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Effects of ibrutinib on T-cell
immunity in patients with
chronic lymphocytic leukemia

Yanyan Liu, Yongping Song* and Qingsong Yin*

Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University and Henan
Cancer Hospital, Zhengzhou, China
Chronic lymphocytic leukemia (CLL), a highly heterogeneous B-cell

malignancy, is characterized by tumor microenvironment disorder and T-cell

immune dysfunction, which play a major role in the proliferation and survival of

CLL cells. Ibrutinib is the first irreversible inhibitor of Bruton’s tyrosine kinase

(BTK). In addition to targeting B-cell receptor (BCR) signaling to kill tumor cells,

increasing evidence has suggested that ibrutinib regulates the tumor

microenvironment and T-cell immunity in a direct and indirect manner. For

example, ibrutinib not only reverses the tumor microenvironment by blocking

cytokine networks and toll-like receptor signaling but also regulates T cells in

number, subset distribution, T-cell receptor (TCR) repertoire and immune

function by inhibiting interleukin-2 inducible T-cell kinase (ITK) and reducing

the expression of inhibitory receptors, and so on. In this review, we summarize

the current evidence for the effects of ibrutinib on the tumor

microenvironment and cellular immunity of patients with CLL, particularly for

the behavior and function of T cells, explore its potential mechanisms, and

provide a basis for the clinical benefits of long-term ibrutinib treatment and

combined therapy based on T-cell-based immunotherapies.

KEYWORDS
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Introduction

Chronic lymphocytic leukemia (CLL) is a malignancy of small, mature B

lymphocytes that clonally expand into secondary lymphoid organs, bone marrow, and

peripheral blood, resulting in lymphadenopathy, splenomegaly, and hematopoietic

failure (1, 2). Tumor microenvironment disorder and T-cell immune dysfunction are

prominent characteristics of CLL that are clinically manifested as increased susceptibility

to opportunistic infections such as viruses and fungi and an increased incidence of

autoimmune diseases and secondary malignant tumors (2), which are also the main

causes of failure of T-cell-based immunotherapies and drug resistance (3, 4). T cells in
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CLL patients, as major supporting cells in the tumor

microenvironment and particularly CD4+ T cells, nourish CLL

cells through complex cytokine networks or direct contact (5).

Moreover, CD8+ T cells demonstrate an “exhausted” phenotype

with progressive loss of effector function and impaired memory

T-cell potential (6, 7). Therefore, reversing microenvironment

disorders and reconstituting T-cell immunity may be critical to

improving the outcome of CLL patients (8, 9).

The B-cell receptor (BCR) signaling pathway in CLL cells is

reportedly overactivated; thus, targeting the key kinases of the

BCR pathway is a promising anti-leukemia therapy. BCR

signaling is initiated through upstream kinases, including SYK,

BTK, and PI3K, and these can be inhibited by corresponding

small-molecule kinase inhibitors (10). First-generation BTK

inhibitors (BTKis), such as ibrutinib, acalabrutinib, and

zanubrutinib, are irreversible at the C418 site of BTK (11).

Second-generation BTKis, such as fenibrutinib, vecabrutinib,

and nembrolizumab, can reversibly inhibit BTK and to some

extent overcome the drug resistance of first-generation BTKis

(11). Ibrutinib, as the first BTKi, has profoundly altered the

treatment paradigm of CLL patients, particularly relapsed/

refractory CLL (R/R CLL) and high-risk patients with TP53

aberrations (12–14). Both acalabrutinib and zanubrutinib have

demonstrated higher selectivity and fewer off-target effects than

ibrutinib (11, 15, 16). Nevertheless, previous studies have shown

that ibrutinib not only inhibits BCR and nuclear factor kappa B

(NF-kB) signaling (17–19) but also plays multiple roles in

regulating the tumor microenvironment and T-cell immunity

in CLL patients (20–22). This activity has been confirmed by

significant improvement in the efficacy of CAR-T cells and the

bispecific antibody blinatumomab in the clinic (3, 23–25).

However , to date , the e ffec t o f ibrut in ib on the

microenvironment and T-cell immunity of patients with CLL

is not completely clear.

Therefore, this article reviews the effects of ibrutinib on the

microenvironment and cellular immunity of patients with CLL,

particularly on the behavior and function of T cells, and their

potential mechanisms, to provide a basis for the clinical benefits

of long-term ibrutinib treatment and the further design of

combined therapy based on T-cell-based immunotherapies.
Overall regulation of ibrutinib on
CLL microenvironment

Secondary lymphoid organs, which are also called proliferation

centers, have a more complex microenvironment that is more

conducive to CLL cell survival (18), and this is where the BCR

signaling activity of CLL cells is upregulated, and the proliferative

activity of CLL cells is also increased (18, 26). Stromal cells, nurse-

like cells (NLCs), and T cells are three supporting cells in the CLL

microenvironment (27) (Figure 1A) that mediate the activation,
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homing, proliferation, and survival of CLL cells via direct contact

and the secretion of chemokine/cytokines and adhesion molecules

as well as their ligand–receptor interactions (28–33). Together, these

constitute complex cytokine networks (33, 34) that in turn recruit

the migration of T cells (35), including Th2 cells and Tregs, and

induce T–cell immune tolerance, T-cell anergy, and the immune

escape of CLL cells (36, 37). Additionally, toll-like receptors (TLRs)

interact with BTK, connecting the BCR signal with TLR signals and

activating the NF-кB signaling pathway, eventually promoting the

proliferation and survival of CLL cells (38, 39). Moreover, TLR

signaling also increases the immune escape of CLL cells by inducing

Treg expansion and producing immunosuppressive molecules (40).

Accumulating studies have demonstrated that ibrutinib

regulates the disordered microenvironment in CLL patients (18,

34). Specifically, ibrutinib directly inhibits the activation and

proliferation of CLL cells by blocking the BCR and the NF-kB
signaling pathways (18, 19, 31). Moreover, ibrutinib blocks the close

“crosstalk” between CLL cells and supporting cells in the

microenvironment to prevent their protection of CLL cells by

blocking complex cytokine networks and direct contact (27, 39).

For instance, ibrutinib not only inhibits the secretion of cytokines,

such as CCL3, CCL4, CXCL12, and CXCL13, from CLL cells and

their supporting cells within the microenvironment, it also inhibits

the TLR signaling pathway (38, 41), which prevents the homing and

residence of CLL cells and dissociates these cells from the protective

microenvironment (31, 41, 42).
The effects of ibrutinib on
circulating T-cell counts

Increasing studies have shown that CD4+ and CD8+ T cells

are enriched in the peripheral blood of CLL patients (43).

Specifically, the absolute numbers of CD3+, CD4+, and CD8+

T cells significantly increased in the peripheral blood of R/R and

naïve CLL patients before ibrutinib treatment (22, 28, 34, 44, 45),

particularly CD8+ T cells (20, 44), which resulted in a decreased

CD4:CD8 ratio (28, 45) (Figure 2A).

Burger and colleagues described for the first time that

ibrutinib treatment induces lymphocyte redistribution

using 2H-labeling experiments, which results in increased

absolute lymphocyte counts in peripheral blood and significant

shrinkage of lymph nodes (46). Subsequently, numerous studies

have focused on the effects of ibrutinib on the number of T cells

and distribution of T-cell subpopulations, but these results

remain controversial. Parry et al. found that CD3+ and CD8+

T-cell counts significantly decreased in R/R and naïve CLL

patients who were treated with ibrutinib for 6 months (47).

Niemann et al. found that the proportion of CD4+ and CD8+ T

cells decreased dramatically after 6 months (34). Yin et al. found

that the increased CD3+, CD4+, and CD8+ T cells were

significantly decreased in R/R CLL patients after 3 months of
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A
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FIGURE 2

Changes in the T-cell compartment and T-cell repertoire before and during ibrutinib treatment. The absolute numbers and percentage of CD4+

and CD8+ T cells increase in the peripheral blood, particularly for CD8+ T cells. However, the distribution of T-cell subgroups is abnormal,
which leads to the imbalance of Th1/Th2, an increase in T-regs, long-term activated T cells (TLTAs), and terminally differentiated T cells such as
effector memory T cells (TEM) and exhausted T cells (Texh cells), and a decrease in naïve T cells (A, left penal). There is a severely skewed T-cell
repertoire in patients with CLL (B). After 1–2 months of ibrutinib treatment, the number of T cells demonstrates a transient increase and then
decreases gradually after 6 months ((A) middle penal). The distribution of the T-cell subgroups is near to the normal level at 12 months, in
parallel with partial reconstruction of the T-cell repertoire diversity [(A) right penal; (B)].
A

B

FIGURE 1

Overall regulation of ibrutinib on the CLL microenvironment, particularly T cell immunity, is important. (A) Stromal cells, NLCs, and T cells are
the three key supporting cells in the CLL microenvironment. They crosstalk with CLL cells through direct contact and chemokines/cytokines
and their ligand-receptor interactions, such as CXCR4/CXCL12, CXCR3/CXCL9,10,11, and CXCR5/CXCL13, to mediate the activation, homing,
proliferation, and survival of CLL cells, which leads to T-cell immune dysfunction, particularly for CD8+ T cells, which are excessively activated,
expanded, and gradually pseudo-exhausted. Exhausted CD8+ T cells highly express a variety of inhibitory receptors, such as PD1, CTLA4,
CD244, TIM3, and LAG3. The cytotoxicity and proliferation activity of CD8+ T cells decrease. Ibrutinib regulates the CLL microenvironment by (1)
blocking BCR signaling, (2) preventing direct contact between CLL cells and T cells and repairing impaired immune synapses, and (3) inhibiting
cytokine networks. (B) These effects contribute to improving the activity of effector T cells in CLL patients, such as increased granzyme B and
perforin secretion, reduced inhibitory receptors, etc. In addition, ibrutinib inhibits the cytokine secretion, migration, proliferation, and survival of
CLL cells.
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ibrutinib treatment and then dropped to the normal range after

12 months (22). However, Long et al. noted a progressive

increase in T-cell counts until 6 months of ibrutinib treatment

in R/R and primary CLL patients (21). Single-cell sequencing

also showed that the percentage of T-cell subgroups changed

after treatment with ibrutinib, particularly the percentage of

CD8+T cells, which increased gradually until 4 months, while

CD4+T cells decreased gradually, which coincided with the

progressive reduction of CLL cells (20). Differences in the

above results may be related to disease status, tumor burden,

and time point after ibrutinib treatment. Recently, a study with

more intensive detection time points demonstrated there was a

transient increase in the T-cell number in CLL patients at about

2 months after ibrutinib treatment, followed by a decrease after

6–10 months that gradually returned to normal levels at 1

year (42).

The reason for the transient increase in T-cell counts after

ibrutinib treatment is completely unclear. It may be related to

the redistribution of T and CLL cells to the peripheral blood after

ibrutinib treatment (48, 49), followed by a simultaneous decline

in both T and CLL cells (22, 47–50). Additionally, ibrutinib can

reduce activation-induced cell death (AICD) by inhibiting

interleukin-2 inducible T cell kinase (ITK) activity, causing a

short-term increase in circulating T-cell counts (21). Sun et al.

also confirmed this finding in an ITK-deficient mouse

model (51).
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The regulation of ibrutinib
on the differentiation of
T-cell subpopulations

T cells are key adaptive immune effector cells that can be

mainly classified into multi-functional helper T cells (Th cells),

immunosuppressive Tregs, and cytotoxic T cells (CTLs). Acute

antigen stimulation drives naïve T-cell differentiation and

rapid expansion of effector T cells (Figure 3A). However,

prolonged exposure to an antigen from chronic viral

infections or cancer induces exhaustion in the responding

CD8+ effector T-cell populations (52). Moreover, the

differentiation of T-cell subgroups is unbalanced in patients

with CLL (Figures 3B, C).
Th1 and Th2 cells

In CLL patients, TCR signaling activation triggers a signaling

cascade to activate ITK, promoting the differentiation of Th2

and Treg cells and inhibiting the differentiation of Th1 and

cytotoxic CD8+ T cells (53, 54). Additionally, a series of

cytokines/chemokines, such as IL6, IL4, and IL10, which are

produced by CLL and Th2 cells, can promote immune system

skewing toward Th2 cells and inhibit Th1 differentiation (55)
A

B

C

FIGURE 3

Effects of ibrutinib on effector T-cell subgroups. Antigen stimulation drives naïve T cells to differentiate into effector T cells (Teff) followed by
rapid expansion of effector T cells, which eventually produce memory precursor cells (MPECs) after antigen clearance, further differentiating into
central memory T cells (TCM) and effector memory T cells (TEM) (A). However, persistent antigen stimulation from infections or CLL-related
antigens induces over-activation of T cells and promotes progenitor exhausted T (Prog Texh) cells to differentiate into exhausted T (Texh) cells,
which leads to the accumulation of terminally differentiated T cells, including TLTA and Texh cells (B). In addition, Th1 and Th2 differentiation is
unbalanced (C). Ibrutinib reverses the pseudo-exhaustion of T cells and promotes the activity of effector T cells and the predominant
differentiation of Th1 cells in CLL patients.
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(Figure 3C). Therefore, compared with healthy subjects, the

number of Th1 and Th2 cells in CLL patients increases (56),

but the distribution is unbalanced, demonstrating the dominant

differentiation of Th2 cells (53), which results in a tumor-

promoting environment and a reduced role for Th1 in tumor

monitoring (54, 57). Several studies have shown that ITK

deficiency promotes T-bet expression and blocks ITK-

dependent Th2 cell differentiation (53, 58, 59), while Th1 cell

differentiation can be triggered by the substitution of another

lymphocyte kinase (RLK) (59). Therefore, ibrutinib can

irreversibly bind to ITK to suppress Th2 cell differentiation,

restoring the balance between Th1 and Th2 (53).
Tregs and Th17 cells

Tregs and IL-17-producing CD4+ (Th17) cells play an

important role in immune tolerance and homeostasis (8, 60). In

CLL, Tregs may facilitate a tumor-promoting microenvironment

and tumor progression (61, 62). Nevertheless, Th17 cells in anti-

tumor immunity are negatively correlated with Tregs and

positively correlated with invariant natural killer T cells (NKTs)

(63). Disease progression in CLL patients and in the Em-TCL1
CLL mouse model is usually accompanied by a reduction in Th17

cells and Treg expansion and its immunosuppressive effector

function (64–66), which demonstrates the different roles of

these T cell subsets in CLL proliferation and survival. It has

been reported that the frequency and absolute number of Tregs

are significantly higher in CLL patients, which is related to high

tumor burden and advanced disease (66, 67), and an increase in

Tregs also indicates shorter overall survival (OS) (66). In contrast,

Tregs were more suppressive in CLL patients than in healthy

individuals, and the decrease in Tregs contributed to effective anti-

tumor effects in animal models (68, 69). Fortunately, the absolute

count and percentage of Treg were significantly reduced in CLL

patients as early as 30 days after ibrutinib treatment (70). Animal

models also revealed the effects of ibrutinib on Treg

differentiation (71).

Th17 cells are an important component in CLL anti-tumor

immune monitoring (72). Most studies have reported that a high

Th17 cell number is positively associated with OS and negatively

related to disease progression (65, 73–76), suggesting that Th17

has anti-tumor effects in CLL. Jadidi-Niaragh and colleagues

found that CLL patients, including progressive and indolent

patients, had a significantly lower frequency of Th17 cells

compared with healthy subjects (65), which was consistent

with the finding from Yousefi et al. (61). However, other

studies also found that the frequency and absolute count of

Th17 cells increased in CLL patients (56, 73, 74), particularly at

early disease stages (8, 63). A previous study has demonstrated

that the Th17 cells increased in patients with ibrutinib treatment
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by decreasing the FAS-mediated AICD (21). Moreover, ibrutinib

reduced the number of Tregs, which also contributed to the

expansion of Th17 cells to maintain the balance between Th17

cells and Tregs (73). However, contradictory findings, with

decreased frequency and absolute number of Th17 T cells in

patients with CLL receiving ibrutinib, have been reported (34,

55), and the possible reason was that ibrutinib impaired Th17

differentiation (77). It is speculated that these contradictory

findings may be associated with the difference in the timing of

detection and previous treatment history (3).
Naïve T cells and terminally
differentiated T cells

Patients with CLL experience abnormal T-cell differentiation

due to persistent antigen stimulation from tumor antigens or

infections, leading to over-activation of T cells with high

expression of the activation markers CD38 and HLA-DR and

the accumulation of long-term activated T cells (TLTAs) and

terminally differentiated T cells (78, 79). There is also an increase

in effector memory T cells (TEM), CD45RA-positive memory

effector T cells (TEMRA), and exhausted T cells (Texh cells)

(Figures 2A, 3C), particularly during disease progression (45).

Additionally, a significant decrease in naïve T cells and central

memory T cells (TCM) (80), largely limits the immune function

of T cells (45). Moreover, TLTAs reportedly maintain the ability

to secrete cytokines and remain in a state of pseudo-exhaustion

(50). These TLTAs and Texh cells are characterized by

progressive loss in effector function, poor proliferative capacity

(81) and upregulation of multiple inhibitory receptors, such as

CD160, CD244, PD-1, TIM3, and cytotoxic T lymphocyte

antigen 4 (CTLA-4) (44, 50, 81–83).

Accumulating data have demonstrated that ibrutinib can

directly inhibit the expression of inhibitory receptors (21, 44, 50,

82, 84) and reduce the number of terminally differentiated T

cells, such as TLTA, Texh, TEM, and TEMRA cells (79, 84) but

remain naïve T cells (79). Niemann et al. found that PD-1

expression significantly decreased at 4 weeks after ibrutinib

treatment in CLL patients (34). Similarly, Solman et al. found

that increased TLTA and Texh cell pre-treatment gradually

decreased in R/R and primary CLL patients; specifically, the

number of TLTA cells was significantly reduced after 2 months

of ibrutinib and near normal at 9 months, and Texh cells

decreased to the normal range at 5 months after ibrutinib

treatment (79). Furthermore, studies have found that naïve

CD4+ T cells increase in CLL patients with ibrutinib treatment

(21, 79), and a large proportion of naïve T cells in CLL (greater

than 10%) express T-BET or EOMES (21), indicating the

differentiation is skewed to Th1 cells. Taken together, ibrutinib

can inhibit the pseudo-exhaustion of T cells, thus reducing the
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number of TLTA and Texh cells and reversing the unbalanced T

cell subgroups.
Unconventional T cells

Unconventional T cells mainly include gd T cells, NKT cells,

and mucosal associated invariant T (MAIT) cells. gd T cells

account for about 10% of the T cells in peripheral blood, and

90% of gd T cells carry the Vg9Vd2 TCR, which recognizes

natural killer group 2D (NKG2D) and modulates gd T-cell-

driven immune responses (85). In CLL patients, both the

absolute count and percentage of gd T cells significantly

increased (86), particularly the phenotype and function of

Vg9Vd2-T cells changed. Specifically, compared with healthy

individuals, CLL-derived Vg9Vd2 T cells were in a higher state of

differentiation and had a lower ability to produce cytokines and

degranulate, resulting in impaired granzyme-dependent

cytotoxicity (87, 88). Ibrutinib treatment restored their

function and cytotoxicity (88), which may be associated with

the fact that ibrutinib promotes the phenotype of Vd2Vg9 T cells

skewing toward Th1 cells in CLL patients by inhibiting ITK

(87, 88).

In addition, NKT cells play a key role in regulating anti-

tumor immunity (89). The frequency of NKT cells decreased

with the development of CLL and could be a marker for immune

monitoring and prognosis in CLL (90, 91). However, other

studies found an increased absolute count of NKT cells in

untreated CLL patients (42, 79), and a transient continuous

increase at 3 months of ibrutinib treatment (79), and then the

number of NKT cells displayed a gradual decrease and reached

normal levels after 1 year (79).

MAIT cells exist in the liver and mucosal tissues, accounting

for 1%–10% of peripheral blood T cells. MAIT cells are mainly

involved in antibacterial immunity by producing a series of

cytokines and lytic molecules, but little is known about their role

in tumor immunity (92). Wallace et al. reported MAIT cell

deficiency in CLL (93). However, so far, the regulatory effect of

ibrutinib on MAIT cells remains unclear.
The effects of ibrutinib on
T cell functions

Generally, T cells are the key effector cells in anti-leukemia

immunity. Nevertheless, in CLL patients, CD4+ T cells stimulate

CLL cell survival and proliferation by secreting multiple

chemokines/cytokines and through direct contact with the

CD40 ligand (27, 36, 94), and CD8+ T cells are persistently

activated and expanded within the CLL microenvironment and

gradually become pseudo-exhausted (5, 50, 52), finally resulting in

T-cell immune tolerance and the loss of their anti-tumor activity
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(27), which has been reported to be causative of the poor response

to CAR-T cell therapies for CLL patients (95–97). Additionally,

due to the damaged structure of effector T cells and the poor

antigen presentation function of CLL cells, the formation of

immune synapses between T and CLL cells is impaired (84, 98).

Clinical studies have found that ibrutinib regulates T-cell

immunity through various mechanisms (Figure 1B). For

instance, ibrutinib promotes immune synapse formation

between T and tumor cells and restores immune function by

enhancing F-actin polarization and protein tyrosine

phosphorylation (99, 100). Moreover, long-term ibrutinib

therapy is likely to reverse the pseudo-exhaustion of T cells

and promote the activity of effector T cells in CLL patients by

inhibiting ITK activity and reducing the expression of inhibitory

receptors (53, 83, 84). Additionally, ibrutinib directly and

indirectly blocks the interaction between CLL and T cells by

inhibiting cytokine networks and reducing tumor burden (34).

Recently, single-cell analysis has shown that ibrutinib

significantly increases the expression of cytotoxic genes in

CD8+ T cells and enhances the function of CTLs with

ibrutinib treatment (44, 101).

However, a contradictory finding demonstrated that there

was reduced granzyme and IFNg in CD8+ T cells from ibrutinib-

treated mice, implying poor cytotoxicity (102). Most studies

have shown that ibrutinib treatment promotes the recovery of T-

cell cytotoxicity. However, the mechanism of ibrutinib

regulating T-cell immunity is not fully clear.
The impacts of ibrutinib on TCR
repertoire diversity

More than 90% of T cells are ab T cells in the peripheral

blood. T-cell receptor (TCR) repertoire diversity is mainly

determined by the divers i ty of the hypervar iab le

complementary determining region 3 (CDR3) of the TCRa
and b chains, which specifically recognize antigens presented

by major histocompatibility complex (MHC) molecules. A

diverse TCR repertoire is used to resist the invasion of various

pathogens. However, the TCR repertoire in CLL patients is

seriously skewed and exhibits oligoclonal or monoclonal

expansion (22, 103, 104) (Figure 2B), suggesting a tumor-

related antigen-mediated selection (104–106), in parallel with

severe impairment of T-cell immunity (105–107). In fact, the

pro-tumor and anti-tumor effects of these oligoclonal or

monoclonal T cells remain unknown (6, 22, 105). Prior studies

have confirmed that there are specific T-cell clones in patients

with CLL (6, 104), but they cannot effectively play an anti-tumor

role due to their small number and severe immunosuppressive

microenvironment (8). Additionally, the diversity of the TCR

repertoire is progressively impaired with disease progression and

multiple chemotherapy regimens (99, 105). Therefore, the
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reconstruction of the TCR repertoire may be key to restoring T-

cell immune function and further improving the response to

antitumor immunotherapy (22, 108).

Yin and colleagues found that the diversity of the TCRb
repertoire could be partially reconstituted in R/R CLL patients

after 12 months of ibrutinib treatment, which was closely related

to good treatment response and decreased infection rates (22),

suggesting that ibrutinib contributes to promoting the

reconstruction of the TCR repertoire diversity (Figure 2B).

However, another study revealed that the clonality of the TCR

repertoire increased with ibrutinib treatment in newly diagnosed

CLL patients; nevertheless, the clonality disappeared with

disease progression (103). These clonally expanded T cells

after ibrutinib treatment cannot be excluded as tumor-specific

T cells due to the stimulation from CLL-related antigens, which

is consistent with previous studies displaying the existence of

anti-tumor T-cell clones in CLL patients, suggesting to some

extent the recovery of T-cell immunity of patients with CLL (6,

22, 105). The differences in the results of the above two studies

may be due to the immune function of the subjects. The former

is R/R patients, and the latter is naive patients. Moreover, the

difference may also be due to analysis from different standpoints.

The former is from the whole TCR repertoire, and the latter is

from T-cell immune response in the TCR repertoire.
Conclusion and future prospects

Tumor microenvironment disorder and T-cell immune

dysfunction are the main characteristics of CLL patients (37, 109).

Long-term ibrutinib treatment promotes the restoration of

immunity, particularly T-cell immunity, consistent with improved

clinical outcomes observed in CLL patients (3, 42). Although single-

agent ibrutinib has long-term efficacy and tolerability in CLL

patients according to an 8-year follow-up (14), combined

therapies are still needed to overcome drug resistance, further

improve the efficacy of ibrutinib and reduce side effects, such as

ibrutinib combined with immunochemotherapy or BCL2 inhibitor

venetoclax (110, 111). However, the biggest challenge in the future

is to find strategic combinations to overcome T-cell dysfunction,

reverse the immunosuppressive environment, and improve the

efficacy of targeted immunotherapies in CLL (37, 97, 112).

Theoretically, ibrutinib combined with anti-CD20 antibody

rituximab (113) or immune checkpoint blockade (ICB) can

improve the efficacy of ibrutinib and enhance the anti-tumor

effect (103, 114); however, these effects have not been confirmed

in the clinic (115–117). Obinutuzumab reportedly appears to have

improved antibody-dependent cellular toxicity over

rituximab (118).

Recently, increasing studies have demonstrated that ibrutinib

has beneficial effects on T-cell-based immunotherapies (23). Both

preclinical and clinical studies have confirmed that ibrutinib

pretreatment combined with CAR-T cells can promote the
Frontiers in Immunology 07
implantation and amplification of CAR-T cells and enhance its

anti-tumor activity in CLL patients (3, 25, 119), even if in patients

with ibrutinib-resistance (3, 25), and decreased toxicity of CAR-T

cells (25, 119). There are several possible mechanisms. For instance,

long-term ibrutinib treatment regulates the disordered

microenvironment (18, 34), decreases the expression of inhibitory

molecules in CLL (21, 44, 82, 84), and reverses the limited

expansion of T cells (120, 121), particularly naïve-like T cells and

stem cell memory-like T cells (122), which play an important role in

the expansion and long-term maintenance of CAR-T cells (123,

124). Moreover, ibrutinib can promote the migration of CAR-T

cells to the tumor by enhancing CD62L expression (122, 125),

which is conducive to the anti-tumor effect of CAR-T cells.

Likewise, ibrutinib combined with the bispecific antibody

blinatumomab can promote T-cell-mediated anti-tumor effects by

inducing T-cell activation and proliferation, triggering cytokine

secretion and granzyme release (24, 126, 127). Moreover,

emerging targeted therapies, such as CD3/CD20 bispecific

antibodies, may provide further combined options (128).

Collectively, based on the effects of ibrutinib on the

microenvironment and T-cell immunity, in addition to

the benefits of long-term treatment with ibrutinib alone, the

combination of ibrutinib with T-cell-based immunotherapies

could become a promising treatment with deeper remission and

longer survival for CLL patients in the future.
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