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Abstract: In this paper, we present a novel red-green-blue-depth simultaneous localization and
mapping (RGB-D SLAM) algorithm based on cloud robotics, which combines RGB-D SLAM with
the cloud robot and offloads the back-end process of the RGB-D SLAM algorithm to the cloud.
This paper analyzes the front and back parts of the original RGB-D SLAM algorithm and improves
the algorithm from three aspects: feature extraction, point cloud registration, and pose optimization.
Experiments show the superiority of the improved algorithm. In addition, taking advantage of the
cloud robotics, the RGB-D SLAM algorithm is combined with the cloud robot and the back-end part
of the computationally intensive algorithm is offloaded to the cloud. Experimental validation is
provided, which compares the cloud robotic-based RGB-D SLAM algorithm with the local RGB-D
SLAM algorithm. The results of the experiments demonstrate the superiority of our framework.
The combination of cloud robotics and RGB-D SLAM can not only improve the efficiency of SLAM
but also reduce the robot’s price and size.

Keywords: RGB-D SLAM; cloud robotics; ROS; 3D point cloud

1. Introduction

Simultaneous localization and mapping (SLAM) is an important research topic in the field
of autonomous mobile robots, and it is also the key for mobile robots to achieve autonomous
navigation and perform tasks in an unknown environment, which embodies the robot’s perception
ability and intelligence level. In recent years, the theories and methods of 2D map building have
been comprehensively studied and fruitful results have been achieved. With the progress of sensor
technology and the continuous development of SLAM computing theory, the 3D map building of a
6-DOF (degree of freedom) robot has attracted the attention of researchers.

For SLAM research, sensors used in the early stage include laser radar and cameras. Although the
laser radar can accurately capture the 3D information of objects and has good robustness, it is more
expensive and requires IMU (inertial measurement unit) [1] sensors for SLAM. Kinect is an RGB-D
(R(red), G (green), B (blue), D (depth)) sensor, which is officially released by Microsoft in June 2010.
As Kinect can capture the depth image and RGB image at the same time, the frame rate is high and the
price is relatively low. With its excellent performance, Kinect has been favored by researchers in the
field of robotics and achieved unexpected results. In recent two years, the depth-sensing technology of
Kinect has been extended. Compared to stereo cameras and time-of-flight cameras, Kinect has many
advantages [2,3], such as low price, information integrity, and complex environmental adaptation.

Compared with the traditional SLAM technology, RGB-D SLAM has better real-time performance
and less computation for data analysis than traditional SLAM, which is more suitable for the
construction of a 3D environment map. However, there are still many problems to be solved to realize
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the high quality and efficient map construction process by using RGB-D SLAM [4–7]. For example,
when the robot moves from a narrow passage to an open room, the environment changes a lot, and the
depth information feedback is easily distorted. Map building and map fusion tasks in SLAM often
consume a lot of computing resources. With the expansion of maps, more and more features need to
be retrieved. If the processing is not timely enough, the robot may deviate from the original motion
track at any time.

3D map construction needs to store and calculate a large amount of image information, and the
hardware configuration of the local computer is relatively high. The medium and low configuration
robot cannot meet the requirements of large data storage and intensive calculation in the 3D map
construction process. The emergence of cloud robot technology [8–10] provides a new way of thinking
about this problem. Local computers do not need to calculate and store the 3D map in the 3D map
construction based on cloud robot technology, but only need to unload the intensive computing and
mass storage to the cloud platform.

In this paper, the original RGB-D SLAM algorithm [11] is briefly described, and the shortcomings
of the algorithm are analyzed. To solve the disadvantages of the original RGB-D SLAM, such as
low efficiency and poor real-time performance, we have improved several key links of the RGB-D
SLAM algorithm. Cloud robot technology provides a new direction for solving the problems of the
RGB-D SLAM algorithm, such as intensive computing and huge data. This paper combines these two
technologies to provide a new solution for improving the efficiency and real-time performance of the
RGB-D SLAM algorithm. The main contributions of this paper are as follows: (1) We improve 3D
point cloud registration based on the SVD (singular value decomposition) algorithm, which is used
for the cloud map fusion. (2) We improve the RGB-D SLAM algorithm from three aspects: feature
extraction, multi-scene point cloud stitching, and the optimization of the pose graph. (3) We present a
novel RGB-D SLAM algorithm based on cloud robotics, which offloads intensive computational tasks
to the cloud.

For (2), RGB-D SLAM algorithm is improved from three aspects. (a) Feature extraction is used by
the BRISK _D algorithm [12], which efficiently combines FAST (features from accelerated segment test)
and BRISK (binary robust invariant scalable keypoints) methods. (b) Multi-scene point cloud stitching
based on SVD algorithm and SVD (singular value decomposition) algorithm is used to solve the
transformation matrix of point cloud registration. (c) Pose optimization with HOG-Man algorithm
(hierarchical optimization for pose graphs on manifolds).

The rest of the paper is organized as follows. Section 2 refers to the related work. Then the
original RGB-D SLAM algorithm is described in Section 3. In Section 4, the improvement of the
RGB-D SLAM algorithm is introduced. The RGB-D SLAM algorithm with the cloud robot is presented
in Section 5. Some experimental results are shown in Section 6, and Section 7 sets out the conclusions
and future work.

2. Related Work

2.1. RGB-D SLAM

Henry et al. proposed the RGB-D SLAM method for the first time in 2010 [11]. This method
uses both color and depth images. Firstly, SIFT (scale-invariant feature transform) [13] and random
sample consensus (RANSAC) algorithm [14] are used to match image features. Then, ICP(iterative
closest point) algorithm [15] is used to align images and TORO (Tree-based netwORk Optimizer)
algorithm [16] is used to optimize the processing, and finally, the 3D environment map is constructed.

Henry et al. further optimized the RGB-D SLAM method in 2012 [17]. This method
uses FAST (features from accelerated segment test) corner detection [18] and Calonder feature
descriptor [19] instead of the SIFT algorithm, and uses an inter-frame RANSAC algorithm for image
feature registration. At the same time, SBA (sparse bundle adjustment) algorithm [20] is used for map
optimization processing, and finally, a 3D environment map is constructed.
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Sturm et al. [21] present a method for evaluating the position accuracy of RGB-D SLAM system
in 2012, and disclose the data set they used, which includes color and depth images captured by
RGB-D cameras in two different rooms, and the real motion trajectory of RGB-D cameras captured
by a high-precision motion capture system. At the same time, this paper also provides a method to
calculate the position accuracy of the RGB-D SLAM system. Researchers of RGB-D SLAM can use this
evaluation method to test the performance of their system. This evaluation method greatly promotes
the research work of RGB-D SLAM.

Endres et al. propose an RGB-D SLAM method in 2012 [22]. This method divides the RGB-D
SLAM system into two parts: front-end and back-end. The front-end is responsible for establishing the
spatial transformation relationship by processing sensor information, and the back-end is responsible
for reducing cumulative error by graph optimization. This method uses SIFT, SURF (speeded up
robust features) [23], and ORB (ORiented brief) algorithms [24] to extract features, and the RANSAC
algorithm to process image alignment. Unlike Henry, the ICP algorithm is not used for image
alignment, and then the g2o (general graph optimization) algorithm [25] is used for graph optimization.
Finally, the method uses the Octomap library [26] to raster the final output point cloud map to form a
grid map, which is convenient for robot navigation and localization. In addition, Endres et al. also use
the location accuracy evaluation method by Sturm [21] to verify the proposed RGB-D SLAM method.

Scherer et al. propose an RGB-D SLAM method in 2013 [27]. This method uses the HOG-MAN
algorithm [28] to optimize the graph in the back end of RGB-D SLAM, and finally construct a 3D
environment map. The RGB-D SLAM method proposed by Scherer et al. in 2013 does not splice each
frame of the image. Instead, it uses the Harris scoring function constructed by the number of FAST
corner points as the criterion to filter the key frames, and then splicing these key frames. This method
uses the BA (bundle adjustment) algorithm combined with the depth information to perform image
registration on key frames.

Quang et al. make some improvements to the RGB-D SLAM method in 2015 [29]. This method
only uses the RANSAC algorithm to establish the spatial transformation relationship, and then selects
the key frames for image mosaic according to the magnitude of the transformation amplitude, instead
of splicing each image, so as to reduce the cumulative error and improve the position accuracy of
RGB-D SLAM system.

In 2011, Neumann et al. [30] use a GPU (graphics processing unit) to improve the processing
efficiency of the RGB-D SLAM system. This method puts the process of processing point cloud data
using the ICP algorithm on the GPU unit, and the experimental results prove the processing on the
GPU unit. The time is less than 20 ms, which can greatly reduce the computational cost of the RGB-D
SLAM system.

Lee et al. [31] propose a real-time RGB-D SLAM method based on GPU unit in 2012. This method
uses the GPU unit to realize the parallelization of feature extraction and pose optimization to improve
computational efficiency. In 2015, to solve the problem that it is difficult to match visual features in the
simple steps by using visual sensors alone, Bmnetto et al. [32] construct a system combining vision and
inertial measurement in 2015 and validate the effectiveness of this method by experiments. Aiming at
the problem of less texture and ambiguous environment, Qayyum et al. [33] propose an RGB-D SLAM
method combining the inertial navigation information in 2017, which can effectively reduce the error
of pose estimation.

In 2018, Zhang et al. [34] propose a surface closed-loop visual SLAM framework (LoopSmart).
It combines sparse feature matching and dense surface alignment strategies. Sparse feature matching
is used for visual odometers and for camera global pose fine-tuning when dense loops are detected,
while dense alignment is the method of large loops and solving surface mismatch problems.
The framework is based on the tracking module of ORB-SLAM2 [35] and the intensive model fusion
strategy is based on the surface model. They have performed a lot of experimental verification on
different data sets and have a good effect on camera trajectory and 3D reconstruction accuracy.
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In 2018, Ylimäki et al. [36] propose a method to deal with outliers even in the case of very serious
registration error, aiming at the problem that the depth images of the RGB-D sensor will produce
noise and lead to poor initial registration. This method is robust to abnormal and wrong depth
measurements, as well as significant depth map registration errors caused by an inaccurate initial
camera pose.

For dense RGB-D SLAM, previous work has focused on BA(Bundle adjustment) approximations.
In 2019, Schöps et al. [37] present a novel RGB-D SLAM method with a real-time direct BA
back-end, which allows one to use rich information during global optimization, resulting in very
accurate trajectories.

After recent years of development, RGB-D SLAM technology tends to be mature [38,39] and has
achieved good experimental results. However, the RGB-D SLAM algorithm still has some shortcomings.
The advantages and disadvantages of the RGB-D SLAM algorithm are listed in Table 1.

Table 1. The advantages and disadvantages of the red-green-blue-depth simultaneous localization and
mapping (RGB-D SLAM) algorithm.

Advantages Disadvantages

(1) No need to consider initial alignment like a
monocular SLAM system

(1) RGB-D camera data contains noise and a lot of
redundancy.

(2) No need to consume a lot of resources to
compute depth like a binocular SLAM system

(2) The accuracy of feature matching and camera
transformation matrix is not high

(3) RGB-D camera can provide rich color and depth
images simultaneously

(3) Real-time performance is difficult to achieve in
the construction of large-scale scene maps

(4) The construction of dense maps is relatively easy
(5) It is helpful to realize the real-time 3D
reconstruction system

In view of the two disadvantages of (1) and (2), we propose the improvement of the original
RGB-D SLAM in Section 4. For the third disadvantage, in the construction of a large-scale scene map,
with the continuous operation of robots in an unknown environment, more and more data are collected
by the RGB-D SLAM system, and the amount of information that needs to be processed by its back
end will increase correspondingly. Especially in the later stages of reconstructing 3D maps of larger
scenes in RGB-D SLAM system, the amount of information needed to be processed in the back end
will be doubled, seriously affecting the real-time performance of the system. So, the algorithm in this
paper unloads the back-end computation to the cloud in the 3D reconstruction system for improving
the real-time performance of the system.

2.2. “Cloud+Robot” SLAM

The development and current status of robot SLAM are described above. The introduction of cloud
computing is of great significance to SLAM. On the one hand, the massive computing storage resources
of the cloud itself are sufficient to deal with most SLAM algorithms. On the other hand, placing the
SLAM module in the cloud instead of the robot side can greatly alleviate the resource burden of the
robot and eliminate the cumbersome and expensive deployment work. In the combination of cloud
robot technology and SLAM, many researchers have also proposed a number of different frameworks,
such as DAvinCi [40], Rapyuta [41], and C2TAM [42].

2.2.1. DAvinCi

DAvinCi [40] is one of the earliest software frameworks to enhance the capabilities of robots
using cloud robotics. It aims to enhance the capability of robots in large and complex environments
by utilizing the powerful computing and parallel processing capabilities of the cloud. In the actual
demonstration, DAvinCi uses FastSLAM in SLAM to verify the feasibility of this architecture in
paper [40], which proves that the cloud + robot can improve the performance of the robot, and it
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also proves that the computational storage resources required by SLAM are non-negligible or even
unbearable burdens for the robot.

The DAvinCi framework [43] has some limitations. First of all, the robot in its architecture is
passively using the cloud to improve performance rather than actively using the cloud according to its
needs. It is necessary to set the scene and action of its use in the cloud beforehand, which is obviously
impossible for the task of robots in large and complex environments. So, it determines that the DAvinCi
framework cannot meet the current needs of robots. Secondly, its cloud architecture Hadoop has good
performance in parallel processing tasks and computing but it has no obvious effect on tasks that
cannot be processed in parallel. For SLAM, it is difficult to adapt to the different SLAM algorithms.

2.2.2. Rapyuta

Rapyuta is the “brain” part of the European RoboEarth Project, which aims to improve
robotic capabilities through a series of advantages of the cloud. Its core technology is to use LXC
(Linux container) technology to build a virtual machine corresponding to a robot in the cloud.
In paper [44], the SLAM experiment is performed using Rapyuta to verify the support and enhancement
of the cloud for the low-cost robot SLAM under the Rapyuta framework.

Rapyuta’s main advantage [45] is that, first of all, its architecture is a typical PaaS (platform as
a service) architecture, which provides the cloud function as a service to the robot. Robots have full
rights of autonomous mobilization and use. Secondly, Rapyuta ensures strong support for robots with
different shapes, hardware, and systems, and conforms to the characteristics of a unified platform.

Rapyuta has some limitations. Considering the task requirements of current robots, the tasks faced
by robots are not single functional requirements, but a series of complex functions. Therefore, it is often
necessary to run multiple different functional nodes on a virtual machine corresponding to a robot.
At the same time, there is a wide gap between the resources and resource categories required by these
functional nodes, which makes it necessary to consider the needs of different robots when building
virtual machines for robots and change according to the different tasks of robots. Therefore, for the
cloud, the robot-based computing unit is not conducive to cloud resource management.

2.2.3. C2TAM

C2TAM is a “cloud + robot” framework for collaborative mapping, which adapts to the cooperative
SLAM problem [46,47]. It aims to solve the problems of map operation, map reuse, map expansion,
and multi-machine collaborative mapping in SLAM through the resource advantages of the cloud.
C2TAM is based on PTAM (parallel tracking and mapping) method [48]. PTAM is based on the classical
SLAM algorithm. According to the characteristics of the 3D map, the two processes of tracking and
mapping are separated into two parallel steps from each iteration. On the one hand, the mapping side
extracts common feature points through the observed images to form a whole image. On the other
hand, the observer obtains the current position information by matching the current image with the
whole image. C2TAM chooses to put the composition part of PTAM into the cloud because it consumes
more resources. Thus, the efficiency of SLAM is improved.

Based on the SLAM algorithm in the cloud, C2TAM utilizes the separation of the PTAM mapping
process and robot localization. On the basis of single machine SLAM, multi-machine collaborative
mapping can be constructed by map fusion in the cloud. At the same time, the storage resources in
the cloud are used to store the maps that have been constructed. When there are new mapping tasks,
the automatic search and matching will be carried out to minimize redundant tasks. This process
is called map reuse. If the machine acquires information that does not match the original map or
information that is not included in the original map on the basis of matching the existing map,
the cloud will update the map according to the new observation information. This process is called
map extension.

The advantage of C2TAM architecture is that it makes full use of the cloud, and uses the
PTAM method of 3D mapping to propose a more successful “cloud + robot” architecture and the
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corresponding processing methods are provided for various requirements in the SLAM process. In the
paper [42], a detailed experimental verification of its various functions is carried out, which proves the
availability and efficiency of its architecture. The ideas and methods of dealing with various SLAM
scenario functions are worth reading for reference.

Its limitation [49] is that only one method of 3D mapping is proposed to solve the cloud problem.
Robot SLAM has different optimal methods and algorithms according to its different service function
scenarios. At the same time, the map’s needs will vary with the environment and people. C2TAM is
obviously difficult to provide a general solution to the SLAM problem cloud.

2.2.4. Comparison of Different Platforms

Each of these frameworks has its own advantages and disadvantages, as shown in Table 2.

Table 2. Comparison of different platforms.

Parameter C2TAM Rapyuta DAvinCi

Bandwidth low high high
Latency low high low

Power consumption low high low

There are connections and differences in working principles among different cloud architectures.
Each framework used a different set of protocols that allow robots to offload the computation to
the cloud. The Rapyuta framework is a more flexible framework than the other. Due to the open-source
implementation of the Rapyuta framework, it can be extended to other robot functionalities easily.
The DAvinCi framework has more advantages in parallelism, while the C2TAM framework is more
suitable for large data storage and low bandwidth. As this paper discusses the SLAM issue, C2TAM
framework is chosen as the cloud platform.

3. The Overall Algorithm Flow of Original RGB-D SLAM

With the development of Microsoft Kinect, a more innovative SLAM method emerges, that is,
the RGB-D SLAM algorithm. In this section, we will introduce the original RGB-D SLAM algorithm [11]
and analyze the shortcomings.

3.1. The Overall Algorithm Flow of RGB-D SLAM

The algorithm can be divided into two parts, the front-end and the back-end. The task of the
front-end is to extract the spatial relationship between different observations. The task of the back-end
is to optimize the pose information of the camera in the pose graph using a non-linear error function.
The overall flow of its algorithm is shown in Figure 1.

In the front-end of the RGB-D SLAM algorithm, feature points detection and descriptor extraction
are performed on each RGB image input by the camera, and feature points descriptors of two adjacent
frames are matched. The depth information of these matching feature points is obtained from the
corresponding depth image, and a set of 3D point correspondences between two adjacent frames
is obtained. The 6D motion transformation is estimated according to the corresponding relation,
and then the motion transformation is optimized to get the optimized 6D motion transformation.

In the back end of the RGB-D SLAM algorithm, a graph-based pose optimization method is
applied to initialize the pose map using the 6D motion transformation relationship obtained from
the front end. Then, closed-loop detection is carried out to add closed-loop constraint conditions,
and the non-linear error function optimization method is used for pose optimization. Finally, the global
optimal pose, camera trajectory, and reconstructed 3D map environment are obtained.
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Figure 1. RGB-D SLAM algorithm flow.

3.2. Shortcomings of the Original RGB-D SLAM Algorithm

The original RGB-D SLAM framework is shown in Figure 1. It can also be improved in terms of
efficiency, real-time, and accuracy. In the stage of feature detection and feature extraction of the original
algorithm, the methods in common use are the SIFT, SURF, and BRISK algorithms. Although the SIFT
and SURF algorithms have higher scale invariance and affine invariance compared with the traditional
algorithms, there are still some shortcomings that cannot be ignored, such as the distribution of the
extracted feature points is not uniform enough, dependence on the main direction in the process of
feature extraction is high, the time for computing is longer, and point pairs that matched correctly are
less. The BRISK algorithm is not stable in terms of scale invariance and rotation invariance. In the
feature matching stage, the brute force algorithm is usually used, but its efficiency is low and the error
in the matching process is large, so the rate of a successful match is low. In the process of motion
transformation optimization, the ICP algorithm [15] also has shortcomings. It is easy to fall into the
local maximum. ICP algorithm relies heavily on the initial registration location, which requires the
initial location of two point clouds to be close enough, and may lead to registration failure when there
are noise points and external points. When the pose graph is optimized, the g2o is a C++ project
managed by cmake that its description of the document is less and more complex.

Because of these shortcomings, the efficiency of the whole RGB-D SLAM algorithm is reduced,
and the real-time performance and accuracy need to be strengthened. Therefore, the original RGB-D
SLAM algorithm is improved in Section 4.

4. Improvement on the Original RGB-D SLAM Algorithm

We improve the RGB-D SLAM algorithm from three aspects: feature extraction, 3D point cloud
registration, and pose optimization. Feature extraction has been introduced in paper [12]; this section
will introduce 3D point cloud registration and pose optimization.

4.1. 3D Point Cloud Registration Based on SVD Algorithm

The registration problem of point clouds [50] in multi-view is to put the point clouds obtained by
Kinect from different viewpoints into the same spatial coordinate system by rotation and translation.
So, the core of the problem is to solve the transformation matrix between every two points cloud.
In this paper, the BRISK_D algorithm [12] is used to extract feature matching pairs of 2D RGB images,
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and the RANSAC algorithm is used to filter mismatching pairs. The remaining matching pairs are
mapped to the spatial coordinate system and the SVD (singular value decomposition) algorithm [51] is
used to solve the transformation matrix of point cloud registration.

After extracting the local features, the remaining important work is how to solve the scanning
pose relationship of two adjacent frames or two scenes, that is, the local coordinate corresponding
information scanned by the sensor at different positions or different positions in the same position.
To explain this problem intuitively and quickly, we assume that the Kinect sensor scans a scene A
at the position a and a scene B at the position b, the two-dimensional image and three-dimensional
point cloud information represented by scene A and scene B belong to the local coordinate system with
position a and position b as the coordinate origin, respectively. The key of the problem is how to find
the coordinate correspondence between the two coordinate systems, and adjust the data of the two
scenes to the same coordinate system. Because the two scenes are in two different coordinate systems,
the focus of our research is to calculate the transformation matrix between scenes. The so-called
transformation matrix is actually the transformation relationship of scene data from one coordinate
system to another, namely rotation and translation. For the sensor kinect, the depth image data can
correspond to the color image data after the depth image registration. Therefore, this provides us with
an idea: the problem that is difficult to solve at the 3D point cloud level can be first transferred to the
2D image level, and then returned to the 3D point cloud after the processing ends. Therefore, in solving
the transformation matrix, after extracting the local features of two adjacent images, the feature
matching pair can be mapped to the three-dimensional point cloud coordinate pair, and then the
position transformation relationship between the two scenes can be calculated, that is, the rotation (R)
and the translation (T) matrix between the two coordinate systems.

In this section, we use the SVD algorithm to calculate the sum matrix between two scenes. This
algorithm was first proposed by Arun et al. in 1987 [52] and used in the least square fitting of 3D
point cloud set data. The selected 2D point set of the filter is mapped to the H-dimensional space
by RANSAC matching [53] to form two point cloud sets P = {pi}, Q = {qi} (i = 1, 2, 3, · · ·N; pi, qi
is 3 × 1 matrix). The relationship between P and Q can be expressed by Equation (1)

Q = RP + T + N (1)

where R is a 3 × 3 rotation matrix, T is a translation matrix, and N represents the amount of noise
interference. R and T are solved by the least-squares method of Equation (2)

f (R, T) =
n

∑
i=1
||qi − Rpi − T||2 = min (2)

where the centroid of {qi} and {p′i = Rpi + T} is the same. The centroid of {qi} and {p′i = Rpi + T} is
solved by the following equation

q =
1
N

N

∑
i=1

qi, (3)

p =
1
N

N

∑
i=1

pi, (4)

p′ =
1
N

N

∑
i=1

p′i = Rp + T, (5)

where q = p′

By translating the two-point cloud sets P = {pi}, Q = {qi}, two new 3D point cloud sets are
represented as follows

mi = pi − p, (6)
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m′i = qi − q (7)

After corresponding changes, we get the expression
N
∑

i=1
(m′ i − Rmi)

2. The rotation matrix R is

obtained by solving the minimum of the expression.
Equation (2) is derived as follows

q = Rp + T (8)

where the translation matrix T = q− Rp.
The 3D point cloud registration based on the SVD algorithm is shown in Algorithm 1.

Algorithm 1 3D point cloud registration based on SVD algorithm

Input: Two-point cloud sets: P = {pi}, Q = {qi}, i = 1, 2, 3, · · · , N
Output: f (R, T) = min

n
∑

i=1
(qi − Rpi − T)2

1: Calculate the centroid of two 3D point cloud sets P = {pi}, Q = {qi} according to Equations (4)

and (5);
2: Translating the two point cloud sets P = {pi}, Q = {qi} to get the two new 3D point cloud sets

{mi}{m′i} according to Equations (6) and (7);
3: Computing 3 × 3 matrix C =

N
∑

i=1
mim′ i

T ;
4: Decomposition of singular values for matrix C, C = UΛVT , where Λ=diag(di), d1 ≥ d2 ≥ d3 ≥ 0

and the rotation matrix R=VUT ;
5: Computing the translation matrix T = q− Rp.

However, there is still a very important problem in the solution process, that is, how to select
four feature matches. It is not difficult to find through many experiments that there are many feature
matching pairs where the position is concentrated. Once one of these matching pairs is selected to
solve the rotation matrix R and the translation matrix T, it is likely that the matrix R and T only satisfy
these parts. The concentrated feature points are gathered, and the feature point clouds which are far
away from each other cause a large error, that is to say, there is a phenomenon that the local matching
is good but the global fusion is poor.

Therefore, when selecting four feature matching pairs, we should choose the global dispersion as
much as possible. In this paper, we use Euclidean distance to select matching pairs. The maximum
Euclidean distance between the matching pairs on the same 2D image is calculated. If the distance
between any two of the four matching pairs on the same 2D image is greater than 0.5 times the
maximum Euclidean distance, the four feature matching pairs are selected to transform into 3D space.
By calculating the rotation and translation matrices through the above five steps, the registration of
three-dimensional point clouds can be realized.

4.2. Optimization of Pose Graph Based on HOG-Man

We can suppose x = (x1, x2, · · · , xn)
Tis a vector of robot’s poses, where xi is the pose at node i,

zij and Ωij refer to the average value and information matrix of the jointly observational node i and
j, respectively. ẑij

(
xi, xj

)
indicates estimated value at xi and xj. So, we can define an error function

e
(

xi, xj
)

to calculate the difference between ẑij and zij: eij
(

xi, xj
)
= zij − ẑij

(
xi, xj

)
. The purpose is

obtaining the node x∗ and making the negative log-likelihood F (x) of the set of observation data to
come to the minimum. In machine learning, it is accustomed to using the optimization algorithm to
find the minimum value, so the negative log-likelihood (NLL) is usually used. As the probability is
always less than or close to 1, the value of NLL is always greater than 0. The probability is close to 1,
and the value of NLL is close to 0, reaching the minimum value.
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The maximum likelihood method is used to obtain the pose of node x∗ and minimize the negative
log-likelihood function F (x) of all observations. F (x) is expressed by Equation (9).

F (x) = ∑
〈i,j∈C〉

eT
ijΩijeij︸ ︷︷ ︸

Fij

(9)

where C is a set of exponential pairs that restricts the existence of z. Therefore, the objective of
optimizing the pose graph is

x∗ = arg min
x

F (x) . (10)

The HOG-Man algorithm is an effective method to solve the target.

4.2.1. Hierarchical Pose-Graph

The construction process of a hierarchical pose-graph is an incremental process. The core of this
idea is, according to some standards, thus: the original graph is divided into multiple sub-graphs and
one node of a sub-graph is used to represent the sub-graph to get the abstraction of the original layer.
Then the multilevel graph structure is obtained by abstracting the resulting graphs in proper sequence,
which can extract the topology structure of the original graph. When a new node is added to the
diagram, it is first added to the original graph, and then it can be judged whether the added node
changes the sub-map division. If there is a change, it needs to update the high-level map and
simultaneously optimizes the top-level, the underlying diagram will be updated and the reverse
transmission will go on from the top of the map to the bottom layer only when the topological
structure of the top-level makes a great change. This ensures real-time optimization. The core of the
process is the representation problem of abstraction at different levels. Each layer is a pose map and
there is a corresponding relationship between the abstraction layers. The updating process of the
hierarchical pose-graph is shown in Figure 2.

Figure 2. Updating process of the hierarchical pose-graph.

This establishment process is an incremental process. Figure 2 illustrates the updating process of
the hierarchical pose-graph by taking a two-layer graph as an example. Suppose you have the graph
structure on the left in Figure 2. Among them, S represents the subgraph, L represents the abstract
level, the white points represent the L0 layer nodes, and the blue points in the L0 layer are selected
as the L1 layer nodes. There are already three subgraphs on the left. When two new nodes like red
node A and node B need to be added, the distance between the node and the representative node in
the nearest subgraph is used to determine whether to add an existing subgraph (such as node B) or
establish a new subgraph (such as node A) on the right in Figure 2.
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4.2.2. Linearized State Space as a Manifold

We can assume the initial estimation of the robot’s position as x̆. Equation (10) can be solved by
Gauss-Newton or Levenberg-Marquardt. This idea is to approximate the error function through the
first-order Taylor expansion of the initial estimation x̆

eij(x̆i + ∆xi, x̆j + ∆xj) = eij(x̆ + ∆x)

' eij + Jij∆x (11)

where Jij is a Jacobian of eij, which can be solved by x̆, eij
def
= eij(x̆). Substituting Equation (11) into

Equation (9):

Fij (x̆ + ∆x) = eij (x̆ + ∆x)T Ωijeij (x̆ + ∆x)

=
(
eij + Jij∆x

)T Ωij
(
eij + Jij∆x

)
= eT

ij
Ωijeij︸ ︷︷ ︸
cij

+ 2eT
ij

Ωij Jij︸ ︷︷ ︸
bij

∆x

+∆xT JT
ij

Ωij Jij︸ ︷︷ ︸
Hij

∆x

= cij + 2bij∆x + ∆xT Hij∆x. (12)

According to the principle of local approximation, F(x) can be represented as

F (x̆ + ∆x) = ∑
〈i,j〉∈C

Fij (x̆ + ∆x)

' ∑
〈i,j〉∈C

cij + 2bij∆x

+∆xT Hij∆x

= c + 2bT∆x + ∆xT H∆x (13)

where in Equation (13), c = ∑ cij, b = ∑ bij and H = ∑ Hij. We can minimize ∆x̃ through the linear
system solution

H∆x∗ = −b (14)

where H is the information matrix of the system. Add ∆x∗ to the robot’s initial pose estimation x̆:

x∗ = x̆ + ∆x∗. (15)

Equation (13) is iterated using a Gaussian-Newton method to solve Equation (14) and update
Equation (15). In the iterative process, the solutions which have been obtained previously are served
as linearized reference points and initial estimation [53].

Manifold is a space with local Euclidean space property. It is used to describe the geometric form
in mathematics [54]. In the SLAM, each parameter xi is made up of a translation component ti and a
rotation component αi. Among them, translation components exist in Euclidean space, but rotation
components span 2D and 3D spaces. First, considering that the state space is not a Euclidean
space, but the manifold allows us to handle singular points by introducing angular components.
With manifolds, we can find a more efficient linearization system to solve the optimization problem.
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We can assume Θ as an operator, which represents the mapping of local variable ∆x from
Euclidean space to a manifold xΘ∆x. Then, based on this process, the error can be expressed by the
following new equation

ex̆
ij
(
∆x̃i, ∆x̃j

) def
= eij

(
x̆iΘ∆x̃i, x̆jΘ∆x̃j

)
= eij (x̆Θ∆x̃)

' eij + J̃ij∆x̃ (16)

where

J̃ij =
∂eij (x̆Θ∆x̃)

∂∆x̃
|∆x̃=0. (17)

By substituting Equation (16) into Equations (13) and (17), the following equation is obtained

H̃∆x̃∗ = −b̃.1 (18)

∆x∗ is an increment, which can be calculated. Combining with the operator Θ, Equation (15) can
be updated.

x∗ = x̆Θ∆x̃∗. (19)

To summarize, the problem of optimization has been solved by combining Equations (18) and (19).

5. Design of the RGB-D SLAM Algorithm Combined with Cloud Robot

The implementation of the RGB-D SLAM algorithm in the cloud robot framework is to overcome
the high complexity, such as the huge amount of data, complex computation, and so on. However,
due to the limitations of the SLAM algorithm and the network delay, it is not feasible to move all
calculations to the cloud. To solve this problem, the robot client sends the key frame to the cloud server
through a standard wireless network and completes the tracking task with the local sub-optimal Map.
While the cloud server constructs the global map after receiving the key frame, and also optimizes and
fuses the local map to the global map, then sends the final map to the robot client.

5.1. Framework of Cloud Robot

The visual RGB-D SLAM method proposed in this paper is mainly based on a distributed
framework, which takes expensive computing and storage tasks as a service in the cloud, while those
tracking tasks with high real-time requirements can be used as local client services. In this way,
mobile robots can be freed from complex computational tasks in the process of motion, and more
computational resources can be allocated to tasks with higher real-time requirements, such as obstacle
avoidance, navigation, and tracking.

In terms of cloud robotics, researchers have proposed many algorithms for the SLAM problem.
The three most popular frameworks are DAvinCi, Rapyuta, and C2TAM. This paper combines the
RGB-D SLAM algorithm with the framework of C2TAM. The improved framework is shown in Figure 3.

In the data acquisition part, a variety of sensors can be chosen, such as a camera, depth sensor,
stereo vision sensor, and so on. 3D spatial information, such as RGB image information and depth
information, is acquired by visual sensors. After the information is collected by the robot, this part
of the work that information is processed by the robot is simply referred to as the tracking work.
The tracking work includes the task of feature detection and descriptor extraction, pose estimation and
pose map optimization, 3D point cloud stitching, tracking local map, and retrieving new key frames.

In the tracking work, the camera pose estimation is completed, the camera pose state τt at each
time t is estimated, and the local map tracking is completed. At the same time, the key frames are sent
to the cloud. Different from the previous SLAM method, the mapping part is put into the cloud and
the standard wireless network is used to connect in the middle process. At the same time, the local
robots and the cloud servers share the map information.
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Figure 3. Framework of Combining RGB-D SLAM with Cloud Robot.

In the improved algorithm, the robot client sends a new key frame to the cloud map construction
part only when the collected information contains new map information during the tracking process.
According to the received new key frames the map construction thread in the cloud matches the feature
points corresponding to the same scene between different key frames. After matching, the 3D scene
positions of these scenes are restored by triangulation. BA adjustments are made to all key frames and
3D points, and then the accurate three-dimensional map is restored.

After each BA adjustment, the new map is sent to the robot. The frequency of information
transmission between the robot client and the cloud server is lower than the normal frequency of
data acquisition. In the exploratory stage, the number of new key frames is very small, far less than
the frame rate, and there will be no new key frames generated in the places that have already passed.
During the experiment, the standard wireless network can be used to connect. Tracking and map
building tasks can be completed on different computers. In addition, it has high robustness for network
delay in the two data streams. The tracking part can run sub-optimal maps until the next globally
optimized map is completed and sent, which can reduce the loss of camera tracking and ensure the
normal tracking process.

In the improved SLAM algorithm, map optimization and storage functions with a high
computational cost and low real-time requirements are allocated to the cloud. Tracking tasks with high
real-time requirements are allocated to run on local robots, and only a reliable communication network
is needed in the middle. Because of the low traffic between the cloud and robot client, a standard
wireless communication network can meet the communication requirements in this paper.

5.2. RGB-D SLAM Algorithms with Cloud Robot

5.2.1. Separation of Tracking and Map Construction

During the tracking process, key frames and feature points in the image are extracted by modeling
each frame image and described by descriptors, and then the position state of the camera is obtained
through the feature point change relationship between different frames

τt = {T, dt}

Through the transformation of the position state, the sequence of the pose transformation
relationship of the camera is obtained, and then the pose is estimated to realize the tracking process.
In this process, it is often carried out at a certain frame rate. If some frames are skipped, tracking
failure may occur. Therefore, the real-time requirement of the tracking process is relatively high. It is
sensitive to network delay, and the amount of data is relatively large, so it is not suitable for processing
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in the cloud. However, it can be used as a local service, and the distribution is run on the local machine.
Through image tracking, the robot can extract the key frames and transmit them to the cloud server.

In the map construction, scene maps are estimated according to the key frame scenario
model extracted by the tracking part. At the same time, different maps in the map database
{M1, . . . , Mk, . . . , Ml} are optimized. The scene features shared in some key frames are merged
to form the global optimal map. The tasks, such as estimation, optimization, and map fusion in
map construction are very computationally intensive and usually, take up more than half of the
SLAM problem. Although it consumes a lot of computing resources, there are no very high real-time
requirements for optimization problems in the database.

In the process of tracking, it is possible to lose the tracking because a frame of the image is
not processed. However, the optimization process is for the whole and does not affect the backend
work because one frame of image is not processed. During the optimization process, the key frame BA
method can be selected to optimize the map, which can reduce the communication between the robot
client and the cloud.

At the same time, the tracking part can also use sub-optimal maps to track, so that the results
of tracking will not be affected by ongoing map construction. With the above features, the map
construction part can tolerate network delay, so it can be used as a cloud service. At the same time,
through the huge data processing and storage capacity of the cloud server, it can effectively save data
processing time, reduce the load of the robot, and reduce the weight of the robot.

Robot client and cloud servers are connected through the standard Wifi network. The robot client
sends key frames to the cloud. The map building part of the cloud receives key frames, and optimizes
the key frames to complete the map building. Because key frames need to be detected and extracted
by the feature, the image frame can be extracted as a key frame only if new feature information is
included in the newly received image frame. Therefore, the ratio of key frames is very low compared
to the total image frame. In other words, in the process of transmission, only the key frames need to
be transmitted to the cloud, rather than all the image frames needing to be transmitted to the cloud.
This can greatly reduce the bandwidth load, ensure the communication speed between the robot and
the cloud, ensure the real-time performance of the robot, and achieve the separation of tracking and
map building.

5.2.2. Location Recognition and Relocation Separation

The mobile robot relocates the place where it has been estimated and saved in the cloud. This
process is called relocation. The relocation in the tracking process is mainly reflected in two aspects:

(1) The system worked smoothly during the tracking process but the system tracking is lost due
to sudden movement or large occlusion. In this case, the system is likely to be on the original map.
Therefore, the system relocation process only needs to search the current map and this part of the
process only needs to be executed on the local robot.

(2) Robots have been lost for a long time or have just started. In this case, the robot relocation
needs to search for more relevant maps.

For (1), the relocation can be run on the robot itself because the robot has its own sub-optimal
local map. For (2), map search in a large map environment is very computationally intensive, so it can
be allocated as a cloud service in the cloud.

However, this process is particularly sensitive to network latency. If the self-localization process
takes too much time, the robot may have moved to another place. Therefore, the self-positioning
process needs to solve the problems of large data search and sensitivity to network delay. During the
experiment, a small image comparison may cost about 0.03 ms, but there are hundreds of image frames
in a map and hundreds of maps in a database. Therefore, a search can easily take several seconds. In a
few seconds, the robot can move for a long distance.
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To solve the above problems, this paper proposes to separate the location recognition and the
self-localization, the location recognition can run in the cloud the self-localization can run in the
robot client.

(1) The Location Recognition: the cloud server quickly and roughly searches the map. This fast
search takes a lot of time, and the camera may have moved a distance when the relocation data arrives
at the client. Therefore, after the retrieval is completed, the cloud server sends a small number of
filtered relocation candidates to the client, including the key frames closest to the first stage and several
key frames from the same map. The process is shown in Figure 4. The robot client sends key frames
to the cloud, and the cloud retrieves the key frames. After finding the corresponding map, the key
frames corresponding to the map are transmitted to the robot client, which contains some key frames
adjacent to the current key frame. Even if the robot has moved, it can be relocated to the position of
the robot through the surrounding key frames.
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15C
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Figure 4. Data transfer problem in position recognition.

(2) Relocation: When the client receives the key frames sent by the cloud server, it finds the
corresponding sub-optimal local map, and relocates the key frames acquired by the current robot,
and locates them accurately. Therefore, the delay does not affect the second stage, as shown in Figure 5.

Relocation

Tracking 

Lost

Tracking 

Success

Robot Client

Figure 5. Client’s relocation process.

5.2.3. Cloud Map Fusion

After receiving the key frames, the cloud server retrieves all the key frames. If common features
are found, there are the overlapping areas of the map. In fact, the process of cloud map fusion is to
splice and merge the common features of different maps, to splice the common features of the maps,
and to construct a global map with more consistency through splicing and fusion. Because there is
no real-time limitation in the process of map fusion, the process of map optimization and fusion in
SLAM can be performed in the cloud. The complete map fusion process can be seen in Figure 6. Cloud
map fusion can not only improve the efficiency of key frame search and fusion but also integrate
different maps constructed by different robots into globally consistent maps, thus realizing multi-robot
map construction.

In Figure 6a, The robot client R1 tracks the camera pose and uploads a new keyframe C13 to the
cloud, which builds map M1 of newly uploaded key frames. At the same time, the cloud compares the



Sensors 2019, 19, 5288 16 of 28

newly uploaded key frames and detects the overlapping parts of the map, such as C13 in M1, and C22

in M2 in Figure 6b. After finding the overlapping part, the overlapping part is merged to form a
new map M12. At the same time, the cloud sends the new map M12 to the robot client, as shown in
Figure 6c. In this process, high communication traffic may be generated because the robot does not
have optimized maps and keyframes, so the map M12 and keyframe feature points need to be sent
to the robot client. Although the process may generate high traffic, the real-time requirement of the
process is not high, so it can be sent slowly. In this way, local maps are updated to new maps.
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Figure 6. Map fusion process in cloud services. (a) Update keyframe to the cloud; (b) Overlapping
detection; (c) Send New map to the robot client.

At the same time, it takes a lot of time to download the map M12. In order to ensure the robustness
of the algorithm, the following measures can be taken:

(1) When the map Mk is sent from the server to the client, the key frames should also be
downloaded to the client. The transmission order of key frames can be determined by the key
frames and the current frame of the camera. The key frames with smaller distances are sent first.
This ensures that the client has the best possible estimate of the currently accessing area, while the
remote area does not interfere with the current estimate.

(2) When the map Mk is downloaded, the client can explore new areas and upload new key frames
to the cloud server. But these new keyframes may take a long time to be downloaded because the
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map Mk has to be downloaded first. The solution to this problem is that the server performs a local
BA adjustment at any time. When the key frames arrive and send them to the high priority clients.
Through this method, we can ensure that the initial key frame can be sent to the client quickly and that
the tracking is not lost again.

6. Experiments

We divide the experiments into three parts. The first part compares the original RGB-D SLAM
algorithm with the improved RGB-D SLAM algorithm. The second part is the experimental analysis
of the RGB-D SLAM algorithm combined with cloud robotics. The third part compares the two
different methods of local RGB-D SLAM and RGB-D SLAM combined with the cloud robot in multiple
indoor scenes.

Similar to the C2TAM framework, we use ROS(Robot Operating System) to realize our cloud
computing platform for RGB-D SLAM. The robot client is a laptop (Intel Core i7-4700HQ CPU and
8.0GB RAM) which runs the tracking process. The cloud server is a Linux virtual machine(Ubuntu
Server 16.04 LTS 64bit) running on our university’s private cloud which enables ubiquitous on-demand
access to a shared pool of configurable computing resources. They are connected through our
university’s wireless LAN. The private cloud is deployed on a high-performance server cluster which
including a management node and 7 computing nodes. The ROS middleware is used throughout our
system (the cloud server and the robot client) to provide tools for managing global access to parameters
and data.

In order to test the validity of our algorithm, we implement two kinds of experiments. The first
kind is conducted online in our lab environment, and a Microsoft Kinect (V1) is connected to the robot
client providing 640 × 480 RGB and depth frames at a 30-Hz rate. The second kind is accomplished
off-line by utilizing the RGB-D benchmark provided by the Technical University of Munich [55].
The Benchmark data were taken also by a Microsoft Kinect (V1) sensor, and the ground truth data
were taken by a highly accurate motion capture system which was composed of eight 100-Hz cameras.

6.1. Comparison of the RGB-D SLAM Algorithm

Before introducing the effect of the RGB-D algorithm, we first compare ICP and SVD registration
methods through four sets of point cloud scenarios. These experiments are completed on the robot.
Figures 7 and 8 show the experimental results of one set of data. Figure 7 is the point cloud data
to be matched. The left side of Figure 8 is the registration result of point clouds using the ICP
algorithm, and the right is the registration result obtained by the SVD method. We find that the ICP
matching results are biased, the effect is general, and the SVD matching edge features tend to be
consistent, the effect has been significantly improved. It shows the effectiveness and practicability of
the SVD algorithm.

From the data in Table 3, we can see that the traditional ICP algorithm has 50 iterations and the
registration time is 60,118 ms. The improved SVD algorithm has 10 iterations and the registration
time is 7183 ms. From the point of view of registration error, the registration error of this algorithm is
smaller than that of the traditional ICP algorithm. Therefore, it can be concluded that the proposed
algorithm not only shortens the registration time but also has a smaller registration error and higher
registration accuracy.

Figure 9a,b show our lab environment, which can better verify the effectiveness and timeliness of
our algorithm. Figure 9a is a 3D map obtained by using the original RGB-D SLAM algorithm. It can
be seen from the map that there is a large error in the horizontal and vertical directions, and in the
process of stitching, there are double shadows and bending, resulting in low accuracy of map building.
Figure 9b is a 3D map obtained by using the improved RGB-D SLAM algorithm. As can be seen from
the map, the stitching effect of the map has been greatly improved, and the problem of the double
shadows and bending is also solved, which also shows that the cumulative error in the map building
process is reduced. Thus, the need for high precision and high quality is achieved. Through the
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analysis of two figures, we can see that the improved algorithm can better complete the stitching of
the map indoor and then combine the evaluation effect of each link, it fully proves that the improved
algorithm is more advantageous.

Figure 7. The point clouds to be matched.

Figure 8. The registration effect of two different methods.

Table 3. Comparison of two registration methods

Registration Method Running Time (ms) Iterations Average Error (×10−6 m)

Classical ICP method 60,118 50 14.3
Improved SVD method 7183 10 8.8

Figure 10 shows the trajectory results of the sequence “freiburg2_desk” compared to the
ground-truth with two algorithms. Figure 10a shows the results of the original RGB-D SLAM. The green
trajectory represents the ground truth. The difference between the estimated trajectory and the ground
truth trajectory is shown in red. Figure 10b shows the results of the improved RGB-D SLAM algorithm.
To evaluate the different algorithms, we use the absolute trajectory error (ATE) as proposed by
Sturm et al. [21]. Table 4 shows the statistical results of trajectory error indicators. The six trajectory
error indicators are RMSE(Root mean squared error), Mean, Median, STD(Standard Deviation), MIN
and MAX. The results show that the location error of our improved algorithm is obviously reduced.
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(a)

(b)

Figure 9. Comparison of two RGB-D algorithms. (a) A 3D map obtained by using the original RGB-D
SLAM algorithm. (b) A 3D map obtained by using the improved RGB-D SLAM algorithm.

(a) (b)

Figure 10. Comparison of the trajectories for the sequence “freiburg2_room”. (a) The trajectories
obtained by using the original RGB-D SLAM algorithm. (b) The trajectories obtained by using the
improved RGB-D SLAM algorithm.
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Table 4. Comparison results of trajectory error indicators.

Index Terms Method

Original RGB-D SLAM (m) Improved RGB-D SLAM (m)

RMSE 0.095054 0.009679
Mean 0.093701 0.008139

Median 0.094659 0.006937
STD 0.016023 0.005229
MIN 0.047141 0.000787
MAX 0.145821 0.022873

6.2. Experimental Analysis of the RGB-D SLAM Algorithm Combined with Cloud Computing

In this section, we analyze the computing time consumed by the cloud server and the robot client,
and the network flow between the cloud server and the client. At the same time, we analyze the
cloud map merging. The experiment deals with the “freiburg2_desk” sequence in the TUM RGB-D
Dataset, an RGB-D sequence of 2964 frames which was recorded at full frame rate(30 Hz), and the
sensor resolution is 640 × 480, using the proposed algorithms.

6.2.1. Computational Performance and Bandwidth Analysis

During the experiment, all experiments can be run in real-time, and the devices in the experiment
are connected to our university’s wireless LAN. Figure 11 shows in a double-axis figure the
computational performance of the robot with the tracking process and the size of the constructed map.
It can be seen from Figure 11, the horizontal axis represents the number of tracking image frames,
and the vertical axis represents the tracking time (in blue) and the size of the generated map (in red).
The computation time of the tracking process is kept at about 8 ms. Even if the tracking is lost, it can
be kept within a certain threshold.

This shows that the tracking part can be completed on the robot’s onboard computer with limited
local resources while ensuring the real-time performance of the tracking. It should be noted that
the calculation in the front part of the sequence is about 30 ms, which is caused by the initialization
of the first 25 frames, which does not affect the subsequent results of the experiment. During the
entire tracking process, the time consumed by tracking has not changed much, but the size of the map
is increasing. More and more information is included in the map. From the red curve in the map, it can
be seen that the size of the map is increasing as time goes on.

Figure 12 shows the bandwidth analysis under the same experiment. The blue peak data in the
figure indicates that the map builder transmits the data to the cloud server. It can be seen that the
heights of the blue peaks are the same because the keyframes sent by the client to the cloud server are
the same size.

The red peak indicates the size of data flow information from the cloud server to the client. As can
be seen from Figure 12, the size of data flow from cloud to robot increases slightly with the passage of
time. This is because in this process, as the range of motion of the robot continues to expand, the map
constructed will also continue to expand, and may become a very large related map. At the same time,
it also shows that the keyframes and points closer to the current camera pose should be given higher
priority, which can keep the client from losing track. Using the proposed algorithm, the map can be
constructed in a standard wireless network environment.

Each RGB-D pixel in the keyframe is represented by 4 bytes, and the size of one keyframe is
1200 KB (4B × 640 × 480 = 1200 KB). In the actual communication process, there are pose information,
timestamp, and some other parameter information that needs to be transmitted, but these auxiliary
messages can be transmitted at no more than 1 kb/s. As can be seen from Figure 12, the average
transmission interval of keyframes is more than 1 s, while the average data flow of this experiment is
about 1 MB/s, so our algorithm can achieve good real-time results.
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Figure 11. Computational performance analysis (map size (right axis) and tracking time (left axis)).

Figure 12. Robot client and cloud server communication analysis.

6.2.2. Fusion of Overlapping Areas

An important step in the improved algorithm is to achieve the splicing and fusion of the map.
The cloud server may contain many maps that are previously reserved. As the robot is re-opened,
the relationship between the map and the map is closer. As new keyframes are continuously uploaded
to the cloud server, the overlapping areas between the map and the map begin to appear slowly. At this
time, the maps containing the common features can be merged by retrieving the common features in
the key frames.

During the experiment, we assume that in a scene map A, the camera moves from desktop A
to desktop B, and the point cloud is composed as shown in Figure 13a. At the same time, there is an
estimated map of desktop B in the map of the cloud server, as shown in Figure 13b. When the camera
moves from desktop A to desktop B and adds key frames to the map, the similarity between the new
key frames and each key frame in other maps is checked to find the common features between the key
frames, that is, the common maps with different maps.

Comparing Map A and Map B, it is obvious that there are common areas, such as the computer,
the tables, the telephone and the globe in both maps. However, there are no chairs in Map A and
no books on the left side of Map A in Map B. For these two maps, it is necessary to fuse common
information and preserve their respective non-common features. When the camera moves from A to B,
the map fusion process detects the similarity between the current key frame and the previous map key
frame, and fuses the two maps into one map, as shown in Figure 13c.

6.3. Comparison of Overall Experimental Results

In order to verify the effect of the RGB-D SLAM based on cloud robot, we carried out a map
building experiment on the 3D environment in the real scene. The RGB information and depth
information of the two frame images used in the experiment are shown in Figure 14.

Figure 15a shows the RGB channel of the key_frame topic which is subscribed by the
rgbd_mapping node in the cloud. Figure 15b shows the point cloud channel of the rgbd_map topic
which is published by the rgbd_mapping node.
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(a) (b)

(c)

Figure 13. The process of map fusion. (a) Map A. (b) Map B. (c) The map after the fusion.

(a) (b)

(c) (d)

Figure 14. RGB and depth information of two frame images. (a) RGB information of the first frame.
(b) Depth information of the first frame. (c) RGB information of the second frame. (d) Depth information
of the second frame.
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(a) (b)

Figure 15. Image display. (a) Image displayed for key_frame topic. (b) Image displayed for
rgbd_map topic.

For the two frames of image data in Figure 14, the reconstruction effect of the 3D environment
map using the RGB-D SLAM algorithm combined with the cloud robot is shown in Figure 16. As can
be seen from the figure, the reconstruction effect is less deviated from the real environment, and the
object in Figure 16 does not produce a ghosting phenomenon, which also proves that the accuracy and
stability of the method are relatively high.

Figure 16. The reconstruction of the 3D environment combined with the cloud.

We make detailed statistics on the time consumption in the reconstruction of the 3D environmental
map in multiple indoor scenes between the two methods, combined in the cloud or not, as shown
in Table 5.

Table 5. Time consumption comparison of two methods for map building.

Scene Combined Cloud Local

Data Transfer Time (ms) Execution Time (ms) Time Consumption (ms) Time Consumption (ms)

A 6546 4856 11,402 36,406
B 5009 4893 9902 35,782
C 6298 5421 11,719 41,010
D 5974 4782 10,756 39,546
E 7283 6438 13,721 42,162

Mean 6222 5278 11,500 38,981

It can be seen from Table 5 that the mean time consumption of RGB-D SLAM combined with the
cloud is about 12 s, while the local end is around 39 s. As a result, the gap of implementation efficiency
is larger for the same scene, which also shows that the method of 3D map building with cloud robot is
more effective and more real-time.
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According to the RGB-D SLAM algorithm, the performance analysis and comparison of the
RGB-D SLAM with the cloud robot and the RGB-D SLAM with the local robot are described. In this
paper, three indicators are used as the measurement criteria: (1) Frame number (Fps). Considering that
for the same SLAM task, the number of images to be processed is certain, so the problem affecting the
efficiency of SLAM is to calculate the speed of processing the image. (2) Energy consumption (J/10fps),
the robot itself is resource-constrained and includes its energy. Therefore, the energy consumption
caused by performing the same SLAM task is also an important indicator to measure the efficiency of
SLAM, in order to accurately describe the energy consumption brought by SLAM, which measures the
impact of the architecture, is measured by its average energy consumption per 10 frames. (3) Network
circulation data (MB). The amount of data interaction between robots and the cloud, the speed of data
interaction are also important indicators affecting SLAM. As shown in Table 6 and Figure 17, compared
with the local robot’s RGB-D SLAM, the number of frames combined cloud robot is increased from
1.7fps to 21fps, and the energy consumption per 10 frames is reduced from 13.2J to 5.0J. From the
comparison results of the frame number, the method combined with the cloud robot can process the
collected data in time and get SLAM results faster. So, in practical application, the robot can obtain
the map and location information which can be computed by the current sensing data acquisition in
almost real-time. In terms of energy consumption, because the computer module of SLAM process
which consumes more energy is put from the robot to the cloud for execution, the energy consumption
of cloud-based robot method is significantly reduced, which means that the robot can accomplish more
tasks with limited energy and reduce the frequency of the supply and the maintenance.

Table 6. Performance comparison of two methods.

Scene

Combined Cloud Local

Num.
Frames
(fps)

Energy Con.
(J/10fps)

Data Size
(MB)

Num.
Frames
(fps)

Energy Con.
(J/10fps)

Data Size
(MB)

A 20.28 4.83 5.67 1.72 12.94 10.95
B 21.25 5.21 6.88 1.78 13.97 11.24
C 21.64 4.94 7.53 1.65 12.98 11.36
D 20.92 5.11 5.43 1.73 13.32 11.18
E 21.35 5.03 6.92 1.66 13.38 11.48
Mean 21.088 5.204 6.486 1.708 13.178 11.242

Figure 17. Performance comparison between different RGB-D SLAM.
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7. Conclusions

In this paper, the key aspects of the whole RGB-D SLAM algorithm are analyzed. The algorithm
is improved from three aspects: feature extraction, point cloud stitching, and pose optimization.
The combination of the RGB-D SLAM algorithm and cloud robot technology is realized, and the
computationally intensive algorithm backend is offloaded to the cloud. The service architecture
of SLAM combined with the cloud robot is designed by using the ROS software framework.
The advantages of the algorithm are analyzed through experiments.

As a next step, the key issue we consider is how to realize data storage and sharing between
multiple robots and cloud platforms when tasks need to be performed cooperatively in the process of
combining cloud robotics and the RGB-D SLAM algorithm. We plan to design the detection module of
the communication quality to determine whether the back-end function of RGB-D SLAM is executed
in the cloud or locally.
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4. Belter, D.; Nowicki, M.; Skrzypczyński, P. Modeling spatial uncertainty of point features in feature-based
RGB-D SLAM. Mach. Vis. Appl. 2018, 29, 827–844. [CrossRef]

5. Whelan, T.; Kaess, M.; Johannsson, H.; Fallon, M.; Leonard, J.J.; Mcdonald, J. Real-time Large-scale Dense
RGB-D SLAM with Volumetric Fusion. Int. J. Rob. Res. 2015, 34, 598–626. [CrossRef]

6. Silva, B.M.F.D.; Xavier, R.S.; Nascimento, T.P.D.; Gonsalves, L.M.G. Experimental evaluation of ROS
compatible SLAM algorithms for RGB-D sensors. In Proceedings of the 2017 Latin American Robotics
Symposium (LARS) and 2017 Brazilian Symposium on Robotics (SBR), Curitiba, Brazil, 8–11 November 2017.

7. Alexiadis, D.S.; Zioulis, N.; Zarpalas, D.; Daras, P. Fast deformable model-based human performance capture
and FVV using consumer-grade RGB-D sensors. Pattern Recognit. 2018, 79, 260–278. [CrossRef]

8. Ramírez De La Pinta, J.; Maestre Torreblanca, J.M.; Jurado, I.; Reyes De Cozar, S. Off the Shelf Cloud Robotics
for the Smart Home: Empowering a Wireless Robot through Cloud Computing. Sensors 2017, 17, 525.
[CrossRef]

9. Zhu, D. IOT and big data based cooperative logistical delivery scheduling method and cloud robot system.
Future Gener. Comput. Syst. 2018, 86, 709–715. [CrossRef]

10. Koubaa, A.; Bennaceur, H.; Chaari, I.; Trigui, S.; Ammar, A.; Sriti, M.; Alajlan, M.; Cheikhrouhou, O.;
Javed, Y. Robot Path Planning Using Cloud Computing for Large Grid Maps. In Robot Path Planning and
Cooperation: Foundations, Algorithms and Experimentations; Koubaa, A., Ed.; Springer International Publishing:
Cham, Switzerland, 2018; pp. 103–126.

11. Henry, P.; Krainin, M.; Herbst, E.; Ren, X.; Fox, D. RGB-D Mapping: Using Depth Cameras for Dense
3D Modeling of Indoor Environments. In Experimental Robotics: The 12th International Symposium on
Experimental Robotics; Khatib, O., Kumar, V., Sukhatme, G., Eds.; Springer: Berlin/Heidelberg, Germany,
2014; pp. 477–491.

http://www.ncbi.nlm.nih.gov/pubmed/23807480
http://dx.doi.org/10.1016/j.patrec.2014.09.013
http://dx.doi.org/10.1007/s00138-018-0936-9
http://dx.doi.org/10.1177/0278364914551008
http://dx.doi.org/10.1016/j.patcog.2018.02.013
http://dx.doi.org/10.3390/s17030525
http://dx.doi.org/10.1016/j.future.2018.04.081


Sensors 2019, 19, 5288 26 of 28

12. Liu, Y.; Zhang, H.; Guo, H.; Xiong, N.N. A FAST-BRISK Feature Detector with Depth Information. Sensors
2018, 18, 3908. [CrossRef]

13. Lowe, D.G. Object recognition from local scale-invariant features. In Proceedings of the 7th IEEE International
Conference on Computer Vision, Kerkyra, Greece, 20–27 September 1999; pp. 1150–1157.

14. Fischler, M.A.; Bolles, R.C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to
Image Analysis and Automated Cartography. Commun. ACM 1981, 24, 381–395. [CrossRef]

15. Besl, P.J.; McKay, N.D. A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992,
14, 239–256. [CrossRef]

16. Grisetti, G.; Grzonka, S.; Stachniss, C.; Pfaff, P.; Burgard, W. Efficient estimation of accurate maximum
likelihood maps in 3D. In Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots
and Systems, San Diego, CA, USA, 29 October–2 November 2007; pp. 3472–3478.

17. Henry, P.; Krainin, M.; Herbst, E.; Ren, X.; Fox, D., RGB-D mapping: Using Kinect-style depth cameras for
dense 3D modeling of indoor environments. Int. J. Robot. Res. 2012, 31, 647–663. [CrossRef]

18. Rosten, E.; Drummond, T. Machine Learning for High-speed Corner Detection. In Proceedings of the 9th
European Conference on Computer Vision, Graz, Austria, 7–13 May 2006; pp. 430–443.

19. Calonder, M.; Lepetit, V.; Fua, P. Keypoint Signatures for Fast Learning and Recognition. In Proceedings of
the 10th European Conference on Computer Vision, Marseille, France, 12–18 October 2008; pp. 58–71.

20. Lourakis, M.I.A.; Argyros, A.A. SBA: A Software Package for Generic Sparse Bundle Adjustment. ACM Trans.
Math. Softw. 2009, 36, 2. [CrossRef]

21. Sturm, J.; Engelhard, N.; Endres, F.; Burgard, W.; Cremers, D. A benchmark for the evaluation of RGB-D
SLAM systems. In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and
Systems, Vilamoura, Portugal, 7–12 October 2012; pp. 573–580.

22. Endres, F.; Hess, J.; Engelhard, N.; Sturm, J.; Cremers, D.; Burgard, W. An evaluation of the RGB-D
SLAM system. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation,
Saint Paul, MN, USA, 14–18 May 2012; pp. 1691–1696.

23. Bay, H.; Tuytelaars, T.; Van Gool, L. SURF: Speeded Up Robust Features. In Proceedings of the 9th European
Conference on Computer Vision, Graz, Austria, 7–13 May 2006; pp. 404–417.

24. Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G. ORB: An efficient alternative to SIFT or SURF. In Proceedings
of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011;
pp. 2564–2571.

25. Kümmerle, R.; Grisetti, G.; Strasdat, H.; Konolige, K.; Burgard, W. G2o: A general framework for graph
optimization. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation,
Shanghai, China, 9–13 May 2011; pp. 3607–3613.

26. Hornung, A.; Wurm, K.M.; Bennewitz, M.; Stachniss, C.; Burgard, W. OctoMap: An efficient probabilistic 3D
mapping framework based on octrees. Auton. Robots 2013, 34, 189–206. [CrossRef]

27. Scherer, S.A.; Zell, A. Efficient onbard RGBD-SLAM for autonomous MAVs. In Proceedings of the 2013
IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013;
pp. 1062–1068.

28. Grisetti, G.; Kümmerle, R.; Stachniss, C.; Frese, U.; Hertzberg, C. Hierarchical optimization on manifolds
for online 2D and 3D mapping. In Proceedings of the 2010 IEEE International Conference on Robotics and
Automation, Anchorage, AK, USA, 3–7 May 2010; pp. 273–278.

29. Quang, H.P.; Quoc, N.L. Some improvements in the RGB-D SLAM system. In Proceedings of the 2015
IEEE RIVF International Conference on Computing & Communication Technologies—Research, Innovation,
and Vision for Future (RIVF), Can Tho, Vietnam, 25–28 January 2015; pp. 112–116.

30. Neumann, D.; Lugauer, F.; Bauer, S.; Wasza, J.; Hornegger, J. Real-time RGB-D mapping and 3-D modeling
on the GPU using the random ball cover data structure. In Proceedings of the 2011 IEEE International
Conference on Computer Vision Workshops, Barcelona, Spain, 6–13 November 2011; pp. 1161–1167.

31. Lee, D.; Kim, H.; Myung, H. GPU-based real-time RGB-D 3D SLAM. In Proceedings of the 9th International
Conference on Ubiquitous Robots and Ambient Intelligence, Daejeon, Korea, 26–28 November 2012;
pp. 46–48.

http://dx.doi.org/10.3390/s18113908
http://dx.doi.org/10.1145/358669.358692
http://dx.doi.org/10.1109/34.121791
http://dx.doi.org/10.1177/0278364911434148
http://dx.doi.org/10.1145/1486525.1486527
http://dx.doi.org/10.1007/s10514-012-9321-0


Sensors 2019, 19, 5288 27 of 28

32. Brunetto, N.; Salti, S.; Fioraio, N.; Cavallari, T.; Stefano, L.D. Fusion of Inertial and Visual Measurements for
RGB-D SLAM on Mobile Devices. In Proceedings of the 2015 IEEE International Conference on Computer
Vision Workshop, Santiago, Chile, 7–13 December 2015; pp. 148–156.

33. Qayyum, U.; Ahsan, Q.; Mahmood, Z. IMU aided RGB-D SLAM. In Proceedings of the 14th International
Bhurban Conference on Applied Sciences and Technology, Islamabad, Pakistan, 10–14 January 2017;
pp. 337–341.

34. Zhang, G.; Chen, Y. LoopSmart: Smart Visual SLAM Through Surface Loop Closure. arXiv 2018,
arXiv:1801.01572.

35. Mur-Artal, R.; Tardós, J.D. ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo,
and RGB-D Cameras. IEEE Trans. Robot. 2017, 33, 1255–1262. [CrossRef]

36. Ylimäki, M.; Kannala, J.; Heikkilä, J. Accurate 3-D Reconstruction with RGB-D Cameras using Depth Map
Fusion and Pose Refinement. arXiv 2018, arXiv:1804.08912.

37. Schöps, T.; Sattler, T.; Pollefeys, M. BAD SLAM: Bundle Adjusted Direct RGB-D SLAM. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, 16–20 June 2019;
pp. 134–144.

38. Han, L.; Xu, L.; Bobkov, D.; Steinbach, E.; Fang, L. Real-Time Global Registration for Globally Consistent
RGB-D SLAM. IEEE Trans. Robot. 2019, 35, 498–508. [CrossRef]

39. Han, J.; Chen, H.; Liu, N.; Yan, C.; Li, X. CNNs-Based RGB-D Saliency Detection via Cross-View Transfer
and Multiview Fusion. IEEE Trans. Cybern. 2018, 48, 3171–3183. [CrossRef]

40. Arumugam, R.; Enti, V.R.; Liu, B.; Wu, X.; Baskaran, K.; Kong, F.F.; Kumar, A.S.; Meng, K.D.; Kit, G.W.
DAvinCi: A cloud computing framework for service robots. In Proceedings of the 2010 IEEE International
Conference on Robotics and Automation (ICRA 2010), Anchorage, AK, USA, 3–7 May 2010; pp. 3084–3089.

41. Mohanarajah, G.; Hunziker, D.; D’Andrea, R.; Waibel, M. Rapyuta: A Cloud Robotics Platform. IEEE Trans.
Autom. Sci. Eng. 2015, 12, 481–493. [CrossRef]

42. Riazuelo, L.; Civera, J.; Montiel, J.M.M. C2TAM: A Cloud framework for cooperative tracking and mapping.
Robot. Auton. Syst. 2014, 62, 401–413. [CrossRef]

43. Gaboardi, F.; Pini, G.; Suardi, N. Robotic laparoendoscopic single-site radical prostatectomy (R-LESS-RP)
with daVinci Single-Site R© platform. Concept and evolution of the technique following an IDEAL phase 1.
J. Robot. Surgery 2019, 13, 215–226. [CrossRef] [PubMed]

44. Mohanarajah, G.; Usenko, V.; Singh, M.; D’Andrea, R.; Waibel, M. Cloud-Based Collaborative 3D Mapping
in Real-Time With Low-Cost Robots. IEEE Trans. Aut. Sci. Eng. 2015, 12, 423–431. [CrossRef]

45. Satyanarayana, A.; Kusyk, J.; Chen, Y. Design of Cloud Based Robots Using Big Data Analytics and
Neuromorphic Computing. In Proceedings of the 2018 IEEE Canadian Conference on Electrical & Computer
Engineering, Quebec City, QC, Canada, 13–16 May 2018.

46. Mourikis, A.I.; Roumeliotis, S.I. Predicting the Performance of Cooperative Simultaneous Localization and
Mapping (C-SLAM). Int. J. Robot. Res. 2006, 25, 1273–1286. [CrossRef]

47. Kim, B.; Kaess, M.; Fletcher, L.; Leonard, J.; Bachrach, A.; Roy, N.; Teller, S. Multiple relative pose graphs for
robust cooperative mapping. In Proceedings of the 2010 IEEE International Conference on Robotics and
Automation, Anchorage, AK, USA, 3–7 May 2010; pp. 3185–3192.

48. Klein, G.; Murray, D. Parallel Tracking and Mapping for Small AR Workspace. In Proceedings of the 6th IEEE
and ACM International Symposium on Mixed and Augmented Reality, Nara, Japan, 13–16 November 2007;
pp. 225–234.

49. Ali, S.S.; Hammad, A.; Tag Eldien, A.S. FastSLAM 2.0 tracking and mapping as a Cloud Robotics service.
Comput. Electr. Eng. 2018, 69, 412–421. [CrossRef]

50. Pomerleau, F.; Colas, F.; Siegwart, R. A Review of Point Cloud Registration Algorithms for Mobile Robotics.
Found. Trends Robot. 2015, 4, 1–104. [CrossRef]

51. Oomori, S.; Nishida, T.; Kurogi, S. Point cloud matching using singular value decomposition. Artif. Life Robot.
2016, 21, 149–154. [CrossRef]

52. Arun, K.S.; Huang, T.S.; Blostein, S.D. Least-Squares Fitting of Two 3-D Point Sets. IEEE Trans. Pattern Anal.
Mach. Intell. 1987, 9, 698–700. [CrossRef]

53. Estrada, C.; Neira, J.; Tardos, J.D. Hierarchical SLAM: Real-time accurate mapping of large environments.
IEEE Trans. Robot. 2005, 12, 588–596. [CrossRef]

http://dx.doi.org/10.1109/TRO.2017.2705103
http://dx.doi.org/10.1109/TRO.2018.2882730
http://dx.doi.org/10.1109/TCYB.2017.2761775
http://dx.doi.org/10.1109/TASE.2014.2329556
http://dx.doi.org/10.1016/j.robot.2013.11.007
http://dx.doi.org/10.1007/s11701-018-0839-9
http://www.ncbi.nlm.nih.gov/pubmed/30019228
http://dx.doi.org/10.1109/TASE.2015.2408456
http://dx.doi.org/10.1177/0278364906072515
http://dx.doi.org/10.1016/j.compeleceng.2017.11.012
http://dx.doi.org/10.1561/2300000035
http://dx.doi.org/10.1007/s10015-016-0265-x
http://dx.doi.org/10.1109/TPAMI.1987.4767965
http://dx.doi.org/10.1109/TRO.2005.844673


Sensors 2019, 19, 5288 28 of 28

54. John, M.L. Introduction to Smooth Manifolds; Springer: New York, NY, USA, 2008.
55. Freiburg Dataset. Available online: https://vision.in.tum.de/data/datasets/rgbd-dataset (accessed on

1 December 2019).

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://vision.in.tum.de/data/datasets/rgbd-dataset
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	RGB-D SLAM
	``Cloud+Robot'' SLAM
	DAvinCi
	Rapyuta
	C2TAM
	Comparison of Different Platforms


	The Overall Algorithm Flow of Original RGB-D SLAM 
	The Overall Algorithm Flow of RGB-D SLAM
	Shortcomings of the Original RGB-D SLAM Algorithm

	Improvement on the Original RGB-D SLAM Algorithm
	3D Point Cloud Registration Based on SVD Algorithm
	Optimization of Pose Graph Based on HOG-Man
	Hierarchical Pose-Graph 
	Linearized State Space as a Manifold


	Design of the RGB-D SLAM Algorithm Combined with Cloud Robot
	Framework of Cloud Robot
	RGB-D SLAM Algorithms with Cloud Robot
	Separation of Tracking and Map Construction
	Location Recognition and Relocation Separation
	Cloud Map Fusion


	Experiments
	Comparison of the RGB-D SLAM Algorithm
	Experimental Analysis of the RGB-D SLAM Algorithm Combined with Cloud Computing 
	Computational Performance and Bandwidth Analysis
	Fusion of Overlapping Areas

	Comparison of Overall Experimental Results

	Conclusions
	References

