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Simple Summary: Squamous cell carcinoma of the head and neck (SCCHN) is a heterogeneous
group of tumors arising from squamous cells lining different anatomic sites. This type of malignancy
has been mainly investigated by focusing primarily on tumor cells, but recent evidence highlighted
the importance of the tumor microenvironment (TME) in cancer growth, progression and metastasis.
Hence, we hypothesized that dysregulated matrisomal components could have a common association
with patient survival, irrespective of the subsite of origin of the SCCHN. Using bioinformatic
methods and public datasets, we successfully identified a gene panel with prognostic value in HPV-
negative and non-metastatic node-negative tumors and demonstrated its association with immune
cell infiltration.

Abstract: Squamous cell carcinoma of the head and neck (SCCHN) is common worldwide and
related to several risk factors including smoking, alcohol consumption, poor dentition and human
papillomavirus (HPV) infection. Different etiological factors may influence the tumor microenviron-
ment and play a role in dictating response to therapeutics. Here, we sought to investigate whether an
early-stage SCCHN-specific prognostic matrisome-derived gene signature could be identified for
HPV-negative SCCHN patients (n = 168), by applying a bioinformatics pipeline to the publicly avail-
able SCCHN-TCGA dataset. We identified six matrisome-derived genes with high association with
prognostic outcomes in SCCHN. A six-gene risk score, the SCCHN TMI (SCCHN-tumor matrisome
index: composed of MASP1, EGFL6, SFRP5, SPP1, MMP8 and P4HA1) was constructed and used to
stratify patients into risk groups. Using machine learning-based deconvolution methods, we found
that the risk groups were characterized by a differing abundance of infiltrating immune cells. This
work highlights the key role of immune infiltration cells in the overall survival of patients affected by
HPV-negative SCCHN. The identified SCCHN TMI represents a genomic tool that could potentially
aid patient stratification and selection for therapy in these patients.

Keywords: extracellular matrix; head and neck cancer; bioinformatics; TCGA; HPV; prognos-
tic biomarker
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1. Introduction

SCCHN comprises a heterogeneous group of tumors arising from squamous cells
lining different anatomic sites within the upper aerodigestive tract such as the nasal cavity,
paranasal sinuses, lips, oral cavity, oropharynx, hypopharynx or larynx [1,2]. The global
incidence rates have increased by 36.5% between 2005 and 2015 [3]. SCCHN predomi-
nantly affects people above 50 years old, with incidence rates higher among men than
women [4]. Tobacco and alcohol exposure constitutes the major risk factors for the de-
velopment of such cancers [5,6]. Human papillomavirus (HPV) is an important etiologic
factor of SCCHN [7]. Aside from etiology, both tumor staging and pathological features
have prognostic value [8]. The presence of metastases and aggressive pathological features
such as extranodal extension (ENE), perineural invasion (PNI) or lymphovascular invasion
(LVI) are prognostic factors for reduced survival [9–11]. Subsite specific etiological factors
and associated tumor and microenvironment differences may influence the clinical out-
comes of existing modalities of treatment [12,13]. Recent advancements in high throughput
molecular profiling have also added new prognostic markers [14,15] that relate to the
biology of the specific anatomical subsite of interest, as a consequence of their specific
underlying molecular pathways [16]. This could account for the inherent heterogeneity of
this malignancy and aid prognostication and possibly treatment selection and intervention.

Epithelial malignancies have been extensively investigated at the genomic and epige-
nomic levels focusing primarily on tumor cells. Recent evidence increasingly highlights
the importance of the tumor microenvironment (TME) in cancer growth, progression and
metastasis [17,18]. Therefore, a deeper understanding of the role of the cancer-associated
extracellular matrix (ECM) components might help to identify new diagnostic and prognos-
tic tools. In 2015, Naba, A. et al. [19] identified a list of 1068 human ECM genes encoding
ECM and ECM-associated proteins and presented omics data indicating their roles in
development, homeostasis and disease.

Bioinformatic approaches are powerful tools that enable whole-genome investigation
of the abnormalities exhibited by cancer tissues from large groups of patients. Hence,
in this study, using a series of recently developed web-based tools and open-source soft-
ware, a bioinformatic-based study on a transcriptomic dataset publicly available in the
“The Cancer Genome Atlas (TCGA)” [20] database was conducted. First, based on re-
cent studies [21,22], we hypothesized that dysregulated matrisomal components could
have a common association with patient survival, irrespective of the subsite of origin of
the SCCHN. Specifically, transcripts that were associated with survival in HPV-negative
and non-metastatic node-negative tumors, were examined to minimize confounding by
treatment, stage, and etiology. Next, we defined a novel prognostic signature, the SCCHN-
tumor matrisome index (SCCHN TMI), assessed its prognostic ability across independent
datasets and its association with immune cell infiltration.

2. Materials and Methods
2.1. SCCHN TCGA Data

A list of 1068 human matrisome genes, first published by Naba, A. et al. [19] and more
recently revised [23], was retrieved from the M.I.T. “Matrisome Project” website (www.
matrisomeproject.mit.edu/other-resources/human-matrisome, accessed on 10 March 2021)
and loaded into the web-based tool XENA [24] (www.xenabrowser.net, accessed on
10 March 2021). The study “TCGA Head and Neck Cancer (HNSC) study” was selected: (1)
as “first variable” the “Genomic” data type was selected; (2) the matrisomal genes inputted
and (3) the normalized gene expression selected. (4) Relevant “phenotypic” data were
selected to investigate the various clinical covariates.

2.2. SCCHN scRNA-Seq Data

Transcript-level expression values (TPMs) for 23,686 genes, across 5902 cells derived
from 18 SCCHN patients, including five matched pairs of primary tumors and lymph node
metastases [25], were re-analyzed in this study to identify specific cell types expressing SC-

www.matrisomeproject.mit.edu/other-resources/human-matrisome
www.matrisomeproject.mit.edu/other-resources/human-matrisome
www.xenabrowser.net


Cancers 2021, 13, 5761 3 of 15

CHN TMI signatures. Scaling of the data and linear dimensional reduction were performed
using R (v 4.0.3) “Seurat” package (v 4.0.1). Cells that were annotated with the identified
cell type by the authors of the original work (i.e., cells that are classified as “cancer cell”,
“B cell”, “dendritic”, “endothelial”, “fibroblast”, “macrophage”, “mast”, “myocyte”, or
“T cell”) were included in the analysis.

2.3. Construction of the SCCHN TMI Risk Score

Expression levels and clinical annotation for the HPN−, N0 subgroup were selected
and imported into R (v4.0.2) and RStudio (v1.3.1073) where the package “RegParallel”
(v1.8.0) was used to fit the Cox proportional hazard model independently for each gene.
The genes characterized by log-rank p-value < 0.01 were selected to generate the SCCHN-
specific prognostic signature (the SCCHN-tumor matrisome index), combining the expres-
sion level and the Cox regression coefficient (Betai) associated with the prognostic genes:
HNSCC TMI = ∑i Expression(Genei)·Betai. The effect on overall survival probabilities of
the HNSCC TMI scores was assessed using a Cox proportional hazard model (using the
“coxph” function of the “survival” package (v3.2-11) in R/Bioconductor [26]). The Cox
proportional hazard assumption was checked by the scaled Schoenfeld residual test using
the cox.zph function provided by the survival package in R/Bioconductor [26].

2.4. Patient Stratification and Survival Analysis

A median cut-off was used to stratify patients into low- and high-risk groups.
Kaplan−Meier (KM) survival curves were generated to test the prognostic value of the
SCCHN TMI. Overall survival (OS) time was computed from the date of surgery until
death. The survival analysis was conducted using the “survival” package. The log-rank
p-value was indicated in each KM curve and considered statistically significant if smaller
than 0.05.

2.5. Validation

The prognostic value of the SCCHN TMI was internally and externally validated
using the penalized Cox model and represented via time-dependent AUCs using the R
packages “hdnom“ (v6.0.0) and “rms” (v6.2-0). The internal validation was performed
using elastic-net with “Bootstrap validation” penalty trade-off parameter α = 0.05, regu-
larization parameter λ = 1.763886. The external validation was conducted on the SCCHN
GEO dataset (accession number GSE65858).

This dataset was generated by Wichmann et al. [27] and contains gene expression data
from 270 patients diagnosed with SCCHN collected using the platform GPL10558 Illumina
HumanHT-12 V4.0 expression Beadchip. The dataset was accessed using Phantasus (v.1.9.2,
https://artyomovlab.wustl.edu/phantasus/, accessed on 11 March 2021) where “Log2”
and “quantile normalization” adjustments were applied to the data. Moreover, to remove
lowly-expressed probes and ensure only one row per gene in the gene expression matrix,
data were collapsed using “Maximum Median Probe” with “gene symbol” as the collapse
field. The dataset was then downloaded as a spreadsheet file for further analysis.

2.6. Role of the Proteins Encoded by the SCCHN TMI Genes

The role of the proteins encoded by the SCCHN TMI genes were assessed using the
Human Protein Atlas web tool (www.proteinatlas.org, accessed on 15 March 2021).

2.7. Network Analysis

The web-based tool NetworkAnalyst (https://www.networkanalyst.ca, accessed on
12 March 2021) was used to perform the network analysis of the 6 HNSC-TMI genes. Specif-
ically, the “Gene Regulatory Network, Signaling Network” option was selected. Data from
the SIGnaling Network Open Resource (downloaded on 12 March 2021) were analyzed.

https://artyomovlab.wustl.edu/phantasus/
www.proteinatlas.org
https://www.networkanalyst.ca
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2.8. Tumor-Infiltrating Immune Cell Analysis

The web-based tool CIBERSORTx (https://cibersortx.stanford.edu/, accessed on
6 May 2021) was used to estimate the relative fraction of 22 immune cell types based
on the RNA-seq data, as a function of the SCCHN TMI risk group. We selected LM22
(22 immune cell types) for the signature gene file, 100 for permutations, and disabled
quantile normalization for all runs. Subsequently, box plots were generated to present
the differences in infiltrated immune cells between high and low risk groups using the
“ggplot2” package (v3.3.3). Two-sided, unpaired two-samples Wilcoxon test was performed
between the two risk groups.

2.9. Machine Learning for Personalized Prediction of the Risk Group

The computational classification was performed in Orange (Version 3.29.3) using
the method recently developed by Belotti et al. [28]. The SCCHN TMI risk groups were
classified based on the gene expression levels of the SCCHN TMI genes. Specifically,
only 5 genes were included in the analysis as one of the genes (SFRP5) is missing in the
GSE65858 dataset. The algorithm workflow is shown in Figure S1. First, expression values
of the SCCHN TMI genes for each patient were imported into Orange, together with the
SCCHN TMI risk group previously calculated using the median cut-off. Then the data
are sent to the “test and score” widget where multiple models are tested: (a) k-nearest
neighbors (kNN, number of neighbors = 5, metric = Euclidean, weight = uniform). (b)
Logistic regression (regularization type = lasso, strength = C1). (c) Random forest (number
of trees = 10, depth of the individual tree is limited to 5, subsets smaller than 5 are not
split). (d) Support vector machine (SVM, cost = 1, regression loss = 0.1, kernel = linear,
numerical tolerance = 0.001, iteration limit = 100). (e) Neural network (neurons in hidden
layers = 200, activation = ReLu, solver = Adam with regularization = 0.0001, maximum
number of iterations = 200). The validation of the models was carried out using 10-fold
cross-validation. Moreover, the classification was also validated using an independent
GEO dataset (GSE65858).

3. Results
3.1. Identification of SCCHN-Specific Tumor Matrisome Index

A series of recently developed web-based bioinformatics tools and open-source soft-
ware were utilized to access and analyze the HNSC-TCGA dataset. The analysis workflow
is summarized in Figure 1. First, the matrisomal genes (see Methods) were input into
XENA [24] and the normalized RNA-seq data were retrieved, together with the clinical
annotation of the samples. The subgroup of patients with no HPV infection and no regional
lymph node involvement (HPV−, N0) that underwent surgical treatment, was selected
to reduce heterogeneity. A Cox proportional hazard model was independently applied
for each matrisomal gene in the dataset against overall survival (OS). The genes with log
rank p < 0.01 were selected and an SCCHN-specific tumor matrisome index (SCCHN TMI)
was defined. The outcome of the Cox proportional hazard model to the matrisomal genes
is shown in Table S1. Six genes were identified: MASP1 EGFL6, SFRP5, SPP1, MMP8
and P4HA1. Based on the results derived from the Cox regression, a nomogram to pre-
dict survival probability at 2, 3 and 5 years after surgery for clinical use was developed
(Figure S2A). Calibration curves for this nomogram are plotted in Figure S2B,C.

https://cibersortx.stanford.edu/
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good prognosis (HR < 1) while the other four: SFRP5, SPP1, MMP8 and P4HA1 are asso-
ciated with poor outcomes (HR > 1), as shown in Table S1. The details of these genes are 
shown in Table S2. Using a median cut-off, patients were stratified into low and high-risk 
groups and Kaplan−Meier (KM) plots were generated, as shown in Figure 2A,B. Specifi-
cally, the group characterized by low SCCHN TMI had significantly better survival out-
comes. 

Figure 1. Schematic illustration of the bioinformatics workflow. We first constructed a matrisome-derived SCCHN-specific
signature from primary tissue samples using a bioinformatic-based approach. Specifically, access and retrieval of large
datasets from “The Cancer Genome Atlas database” was conducted via XENA browser. SCCHN-tumor matrisome index
(SCCHN TMI) was computed using R: (1) prognostic genes were identified through the application of the Cox proportional
hazard model; (2) the median cut-off was used to stratify patients into low and high-risk and generate Kaplan−Meier (KM)
plots for each risk group; (3) internal validation and external validation of the SCCHN TMI were conducted on a microarray
and scRNA-seq datasets. The web-based tool CIBERSORTx was used to estimate the relative fraction of cancer-infiltrating
immune cells based on the RNA-seq data, as a function of the SCCHN TMI risk group.

Two of the genes composing the SCCHN TMI, MASP1 and EGFL6 are associated
with good prognosis (HR < 1) while the other four: SFRP5, SPP1, MMP8 and P4HA1
are associated with poor outcomes (HR > 1), as shown in Table S1. The details of these
genes are shown in Table S2. Using a median cut-off, patients were stratified into low and
high-risk groups and Kaplan−Meier (KM) plots were generated, as shown in Figure 2A,B.
Specifically, the group characterized by low SCCHN TMI had significantly better sur-
vival outcomes.
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= 121), N2c (n = 54), N3 (n = 9), and NX (n = 89). 

BA

Time (days)

A
re

a 
un

de
r R

O
C

C Internal validation

Figure 2. Identification of the SCHNN TMI and evaluation of its prognostic value. (A) Kaplan−Meier plots for the HPV−,
N0 subgroup (n = 168). (B) Kaplan−Meier plots for the HPV−, N0 subgroup for the validation set (n = 64). (C) Internal
validation: the performance of the elastic-net model is internally assessed by time-dependent AUC (area under the ROC
curve) with “bootstrap” resampling at every year from the first 6 months to the year 4.5. The solid line represents the mean
of the AUC at each time point across all bootstrap predictions, the dashed line represents the median of the AUC. The
shaded interval shows the minimum and maximum of AUC.

Univariable and multivariable Cox regression analyses were performed to adjust
for confounding factors such as age and gender, history of cigarette smoke and alcohol
consumption, and pathological tumor (T) stage (according to AJCC version 8), as shown in
Figure S3. The comparison between low and high SCCHN TMI for the HPV−, N0 subgroup
among conventional clinical parameters is illustrated in Figure S4. Univariable survival
analyses revealed that the SCCHN TMI could predict overall survival (OS), disease-specific
survival (DSS), and disease-free interval (DFI), as shown in Figure S5. The individual
patient’s SCCHN TMI scores exhibited statistically significant differences across different
clinicopathological factors such as sample type, regional lymph node involvement and
pathological stage, as shown in Figure 3. Specifically, the samples with the presence of
regional lymph node invasion (N+) includes N1 (n = 78), N2 (n = 13), N2a (n = 11), N2b
(n = 121), N2c (n = 54), N3 (n = 9), and NX (n = 89).
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*** p ≤ 0.001, ** p ≤ 0.01, * p ≤ 0.05, ns: not significant.

3.2. Validation of the SCCHN TMI

The prognostic value of the SCCHN TMI was internally and externally validated using
machine-learning-based algorithms. Specifically, the internal validation was performed
using the penalized Cox model. In Figure 2C and the time-dependent AUC (area under the
receiver operating characteristic (ROC) curve) is shown. The Gene Expression Omnibus
(GEO) dataset GSE65858 was used as a validation set. Figure 2B shows the KM plot for the
validation set (n = 64). To identify specific cell types expressing the 6 genes composing the
SCCHN TMI, we next analyzed the scRNA-seq SCCHN dataset (GSE103322), derived from
18 SCCHN patients, including matched pairs of primary tumors (PT) and lymph node (LN)
metastases (Figure 4). MASP1 and EGFL6 were specifically expressed predominantly in
subpopulations of fibroblasts and cancer cells, while SPP1 and P4HA1 were expressed by
subgroups of several cell types composing the tumor and its matrisome, including immune
cells, such as macrophages and dendritic cells, and fibroblasts. SFRP5 and MMP8 were
expressed only in a small number of cells.
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3.3. Regulatory Signaling Network Analyses

The outcome of the regulatory network analysis is shown in Figure S6A. The KEGG
(Kyoto Encyclopedia of Genes and Genomes) enrichment analysis was performed for
the genes identified in the signaling network (Figure S6B). Three genes (RUNX2, ERG
and MMP3) are involved in “transcriptional misregulation in cancer”. ERG and MMP3
are also associated with prostate cancer. MMP3 is involved in the IL-17 signaling path-
way, TNF signaling pathway, and rheumatoid arthritis. ETS2 and MMP7 are involved in
HTLV-1 infection.

3.4. Role of the Proteins Encoded by the SCCHN TMI Genes

The gene MASP1 encodes a serine protease that is a component of the lectin pathway,
which plays an essential role in the innate and adaptive immune response [29]. This
gene has been found to be a favorable prognostic marker in liver cancer [29]. EGFL6
encodes a member of the epidermal growth factor (EGF) repeat superfamily, involved
in cell cycle regulation, proliferation, and developmental processes [30]. It is a favorable
marker in both ovarian and head and neck cancer [30]. SFRP5 has a role as a modulator of
Wnt signaling, which is involved in regulating cell growth and differentiation in specific
cell types [31]. SPP1 encodes a protein which is a cytokine that upregulates expression
of interferon-gamma and interleukin-12, and it is an unfavorable prognostic marker in
liver, pancreatic, and cervical cancer [32]. SPP1 is involved in ECM-receptor interaction,
Toll-like receptor signaling pathway, Apelin signaling pathway [32]. MMP8 encodes a
member of the Matrix metalloproteinases (MMPs), a family of proteolytic enzymes which
is involved in degrading components of the extracellular matrix and promoting invasion
and metastasis in various cancers. In SCCHN it has been shown that imbalances between
matrix metalloproteinases and their inhibitors contribute to the progression are linked
to the prognosis of the malignancy [33,34]. P4HA1 encodes a key enzyme involved in
collagen synthesis and catalyzes the formation of 4-hydroxyproline, essential for the three-
dimensional folding of procollagen chains [35]. It is an unfavorable prognostic marker in
renal, head and neck, cervical, pancreatic, lung and breast cancers [35].
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3.5. Association between Tumor-Infiltrating Immune Cells and the Risk Group

Using CIBERSORTx the relative abundance of 22 immune cell subsets of SCCHN were
estimated for the HPV−, N0 cohort. In Figure 5, the differences in the abundance of the
infiltrative immune cells between high-risk and low-risk groups are shown. Specifically,
only the immune cells with measurable abundance are shown. A statistically significant
higher abundance of T cells CD8, T cells follicular helper, activated dendritic cells were
found in the low-risk group, whereas a higher abundance of M0 and M2 macrophages
were found in the high-risk group.
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3.6. Machine Learning Approach for Risk Group Classification

We sought to demonstrate the predictive potential of our SCCHN TMI in stratifying
patients across different platforms. Given that the TCGA and GEO data are derived from
RNA-seq and microarray, respectively, we used a cross-platform normalization tool to
enable comparison between the two datasets of different profiling platforms. Specifically,
we used TDM [36] transformation to make RNA-seq data compatible with microarray data,
as recently shown [37]. Figure 6A shows the comparison between TDM and logarithmic
transformation. The TDM transformation best fitted the reference microarray data (valida-
tion dataset, GSE65858) distribution. Using a supervised machine learning approach [28],
we next developed SCCHN TMI-based risk group classifiers. First, we trained multiple
classifiers (as shown in Figure S1) on the TDM-transformed SCCHN TCGA dataset using
10-fold cross-validation (Figure 6B–D). The best predictive model, support vector machine
(SVM), was then evaluated on the validation dataset (Figure 6E–G). Both cross-validation
and external validation on the GSE65858 dataset resulted in an area under the (receiver
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operating characteristic) curve (AUC) of 0.984 and 0.985 and classification accuracy of
95.2% and 93.8%, respectively. A clear separation between the two risk groups indicates
a superior classification performance, as shown in the t-distributed stochastic neighbor
embedding (t-SNE) plot (Figure 6H).
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Figure 6. Computational classification of the SCCHN TMI risk group at the individual patient level. (A) Comparison
between TDM and LOG-transformed training data (TCGA) in fitting the validation dataset (GSE65858) distribution.
(B) Results of the classification model evaluation using 10-fold cross-validation. (C) Confusion matrix of the support vector
machine (SVM) model, which best scored in the classification. (D) Receiver operating characteristic (ROC) curves for each
of the SCCHN TMI risk groups using SVM. (E) Results of the classification model evaluation using the validation dataset.
(F) Confusion matrix of the support vector machine (SVM) model. (G) Receiver operating characteristic (ROC) curves for
each of the SCCHN TMI risk groups using SVM. AUC = area under the curve, CA = classification accuracy. (H) The t-SNE
plot of two risk groups.
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4. Discussion

The discovery of reliable prognostic biomarkers capable of identifying patients with a
higher risk of unfavorable survival outcomes is needed in order to better define patients
who might require further adjuvant treatment after surgical resection. The SCCHN TMI
gene panel, which was constructed by focusing only on ECM molecules, holds potential
clinical as well as biological significance. In an HPV negative subset, where the overall
prognosis is poor, the SCCHN TMI was able to predict overall survival (OS), disease-
specific survival (DSS), and disease-free interval (DFI). A high SCCHN TMI score was an
unfavorable prognostic factor for all the analyzed endpoints. Gene ontology (GO), KEGG
pathway enrichment and signaling network analyses revealed that the six SCCHN TMI
genes are mostly associated with signaling networks involved in cancer-related transcrip-
tional dysregulation and two important pathways: IL-17 and TNF. The former has already
been shown to negatively correlate with the overall survival of head and neck cancer
patients [38]. TNF-α, which is found in the TME, is secreted by macrophages, lymphocytes
and natural killer (NK) cells and mediates the production of proinflammatory factors that
elicit tumor growth and recently emerged as a promising cancer therapy target [39,40].

We found that patients in the high-risk group exhibited a proinflammatory phenotype
enriched with macrophages (M0 and M2 phenotypes). Tumor-associated macrophages
(TAMs) are a key component of the SCCHN tumor microenvironment as they have spe-
cific roles in regulating the immune response to cancer (refer to Evrard et al. [41] for a
detailed review). Moreover, TAMs have been shown to affect cell proliferation, vasculariza-
tion, stromal formation and dissolution [42]. Our results are coherent with the previous
literature that highlighted the proinflammatory and tumor-promoting role of TAMs in
SCCHN [43–46]. Two recent meta-analyses [43,44] found that increased densities of TAMs
in the TME, particularly M2-like, correlate with poor clinicopathologic markers in SCCHN.
A recent study by Tekin et al. [47] showed that M0 macrophages harbor anti-tumorigenic
activities, which seem to be mediated by TNF-α which is associated with M0 macrophage-
induced cell death in pancreatic cancer. Furthermore, an increasing abundance of infiltrated
M0 macrophages was associated with poorer outcomes in breast cancer [48]. To our knowl-
edge, however, our results elucidated the potential role of M0 macrophages in SCCHN for
the first time.

Patients in the SCCHN TMI low-risk group exhibited an increased abundance of
CD8+ and follicular helper T cells as well as activated dendritic cells. These results are
consistent with prior reports which showed significantly better survival outcomes [49–51]
in SCCHN patients with a higher abundance of infiltrative lymphocytes. Moreover, a
recent work by Cillo et al. [52] found that T follicular helper cells are associated with longer
progression-free survival in SCCHN patients and that the activation of dendritic cells
could improve antitumor T cell responses. Hence, the SCCHN TMI might have important
implications for prognosis and further adjuvant treatment decisions, as low-risk scores are
associated with high levels of infiltration of antitumor T cells and low levels of infiltration
of tumor-promoting TAMs. These provide potential points of therapeutic intervention that
need to be validated prospectively in clinical trials of specific inhibitors.

The single-cell RNA-seq analysis of the SCCHN TMI genes revealed that four of these
genes (MASP1, EGFL6, SPP1, and P4HA1) are expressed in subpopulations of fibroblasts,
macrophages, T cells and in tumor cells. It is noteworthy that two genes, SPP1 and P4H41,
exhibited the highest association with immune cells. Specifically, they are highly expressed
in both T cells and macrophages, hence they could play an important role in linking the
SCCHN risk score with the different patterns of infiltrative immune cells in the SCCHN’s
TME. Two genes (SFRP5 and MMP8) were lowly expressed in this dataset. In the study by
Puram et al. [25], the authors analyzed 5902 single cells from 18 patients with tumors of
the oral cavity, which is one of the subsites of SCCHN. Therefore, the low expression of
SFRP5 and MMP8 in this dataset might be, to some extent, attributed to the small cohort of
patients included in the analysis and the presence of only one SCCHN subsite.
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Using machine learning, we demonstrated high computational classification accuracy
between the risk groups in the data collected using different platforms (RNA-seq and
microarrays), despite the small sample size of the validation dataset. This has important
clinical implications as it demonstrates the robustness of our SCCHN TMI in stratifying
HPV−, N0 patients. Finally, statistically different expression levels were found for each
SCCHN TMI gene between the two risk groups (Figure S7). As the SCCHN TMI comprises
a small number of genes, their expression levels could be quantified using RT-PCR directly
on postoperative specimens to conduct prospective validation studies.

One of the limitations of this study is the presence of only one validation dataset. This
is due to the incomplete clinicopathological information in all the other available public
datasets that we evaluated. This is a current issue in the field of SCCHN. Therefore, the
assessment of the SCCHN TMI signature in multiple larger validation dataset cohorts is
warranted in the future. This will enable the identification of a global cut-off value for
patient stratification, and further improve the clinical utility of the SCCHN TMI. Another
limitation is the use of publicly available algorithms that could change over time. This
might limit the reproducibility of this study, but novel algorithms with improved quality,
accuracy, usability and speed are likely to emerge in the future.

5. Conclusions

In conclusion, the identified SCCHN TMI gene signature represents a genomic tool
that could potentially enable a better understanding of the molecular mechanisms associ-
ated with the interaction between the tumor and its microenvironment. Lastly, the SCCHN
TMI could enhance patient stratification progression and selection and aid personalized in-
tervention.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers13225761/s1, Figure S1: Workflow for the machine learning prediction of the risk
group, Figure S2: Nomogram and computational calibration of the model, Figure S3: Univariate and
multivariate analysis, Figure S4: Comparison between low and high SCCHN TMI for the HPV−, N0
sub-group among conventional clinical parameters (TCGA dataset), Figure S5: Association between
SCCHN TMI and clinical outcomes, Figure S6: Regulatory network analyses of the SCCHN TMI
genes, Figure S7: Expression levels as a function of the SCCHN TMI risk group for each gene, Table S1:
Outcome of the Cox Proportional Hazard Model to the 1068 matrisomal genes, Table S2: The 6-gene
SCCHN TMI signature.

Author Contributions: Conceptualization, Y.B. and S.B.L.; data curation, Y.B. and S.B.L. formal
analysis, Y.B. and S.B.L.; investigation, Y.B., S.B.L., N.G.I., W.-T.L.; project administration, Y.B.;
supervision, N.G.I., W.-T.L., C.T.L.; writing—original draft, Y.B.; writing—review and editing, S.B.L.,
N.G.I., W.-T.L., C.T.L. All authors have read and agreed to the published version of the manuscript.

Funding: Y.B. is supported by the Institute for Health Innovation & Technology (iHealthTech),
National University of Singapore (R-722-007-004-731). S.B.L. is supported by the National Research
Foundation of Korea (NRF/MSIT 2021R1F1A1064122), and Ajou University School of Medicine
(new faculty research fund). N.G.I. is supported by National Medical Research Council (Singapore)
Clinician Scientist Awards to (NMRC/CSA/001/2016, MOH-000325-00), and NCC Cancer Fund.
W.-T.L. is supported by the National Medical Research Council (NMRC/CSA-INV/0025/2017, MOH-
CIRGMay-0006), and NCC Cancer Fund. C.T.L. is supported by iHealthTech, National University of
Singapore (R-722-007-004-731) and Mechanobiology Institute (MBI) Seed Grant, National University
of Singapore (R-714-106-002-135).

Institutional Review Board Statement: Ethical review and approval were waived for this study due
to the fact that only publicly available data and materials were used in this study.

Informed Consent Statement: Patient consent was waived due to the retrospective nature of this
study and use of de-identified data.

Data Availability Statement: The data analyzed in this study were obtained from TCGA using
XENA browser, accessing the “TCGA Head and Neck Cancer (HNSC) study”. The validation dataset
was obtained from GEO (Gene Expression Omnibus) under the accession codes GSE65858 and

https://www.mdpi.com/article/10.3390/cancers13225761/s1
https://www.mdpi.com/article/10.3390/cancers13225761/s1


Cancers 2021, 13, 5761 13 of 15

accessed using Phantasus. The scRNA-seq dataset analyzed in this study is available from GEO
(Gene Expression Omnibus) under the accession code GSE103322.

Conflicts of Interest: No potential conflict of interest were disclosed by the authors.

References
1. Dictionary-Pathology: Head and Neck Cancer—The Human Protein Atlas. Available online: https://www.proteinatlas.org/

learn/dictionary/pathology/head+and+neck+cancer+2 (accessed on 16 April 2020).
2. Palka, K.; Slebos, J.R.; Chung, H.C. Update in Molecular Diagnostic Tests in Head and Neck Cancer. J. Investig. Dermatol. 2008, 35,

198–210. [CrossRef]
3. Fitzmaurice, C.; Allen, C.; Barber, R.M.; Barregard, L.; Bhutta, Z.A.; Brenner, H.; Dicker, D.J.; Chimed-Orchir, O.; Dandona, R.;

Dandona, L.; et al. Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability,
and DisabilityAdjusted Life-years for 32 Cancer Groups, 1990 to 2015. JAMA Oncol. 2017, 3, 524–548.

4. Simon, S. Facts & Figures 2019; American Cancer Society: Atlanta, GA, USA, 2019; p. 76.
5. Mayne, S.T.; Morse, D.E.; Winn, D.M. Cancers of the Oral Cavity and Pharynx. In Cancer Epidemiology and Prevention; Oxford

University Press: New York, NY, USA, 2009; ISBN 9780199865062.
6. Hashibe, M.; Brennan, P.; Chuang, S.C.; Boccia, S.; Castellsague, X.; Chen, C.; Curado, M.P.; Maso, L.D.; Daudt, A.W.; Fabianova,

E.; et al. Interaction between tobacco and alcohol use and the risk of head and neck cancer: Pooled analysis in the international
head and neck cancer Epidemiology consortium. Cancer Epidemiol. Biomark. Prev. 2009, 18, 541–550. [CrossRef]

7. Gillison, M.L.; Alemany, L.; Snijders, P.J.F.; Chaturvedi, A.; Steinberg, B.M.; Schwartz, S.; Castellsagué, X. Human papillomavirus
and diseases of the upper airway: Head and neck cancer and respiratory papillomatosis. Vaccine 2012, 30, F34–F54. [CrossRef]
[PubMed]

8. Cadoni, G.; Giraldi, L.; Petrelli, L.; Pandolfini, M.; Giuliani, M.; Paludetti, G.; Pastorino, R.; Leoncini, E.; Arzani, D.; Almadori,
G.; et al. Prognostic factors in head and neck cancer: A 10-year retrospective analysis in a single-institution in Italy. Acta
Otorhinolaryngol. Ital. 2017, 37, 458–466. [CrossRef] [PubMed]

9. Liu, S.A.; Wang, C.C.; Jiang, R.S.; Lee, F.Y.; Lin, W.J.; Lin, J.C. Pathological features and their prognostic impacts on oral cavity
cancer patients among different subsites—A single institute’s experience in Taiwan. Sci. Rep. 2017, 7, 7451. [CrossRef] [PubMed]

10. Vasan, K.; Low, T.H.H.; Gupta, R.; Ashford, B.; Asher, R.; Gao, K.; Ch’ng, S.; Palme, C.E.; Clark, J.R. Lymph node ratio as a
prognostic factor in metastatic cutaneous head and neck squamous cell carcinoma. Head Neck 2018, 40, 993–999. [CrossRef]
[PubMed]

11. Wreesmann, V.B.; Katabi, N.; Palmer, F.L.; Montero, P.H.; Migliacci, J.C.; Gönen, M.; Carlson, D.; Ganly, I.; Shah, J.P.; Ghossein,
R.; et al. Influence of extracapsular nodal spread extent on prognosis of oral squamous cell carcinoma. Head Neck 2016, 38,
E1192–E1199. [CrossRef]

12. Jadhav, K.B.; Gupta, N. Clinicopathological prognostic implicators of oral squamous cell carcinoma: Need to understand and
revise. N. Am. J. Med. Sci. 2013, 5, 671–679. [CrossRef]

13. Thomas, G.R.; Nadiminti, H.; Regalado, J. Molecular predictors of clinical outcome in patients with head and neck squamous cell
carcinoma. Int. J. Exp. Pathol. 2005, 86, 347–363. [CrossRef]

14. Roesch-Ely, M.; Nees, M.; Karsai, S.; Ruess, A.; Bogumil, R.; Warnken, U.; Schnölzer, M.; Dietz, A.; Plinkert, P.K.; Hofele, C.; et al.
Proteomic analysis reveals successive aberrations in protein expression from healthy mucosa to invasive head and neck cancer.
Oncogene 2007, 26, 54–64. [CrossRef]

15. Suresh, A.; Vannan, M.; Kumaran, D.; Gümüs, Z.H.; Sivadas, P.; Murugaian, E.E.; Kekatpure, V.; Iyer, S.; Thangaraj, K.; Kuriakose,
M.A. Resistance/response molecular signature for oral tongue squamous cell carcinoma. Dis. Markers 2012, 32, 51–64. [CrossRef]
[PubMed]

16. Reddy, R.B.; Khora, S.S.; Suresh, A. Molecular prognosticators in clinically and pathologically distinct cohorts of head and neck
squamous cell carcinoma—A meta-analysis approach. PLoS ONE 2019, 14, e0218989. [CrossRef] [PubMed]

17. Quail, D.F.; Joyce, J.A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 2013, 19, 1423–1437.
[CrossRef]

18. Lu, P.; Weaver, V.M.; Werb, Z. The extracellular matrix: A dynamic niche in cancer progression. J. Cell Biol. 2012, 196, 395–406.
[CrossRef] [PubMed]

19. Naba, A.; Clauser, K.R.; Hoersch, S.; Liu, H.; Carr, S.A.; Hynes, R.O. The matrisome: In silico definition and in vivo characterization
by proteomics of normal and tumor extracellular matrices. Mol. Cell. Prot. 2012, 11, M111.014647. [CrossRef]

20. NCI; NHGRI The Cancer Genome Atlas Program—National Cancer Institute. Available online: https://www.cancer.gov/about-
nci/organization/ccg/research/structural-genomics/tcga (accessed on 14 April 2020).

21. Bin Lim, S.; Chua, M.L.K.; Yeong, J.P.S.; Tan, S.J.; Lim, W.-T.; Lim, C.T. Pan-cancer analysis connects tumor matrisome to immune
response. NPJ Precis. Oncol. 2019, 3, 15. [CrossRef]

22. Lim, S.B.; Tan, S.J.; Lim, W.T.; Lim, C.T. An extracellular matrix-related prognostic and predictive indicator for early-stage
non-small cell lung cancer. Nat. Commun. 2017, 8, 1734. [CrossRef] [PubMed]

23. Naba, A.; Clauser, K.R.; Ding, H.; Whittaker, C.A.; Carr, S.A.; Hynes, R.O. The extracellular matrix: Tools and insights for the
“omics” era. Matrix Biol. 2016, 49, 10–24. [CrossRef]

https://www.proteinatlas.org/learn/dictionary/pathology/head+and+neck+cancer+2
https://www.proteinatlas.org/learn/dictionary/pathology/head+and+neck+cancer+2
http://doi.org/10.1053/j.seminoncol.2008.03.002
http://doi.org/10.1158/1055-9965.EPI-08-0347
http://doi.org/10.1016/j.vaccine.2012.05.070
http://www.ncbi.nlm.nih.gov/pubmed/23199965
http://doi.org/10.14639/0392-100X-1246
http://www.ncbi.nlm.nih.gov/pubmed/28663597
http://doi.org/10.1038/s41598-017-08022-w
http://www.ncbi.nlm.nih.gov/pubmed/28785002
http://doi.org/10.1002/hed.25066
http://www.ncbi.nlm.nih.gov/pubmed/29360276
http://doi.org/10.1002/hed.24190
http://doi.org/10.4103/1947-2714.123239
http://doi.org/10.1111/j.0959-9673.2005.00447.x
http://doi.org/10.1038/sj.onc.1209770
http://doi.org/10.1155/2012/926703
http://www.ncbi.nlm.nih.gov/pubmed/22297602
http://doi.org/10.1371/journal.pone.0218989
http://www.ncbi.nlm.nih.gov/pubmed/31310629
http://doi.org/10.1038/nm.3394
http://doi.org/10.1083/jcb.201102147
http://www.ncbi.nlm.nih.gov/pubmed/22351925
http://doi.org/10.1074/mcp.M111.014647
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
http://doi.org/10.1038/s41698-019-0087-0
http://doi.org/10.1038/s41467-017-01430-6
http://www.ncbi.nlm.nih.gov/pubmed/29170406
http://doi.org/10.1016/j.matbio.2015.06.003


Cancers 2021, 13, 5761 14 of 15
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