞ, where I is

the identity matrix. This solution yields a consistent estimator under mild regularity condi-

tions [84]. Afterwards we plug the fixed effect estimate β̂ into Eq 13 and estimate the variance

component estimates ŝ2
1
; . . . ; ŝ2

d as follows:

½ŝ2

1
; . . . ; ŝ2

d�
T
¼ ð½V1; . . . ;Vd�

T
½V1; . . . ;Vd�Þ

� 1
½V1; . . . ;Vd�

TY; ð14Þ

where Vk is a vector representation enumerating the elements Mk
ij for all pairs of distinct indi-

viduals i,j, and Y is a vector representation of the corresponding elements ðyi � Ciβ̂Þðyj � Cjβ̂Þ.
Each element q,r of the d×d matrix ([V1,. . .,Vd]T[V1. . .,Vd]) can be computed via an element-

wise multiplication of the upper-diagonal elements of the matrices Mq, Mr, which can be per-

formed efficiently via sparse matrix routines. The vector [V1,. . .,Vd]TY can also be computed

efficiently in a similar manner.

By following the notation of [56] and denoting q≜[V1,. . .,Vd]TY, S = [V1,. . .,Vd]T[V1,. . .,

Vd], we have:

½ŝ2

1
; . . . ; ŝ2

d�
T
¼ S� 1q: ð15Þ

By applying a few matrix manipulations, we can compute q and S efficiently as follows:

qk ¼ yTMky �
X

i

Mk
iiy

2

i ¼ yTðMk � IÞy ð16Þ

Skl ¼
X

i;j

Mk
ijM

l
ij �

X

i

Mk
iiM

l
ii; ð17Þ

where we used the assumption Mk
ii ¼ 1. Both these quantities can be computed explicitly via

sparse matrix routines.

The sampling variance of the estimators is given by S−1var(q)S−1, where var(q) is given by:

varðqÞkl ¼ 2trðŜðMk � IÞŜðMl � IÞÞ: ð18Þ

This quantity can be computed in two ways:

1. Exactly, via: trðŜðMk � IÞŜðMl � IÞÞ ¼
P

ij ½ŜðM
k � IÞ�ij½ŜðM

l � IÞ�ij

2. Approximately, via: trðŜðMk � IÞŜðMl � IÞÞ ¼ Ey0 ½y0TðM
k � IÞŜðMl � IÞy0�;
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where y0 is sampled from N ð0; IÞ, using a derivation similar to the one in Eq 10.

The approximate approach uses Monte-Carlo approximations, by randomly sampling y0 vec-

tors and approximating the right hand side. It can be substantially faster than the exact approach

(because it circumvents expensive matrix-matrix multiplications) and obtain excellent accuracy.

The Sci-LMM software uses the approximate approach by sampling ~100 random y0 vectors.

HE regression provides a simple technique for excluding specific pairs of individuals (e.g.

spouses) from the analysis without excluding the individuals themselves. This can be useful

when trying to limit confounding due to factors such as assortative mating. Excluded pairs can

be omitted by zeroing the covariance matrix entries of corresponding pairs. Importantly, this

technique cannot be used in REML, because the resulting covariance matrices may not be pos-

itive definite. We note that another potential approach to capture environmental risk factors is

including shared effects with a suitable incidence matrix [10], but this approach requires addi-

tional assumptions and has not been used here.

Factors affecting estimation accuracy

HE regression is a convenient theoretical framework to analyze the factors affecting estimation

accuracy. HE regression can be considered as a special form of linear regression, where off-

diagonal entries of covariance matrices serve as explanatory variables. Hence, good accuracy is

obtained when measured and unmeasured explanatory variables are uncorrelated with other

explanatory variables (Eq 18).

Specifically, obtaining accurate estimates requires (1) that the off-diagonal entries of the

LMM covariance matrices are uncorrelated with each other; and (2) that they are uncorrelated

with covariance due to unmeasured environmental factors. While the first requirement can be

easily tested, the second one requires making strong assumptions about the structure of envi-

ronmental covariance. For example, if latent environmental factors are shared between spouses

but not between parents and children, we may wish to exclude spouses from the analysis.

Unfortunately, we not know the structure of environmental covariance for the traits studied in

this work, and we leave its investigation for future work.

Identity by descent matrix

The IBD kinship coefficient of two individuals, denoted as aij, is the probability that a ran-

domly selected allele in an autosomal locus was originated from the same chromosome of a

shared ancestor between individuals i and j [85,86], and is given by:

ai;j ¼
1þ fi; i ¼ j

rij
ffiffiffiffiffiffiffiffiffiaiiajj
p

; i 6¼ j

(

Here, fi is the inbreeding coefficient, defined as half of the IBD coefficient of the parents of

individual i [85], and rij is the coefficient of relationships, defined as:

rij ¼
P

path
1þfA

2jpathjþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ fiÞð1þ fjÞ

q

The quantities in the above equation are defined as follows: A is a least common ancestor of

individual i and j in the pedigree graph (a graph where every node is an individual connected

to her parents and children); the summation is performed over every path connecting individ-

uals i,j in the pedigree graph, culminating at some ancestor A, such that the path does not con-

tain the same individual twice; and |path| is the path length.

Estimating variance components in population scale family trees
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To efficiently compute the IBD matrix we first construct the matrices L and H of its decompo-

sition A = LHLT, where L is a lower triangular matrix such that Lij contains the fraction of genome

shared between individuals i and her ancestor j, H is diagonal, and the matrices are ordered such

that ancestors precede their descendants (Fig 1A–1C). The matrices L and H can be computed

efficiently via iterative techniques [78,79] using sparse matrix routines [80] (S1 Text).

Dominance kinship matrix

Dominancy represents the genetic variance due to co-ancestry of two alleles, and can be

approximated by 1

4
Afi ;fj
� Ami ;mj

þ Afi ;mj
� Ami ;fj

� �
, where Ak,l is the IBD coefficient of individuals

k,l, and fk,mk are the parents of individual k [10,87]. A necessary condition for nonzero domi-

nancy entry is a nonzero IBD relationship, which enables rapid computation of the dominance

matrix.

Epistatic kinship matrix

Epistatic covariance encodes the assumption that variants interact multiplicatively to affect a

given phenotype, and is proportional to the exponent of the corresponding IBD coefficient,

i.e., (Ak,l)
2 for two-loci epistasis, (Ak,l)

3 for three-loci epistasis and so on [75]. Therefore, an epi-

static covariance matrix is simple to compute given the IBD matrix.

Pruning of uninformative individuals

Population scale pedigree data typically presents heterogeneity of the completeness of records.

However, individuals with missing data may still be required for IBD computation. For exam-

ple, consider a pedigree of two siblings with phenotypic data, and two parents and one uncle

without phenotypic data. The parents are important for the IBD computation of the siblings,

but the uncle is non-informative.

Sci-LMM applies pedigree-pruning techniques to remove non-informative individuals,

similarly to other REML packages for pedigree analysis [70–73]. Briefly, we defined required

individuals as individuals who have phenotypic and explanatory variables data, or individuals

who appear in a lineage path connecting two individuals with such data with one of their least

common ancestors (S1 Text; S1 Fig). This algorithm reduces the matrix construction time by

several hours.

Computing IBD principal components

In addition to covariance matrices, Sci-LMM can include the top principal components (PCs)

of the IBD matrix as fixed effects, using sparse matrix routines [88]. The inclusion of PCs can

capture major linear sources of variation in a dataset, and is motivated by large scale human

genetic studies, where such PCs often capture population structure [89]. However, we caution

that PCs computed from an IBD matrix are not guaranteed to capture population structure

[90]. An alternative approach often employed in animal studies is the assignment of unob-

served parents to genetic groups [91], but this approach requires knowledge about the location

of birth of all individuals without known parents.

Data simulations

We generated pedigrees mimicking real family patterns in the United States, partially based on

publications by the United States Census Bureau [92,93]. We iteratively generated generations

of individuals, where the first generation included two individuals, and the number of
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individuals in each successive generation increases by 40% (approximately the same ratio as in

the GENI dataset), until obtaining the desired sample size. Each generation included 50%

females and 50% males.

In each generation we generated households, where every household includes either one

individual or two individuals with different genders, and every individual can belong to zero,

Fig 1. A demonstration of the Sci-LMM IBD matrix construction algorithm. (a) An example pedigree with 26 individuals. (b) A heat-map

representing the IBD matrix, where zero elements are white to emphasize sparsity. (c) A heat-map representing the lower Cholesky factorization of

the IBD matrix (i.e. the matrix L in the factorization A = LHLT, where A is the IBD matrix). The value of entry i,j is the expected fraction of the

genome that is shared between individual i and her ancestor j.

https://doi.org/10.1371/journal.pgen.1008124.g001
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one or multiple households. The number of households in each generation was 62.5% of the num-

ber of individuals in that generation. 68% of the households included pairs of individuals, and the

rest included a single individual. Every individual in every generation (except for the top one) was

born to parents from a randomly selected household from the previous generation (for 80% of

individuals) or from two generations in the past (for the remaining 20% of individuals).

After generating all individuals, we omitted randomly selected edges until obtaining the

desired sparsity factor, up to 10% error. We then created corresponding IBD, dominance and

epistasis matrices.

Finally, we generated phenotypes using Eq 1 by (1) generating variance components s2
k for

each covariance matrix Mk from U(0,1) and scaling them such that they sum to 1.0; (2) Gener-

ating 5 binary and 5 normally distributed covariates; and (3) generating fixed effects from

N ð0; 1000=nÞ, where n is the sample size.

The parameters differentiating the various experiments are: (1) cohort size (50K, 100K,

250K, 500K, 1M or 2M); (2) sparsity factor (0.0005, 0.001, or 0.005); and (3) the subset of

matrices used. We generated 10 different datasets for every unique combination of settings,

except for matrices with 2M individuals, for which we generated a single pedigree with ten dif-

ferent phenotype vectors due to runtime considerations.

Computing environment

All experiments were conducted using a Linux workstation with a 24-cores 2GHz Xeon E5

processor and 256Gb of RAM.

Results

Simulation studies

To evaluate the capabilities of Sci-LMM, we generated large synthetic pedigrees spanning 20 to

40 generations and various family structures, under a wide variety of settings. The pedigrees

included 50,000–2,000,000 individuals, amounting to trillions of pairs of relatives. A subset of

the individuals in each generation consists of children of individuals from either the previous

generation, or from two generations in the past. To simulate patterns observed in real datasets,

the simulations also included consanguinity, half-siblings, and individuals with less than two

recorded parents (Methods).

In each simulation we generated a normally distributed phenotype, using a covariance

matrix with additive, epistatic and dominance effects and ten binary covariates. Unless other-

wise stated, the sparsity factor (the fraction of non-zero entries in each matrix) was 0.001. Ten

different datasets were generated for each combination of sample size and sparsity factor.

In all settings, Sci-LMM yielded empirically unbiased estimates of the variance compo-

nents, using both REML and HE regression. As expected, estimation accuracy increased with

sample size, though the estimators became slightly less accurate when increasing the number

of variance components, (Fig 2A–2C). Specifically, the root mean square error (RMSE)

was< 0.03 for all methods under all settings with more than 250,000 individuals, indicating

<3% average error (because the phenotype was standardized to have unit variance).

A comparison of the REML and the HE results shows that that HE was slightly more accu-

rate in the presence of<100,000 individuals (Fig 2A–2C), and REML was slightly more accu-

rate otherwise. These results possibly indicate that REML convergence is difficult in the

presence of sparse covariance matrices with limited sample sizes. We also found that estima-

tion accuracy was anti-correlated with relatedness sparsity, indicating that the estimators effi-

ciently exploit the information found in non-zero covariance entries (Fig 2D and 2E).
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Runtime. We evaluated the time Sci-LMM requires to construct covariance matrices. The

covariance matrices computation is dominated by the IBD matrix construction, because the

other matrices can be computed trivially given this matrix (Methods). The IBD matrix

Fig 2. Evaluating the estimation accuracy of Sci-LMM. (a-c) Box plots comparing REML and HE estimation accuracy (RMSE) across simulated datasets (each

box represents 10 experiments), under varying sample sizes, using (a) only IBD, (b) IBD and epistasis, or (c) IBD, epistasis and dominance variance components. HE is

more accurate than REML for smaller sample sizes, but REML outperforms HE as the sample size increases. Results for analyses with three matrices and 500,000

individuals are omitted due to excessive required computational time. (d-e) Comparing REML and HE estimation accuracy when using IBD, epistasis and dominance

matrices under various sparsity factors (the fraction of non-zero matrix entries) with either (d) 100,000 individuals, or (e) 250,000 individuals. The estimation accuracy

of both REML and HE increases with the number of non-zero entries, for both REML and HE.

https://doi.org/10.1371/journal.pgen.1008124.g002
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construction scaled linearly with the number of non-zero entries in the matrix (Fig 3A and

3B). For example, Sci-LMM required less than 4 hours to construct an IBD matrix with 5×1011

pairs of possible relatives and a sparsity factor of 0.001.

We next investigated the runtime for variance component estimation using REML and HE.

REML estimation for samples with 500,000 individuals (representing 250 million covariance

entries) required less than 24 hours (Fig 3C), whereas HE estimation required 16 seconds (Fig

3D). Overall, our results demonstrate that the Sci-LMM framework is scalable to extremely

large pedigrees.

We also compared Sci-LMM with several REML software packages [69–72]. We could not

invoke any of these packages with an epistatic covariance matrix because they require its inverse,

whose computation is more computational demanding than that of the IBD matrix [76]. We veri-

fied this by trying to invert the matrix analytically via the software package nadiv [94] and numeri-

cally via sparse matrix libraries [80] and via the matrix inversion facilities of the software package

WOMBAT [71], all of which ran out of memory on a 256GB machine. We additionally tried

running the analysis via the fitNullModel function of the GENESIS package [95] and the lmekin
function of the coxme package [96], both of which can work with sparse covariance matrices.

However, both packages could not complete the analysis in 4 days, presumably because they do

not use the approximate gradient approximation techniques of Sci-LMM.

Finally, we compared Sci-LMM to WOMBAT in the presence of only an additive covari-

ance matrix. WOMBAT is more computationally efficient in this setting because it uses a

mixed model equations (MME) solver [47]. MME solvers scale roughly quadratically with the

sample size, compared with the cubic complexity of Sci-LMM, but they require pre-computing

the inverse of the LMM covariance matrix. Thus, using an MME solver is advantageous in the

presence of only an IBD covariance matrix, whose inverse has an analytical form that can be

computed efficiently [78,79]. Indeed, WOMBAT was much faster than the REML solver of

Sci-LMM in this setting, completing an analysis of 250,000 individuals in 13 minutes, com-

pared with 164 minutes for Sci-LMM (S1 Table). However, both WOMBAT and the REML

solver of Sci-LMM crashed in the presence of�500,000 individuals, whereas the HE solver of

Sci-LMM could complete the analysis in less than 20 minutes. Hence, the HE solver of Sci-

LMM is the only tool that we are aware of that can readily scale to population scale pedigrees.

Estimating the heritability of longevity and reproductive fitness. We used Sci-LMM to

estimate the heritability of longevity and reproductive fitness, based on large-scale pedigree

records obtained from the Geni genealogical website [1] (see Web Resources). An initial

description of the longevity analysis was reported in [1], but here we substantially refine and

extend this analysis. We applied stringent quality control to minimize deaths due to non-natu-

ral reasons such as wars or natural disasters, by excluding pairs of individuals who died within

10 days of each other or within periods with significantly elevated death rates [1]. This filtering

yielded approximately 441,000 individuals with birth and death dates. We first computed the

IBD, dominance and epistasis matrices of these individuals, and then estimated the heritability

of longevity using these matrices.

The corresponding IBD matrix contained over 3 billion nonzero entries. It included the

441,000 core individuals and their informative ancestors, yielding a total of 1.6 million individ-

uals. The submatrix consisting of only the core individuals included 251 million non-zero IBD

coefficients (yielding a sparsity factor of ~0.001, in correspondence with the simulation stud-

ies). The dataset included 9.7 million pairs of individuals with a kinship coefficient corre-

sponding to a> = 20-degree relationship (Fig 4A). Sci-LMM constructed this matrix in 10

hours.

Next, we used Sci-LMM to estimate the heritability of longevity with covariates encoding

gender, year of birth (yob), yob raised to second and third power, and the top 10 principal
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Fig 3. Analysis of Sci-LMM computation time. (a) Computation time required to compute an IBD matrix from pedigree data under different sparsity

factors as a function of sample size. (b) Computation time required to compute an IBD matrix from pedigree data as a function of the number of nonzero

relationships, demonstrating a linear relationship. The maximal number of evaluated non-zero relationships increases with the sparsity cutoff, because we

only generated matrices with up to a million individuals. (c) Variance component estimation time (using REML), as a function of sample size, when using

different combinations of covariance matrices. Epis–Epistasis; Dom—dominance (d) same as (c), but for HE regression instead of REML estimation. Here
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components of the IBD matrix, and with covariance matrices encoding IBD and pairwise epis-

tasis (Methods). A dominance matrix was not included because the analysis included a rela-

tively small number of full-sibs or double first cousins, rendering this matrix almost equivalent

to the identity matrix (S2 Fig).

The Sci-LMM REML estimates were: IBD: 22.1% (s.e. 0.8%); pair-wise epistasis: 0.001% (s.

e. 1.7%); environmental effects: 74.4% (s.e. 1.0%) (Fig 4B). The HE estimate for IBD was 24.3%

(s.e. 0.5%) when omitting the epistatic interactions matrix (HE results with epistatic interac-

tions were inconclusive due to large standard errors). A potential challenge of our framework

is that genetic covariance may be correlated with shared environmental factors (Methods)

[2,97]. We tried mitigating this problem by excluding ~399,000 pairs (~0.15%) of individuals

with a shared household (spouses or parent-child pairs) from the analysis without excluding

the individuals themselves, using HE (Methods). This led to a heritability estimate of 26.3% (s.

e. 0.9%), indicating that shared household effects are unlikely to up-bias our estimates. Overall,

our results suggest that the heritability of longevity is upper bounded by ~26%. However, the

true heritability may be lower since our estimates may be confounded by other environmental

factors [2,97] (see Discussion).

We next estimated the heritability of reproductive fitness, quantified by number of children.

To limit confounding due to non-genetic factors, we applied stringent filtering of individuals.

We removed individuals with less than two children records, because the family records of

such individuals are more likely to be incomplete. We additionally removed individuals with a

shared household (spouses and children) and individuals who are first- or second-degree

we evaluated datasets with up to 2 million individuals that were not investigated in (c), owing to technical limitations of the sparse matrix factorization

routines used in our REML implementation.

https://doi.org/10.1371/journal.pgen.1008124.g003

Fig 4. Results of analysis of a real pedigree with 441,000 individuals. (a) A histogram of genetic similarity across 441,000 individuals, using only the closest

relationship between every pair of individuals. The degree of relationship between a pair of individuals is given by −log2(Kij)-1, where Kij is their IBD coefficient

(Methods). The dataset includes approximately 9.7 million pairs of individuals whose least common ancestor lived at least 10 generations earlier. (b) The estimated

fraction of longevity variance attributed to different variance components (and their 95% CI).

https://doi.org/10.1371/journal.pgen.1008124.g004
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relatives of another individual in the data set. The filtered dataset included ~45,000 individuals.

We used the same covariates as before, applied a Box-cox transformation to induce normality

for number of children, and excluded epistatic interactions from this reduced dataset, because

they led to large standard errors.

The REML and HE estimated heritability of reproductive fitness were 28.4% (s.e. 0.5%) and

34.4% (s.e. 1.2%), respectively. These results indicate a substantial genetic component for

reproductive fitness, in line with previous work [98]. However, we note several potential cave-

ats. First, our analysis estimated the heritability of reproductive fitness conditional on having

�2 children; we excluded individuals with fewer children to minimize bias towards individuals

with more complete family records. Second, our estimate may be upper-biased due to con-

founding by non-genetic factors [2,97] (see Discussion). Third, our analysis may be improved

by including random effect for shared households or other shared environmental factors.

However, such analyses require the introduction of additional modeling assumptions, which

we leave for future work.

Finally, we performed a series of experiments to examine the robustness of our longevity

analysis to potential confounding factors (S2 Table). First, we restricted the analysis to 283,073

individuals born after 1800, which yielded heritability estimates of 0.23 (0.006) under HE and

0.23 (0.004) under REML. Second, we restricted the analysis to 276,011 individuals who are

unlikely to have shared a household during their lifetime (i.e., no spouses or first-degree rela-

tives), which yielded estimates of 0.29 (0.006) under HE and 0.29 (0.005) under REML. Third,

we restricted the analysis to 110,237 individuals who were not first or second-degree relatives,

which led to estimates of 0.53 (0.040) under HE and 0.51 (0.040) under REML. Finally, we

combined the last two restrictions by only including 106,049 individuals who were neither

spouses or first or second-degree relatives of each other, leading to estimates of 0.54 (0.045)

under HE and 0.51 (0.044) under REML. The inflated estimates when excluding first or sec-

ond-degree relatives may indicate that weaker levels of IBD covariance are correlated with

shared environmental covariance, leading to inflated heritability estimates. Nevertheless, these

results indicate that our original analysis is not upper biased due to inclusion of the above

potential confounding factors.

Discussion

We have described a statistical framework for analysis of large pedigree records spanning mil-

lions of individuals. Our framework includes methodologies for constructing large sparse

matrices given raw pedigree data, and methodologies for LMM analysis with random effects

described by these matrices. Taken together, the proposed solution enables an end-to-end

analysis of population scale human family trees.

In this work we focused on partitioning phenotypic variance into additive genetics, epistasis

and dominance. However, the LMM framework is flexible and can be extended in various

directions. For example, sparse LMMs are often used to model transmissible phenomena [99–

104], which enables combining pedigree-based and geography-based covariance structures.

Both Sci-LMM and the data studied in this paper are freely available for download, which

makes the analysis of population-scale human family trees widely accessible to the research

community. Combined, these resources allow researchers to investigate genetic and epidemio-

logical questions on unprecedented scales.

We evaluated two methods for variance components estimation: REML and HE regression.

REML is more accurate than HE and provides a likelihood-based solution, which can be used

for model comparison and hypothesis testing. HE estimates are less accurate but can be more

robust to modeling violation. Importantly, HE regression can mitigate confounding due to
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environmental factors by zeroing selected entries in the covariance matrices, which may be

especially suitable for studying human genealogical records (Methods). Hence, the two meth-

ods are complementary in terms of their strengths and weaknesses. In practice, we found that

it is difficult to scale REML to datasets with more than 500,000 individuals with a sparsity fac-

tor of 0.001. Our recommendation is to use REML when it is feasible and all model assump-

tions hold, and HE regression otherwise. We note that REML estimation can be substantially

faster when not fitting epistatic interactions by using a mixed model equations approach [47],

which is implemented in several software packages [69–72].

Our work demonstrates the technical feasibility of studying population scale human family

trees. However, the analysis of human genealogical records is challenging due to imperfect

data and the difficulty of controlling for confounding factors. Potential issues include non-

paternity, cryptic relatedness, missing or false genealogical records, genetic nurture [105,106],

environmental bias [97,107], assortative mating [2] and correlation between additive and epi-

static effects [17,18]. As such, our estimates should be considered as a first order approxima-

tion, and our heritability estimates are likely upper biased due to confounding. We expect that

recently proposed techniques to address these issues (e.g. [2,106,107]) could be integrated into

the Sci-LMM framework in the future.

In this work we focused on analyzing large pedigree records with no measured genotypes.

In recent years, the advent of biobank-sized datasets allows analyzing population-scale geno-

typed cohorts. The two study types are complementary because biobanks cannot be used to

investigate longevity, traits with a late age of onset, or epidemiological and sociological ques-

tions on historical scales. We anticipate that cohorts combining both types of data will become

increasingly common. For example, we and other online genealogy platforms allow users to

upload their genetic information and link it with their genealogical profile. Such combined

datasets have been extensively explored in the animal breeding literature [19,21,108–112].

However, privacy and logistical concerns limit public access to human genetic data, necessitat-

ing methods based on summary statistics [61]. Thus, approaches for analysis of such combined

datasets will combine state of the art techniques from the animal breeding and the human

genetics literature, and remain a potential avenue for future work.
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S1 Text. Detailed algorithms for covariance matrix construction and pedigree pruning.
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in the presence of pedigrees with�500,000 individuals.
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S2 Table. Sci-LMM heritability of longevity estimates under different analysis approaches.

The epistasis estimates were very close to zero in all cases and are omitted for clarity.
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S1 Fig. Stages of removal of uninformative individuals. Nodes represent individuals, and

edges represent parent-child relations. Only red individuals have full information records (e.g.

year of birth, year of death, etc.)
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