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Background: There is increased interest in using artificial intelligence (AI) to provide

participation-focused pediatric re/habilitation. Existing reviews on the use of AI in

participation-focused pediatric re/habilitation focus on interventions and do not screen

articles based on their definition of participation. AI-based assessments may help reduce

provider burden and can support operationalization of the construct under investigation.

To extend knowledge of the landscape on AI use in participation-focused pediatric

re/habilitation, a scoping review on AI-based participation-focused assessments

is needed.

Objective: To understand how the construct of participation is captured and

operationalized in pediatric re/habilitation using AI.

Methods: We conducted a scoping review of literature published in Pubmed, PsycInfo,

ERIC, CINAHL, IEEE Xplore, ACM Digital Library, ProQuest Dissertation and Theses,

ACL Anthology, AAAI Digital Library, and Google Scholar. Documents were screened by

2–3 independent researchers following a systematic procedure and using the following

inclusion criteria: (1) focuses on capturing participation using AI; (2) includes data on

children and/or youth with a congenital or acquired disability; and (3) published in English.

Data from included studies were extracted [e.g., demographics, type(s) of AI used],

summarized, and sorted into categories of participation-related constructs.

Results: Twenty one out of 3,406 documents were included. Included assessment

approachesmainly captured participation through annotated observations (n= 20; 95%),

were administered in person (n = 17; 81%), and applied machine learning (n = 20;

95%) and computer vision (n = 13; 62%). None integrated the child or youth perspective

and only one included the caregiver perspective. All assessment approaches captured
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behavioral involvement, and none captured emotional or cognitive involvement or

attendance. Additionally, 24% (n = 5) of the assessment approaches captured

participation-related constructs like activity competencies and 57% (n = 12) captured

aspects not included in contemporary frameworks of participation.

Conclusions: Main gaps for future research include lack of: (1) research reporting

on common demographic factors and including samples representing the population

of children and youth with a congenital or acquired disability; (2) AI-based

participation assessment approaches integrating the child or youth perspective; (3)

remotely administered AI-based assessment approaches capturing both child or youth

attendance and involvement; and (4) AI-based assessment approaches aligning with

contemporary definitions of participation.

Keywords: involvement, engagement, assessment, measurement, natural language processing, machine learning,

computer vision, technology

INTRODUCTION

Participation is a key re/habilitation outcome that has been
defined by theWorld Health Organization as the “involvement in
life situation” (1, p. 9). In pediatric re/habilitation this definition
has been further conceptualized by Imms et al. (2) in the family
of Participation-Related Constructs (fPRC) framework. This
contemporary framework defines participation as child or youth
attendance and involvement in activities, which is related to but
distinct from their activity competencies, environment/context,
and preferences or sense of self (2, 3). Attendance is the
objective dimension of participation and has been commonly
used to quantify participation in pediatric re/habilitation (2–5).
Involvement is considered as more complex (2, 3, 5) and has
been further grouped by education and pediatric re/habilitation
literature into behavioral, cognitive, and emotional involvement
(6–8). Behavioral involvement is considered observable on-task
behavior (8), whereas cognitive involvement (thoughtfulness and
willingness to employ effort for tasks) and emotional involvement
(positive and negative feelings when interacting with people or
tasks) are non-observable (3, 8).

Recent literature reviews revealed inconsistent
conceptualization of participation in pediatric re/habilitation,
hindering interpretability and comparison across studies and
practice approaches (4, 5). For example, participation has often
been used interchangeably with activity competence, rendering
confusion about these two distinct but related constructs (2–5).
For efficient service provision (9) to reduce costs and provider
and patient burden (10), there is need to simplify processes
within participation-focused pediatric re/habilitation services
without compromising the complexity and the customization of
participation-focused services to individual needs.

Abbreviations: AI, artificial intelligence; ASD, autism spectrum disorder; EEG,

electroencephalogram; fPRC, family of participation-related constructs; HCI,

human-agent/computer/robot interaction; ML, machine learning; NLP, natural

language processing; PEM, participation and environment measure; VR, virtual

reality.

The application of artificial intelligence (AI), which is
considered a top re/habilitation research priority (9, 11), might be
one way to address this need. AI can be defined as systems that
think and act rationally by mimicking humans (12). Regardless
of the type of AI method employed [e.g., machine learning
(ML), natural language processing (NLP)] (12), AI is commonly
used to simplify processes and to customize information to
individuals’ preferences and needs, which could benefit the
healthcare industry (13). In pediatric re/habilitation, AI may
help to consolidate and analyze information in ways that afford
for providers to more efficiently enact the evaluation and goal-
setting, intervention, and reevaluation phases of the therapeutic
process (14) to deliver client-centered and participation-focused
re/habilitation interventions (15, 16). In the last decade there
has been a vast increase in research on the use of AI in
participation-focused pediatric re/habilitation warranting need
for summarizing the body of literature in this area of work (17).

Recently, our scoping review (17) on the use of AI
in re/habilitation interventions targeting the participation of
children and youth with acquired and congenital disabilities
included appraisal of: (1) their type of AI and customization
used; (2) their mode of delivery (i.e. in-person, remote); and
(3) whether goal-setting was addressed. Results revealed 94
studies using AI in participation-focused pediatric re/habilitation
interventions. Of these 94 studies, only 7 (8%) applied types
of AI other than robotics or virtual reality (VR), only one
study (1%) was tailored to patients’ individual needs, only
10 (11%) were delivered remotely, and only one (1%) of
the studies described individual goal-setting as part of their
intervention (17).

A main limitation of this scoping review include its exclusive
focus on interventions (17). Assessments that are conceptually
sound play a substantial role in shaping the enactment of quality
therapeutic processes (4, 5, 14, 18) and ensuring consistent
interpretation of research findings across studies (5). Prior
systematic reviews revealed few participation assessments that
aligned with contemporary definitions of child and youth
participation [i.e., children and youth’s attendance and their
involvement (2, 3)] (5, 19). Despite increased interest in using
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AI to capture participation (15), none of the included pediatric
assessment approaches used AI (5, 19). The lack of AI to assess for
child and youth participation might be due to selection of search
terms and differing terminology in pediatric re/habilitation and
computer science (e.g., while “measure” is used for clinical
assessment approach in pediatric re/habilitation, it is often a data
analytic term in computer science). Alternatively, the use of AI
to assess children’s participation is still in a nascent phase, which
could have precluded their inclusion. Additionally, the authors
did not examine participation assessments in regards to their
focus on types of involvement (i.e., behavioral, cognitive, and
emotional) and concluded the need for “further investigation
and characterization, both in relation to what constitutes
involvement and the best methods of measurement.” (5, p. 13).
To extend knowledge of the landscape on AI use in participation-
focused pediatric re/habilitation, a scoping review on AI-based
participation-focused assessments is needed.

Therefore, the purpose of this scoping review was to
understand how the construct of participation is captured and
operationalized in pediatric re/habilitation using AI, and to what
extent it aligns with the contemporary definitions of child and
youth participation [i.e., attendance and involvement (2, 3), as
indicated by child or youth behavioral, cognitive, and emotional
involvement (6–8)].

METHODS

Study Design
We conducted a scoping review to summarize the breadth
of existing evidence on how participation is captured and
operationalized in pediatric re/habilitation research using AI-
based assessment approaches and to identify gaps for future
research (20–22). In re/habilitation disciplines, assessment is a
way to gather clinically relevant information about a patient
(23). This can be done via different modalities (e.g., observation,
interview) and through standardized or non-standardized tools.
For this review, assessment is considered an approach and
does not necessarily include a standardized tool. We use the
PRISMA-ScR checklist (22) and the Joanna Briggs Institute
guidelines by Peter et al. (21), encompassing an enhanced
version of Arksey and O’Malley’s five steps (21, 24, 25). A
protocol for this scoping review is registered in Open Science
Framework (26).

Step 1: Identifying the Research
Question(s)
How is child or youth participation captured and operationalized
in participation-focused pediatric re/habilitation research
using AI?

a) What are the demographic characteristics of the
targeted population examined in studies using AI to
capture participation?

b) What types of AI have been used to assess for child and youth
participation in pediatric re/habilitation research?

c) What methods (i.e., reported, observation, estimates),
data sources (i.e., child/youth, caregiver, researcher,

re/habilitation professional, other type of professional/not
specified, facial/skeleton/eye recognition, sensors,
Electroencephalogram (EEG), distance estimate, other),
and mode of administration (i.e., remotely, in person) have
been used to assess for child and youth participation in
pediatric re/habilitation?

d) To what extent does participation-focused pediatric
re/habilitation research using AI assess for participation in
ways that align with the contemporary definition of child and
youth participation (2, 3, 6–8)?

e) What are the research gaps in addressing child and youth
participation, as aligned with the contemporary definition
of child and youth participation, in pediatric re/habilitation
research that uses AI?

Step 2: Identifying Relevant Studies
The first author of this review (VK) conducted a systematic
literature search in well-established applied health sciences
and computer science databases (i.e., Pubmed, PsycInfo, ERIC,
CINAHL, IEEE Xplore, ACM Digital Library) with additional
searches in ACL Anthology and AAAI Digital Library to
retrieve documents published before February 2021. No search
limitations were applied, including no publication data limit. We
used a search strategy previously published by Kaelin et al. (17).
For this scoping review, we additionally conducted a search for
gray literature in Google Scholar (200 most relevant) (27) and
ProQuest Dissertation and Theses, and we screened the reference
lists of included studies (see Appendix 1 for exemplar search
history for gray literature search).

Step 3: Study Selection
Documents were included if: (1) the document included a focus
on capturing participation using AI; (2) the research paper
included data on children and/or youth [aged 0–24 years, as
aligned with the definition of children and youth put forth by the
United Nations (28)] with a congenital or acquired disability (1);
and (3) the document was published in English. No operational
definition of participation was applied, so as to ensure inclusion
of a broad scope of documents. The following terms have been
used to describe participation in the fPRC (2, 3) and/or in prior
literature reviews on pediatric participation (4, 19, 29) and were
therefore considered as indicators of participation and included
in this review: participation, inclusion, engagement, playfulness,
access or attendance to life situation/settings/activities, social
interaction, and social engagement. Documents were excluded
if: (1) the document did not include a focus on capturing
participation in daily activities (e.g., focus was on measuring
skill development); (2) there was no use of AI to capture
participation; (3) there were no data included of children or
youth with a congenital or acquired disability (1); (4) the
document focused on data of adults (mean age >24 years)
(28); (5) the document was published in languages other than
English; or (6) the document was a textbook review, textbook
chapter, literature review, study protocol or demonstration paper,
conference or workshop program, or included only an abstract
without additional information. To prevent missing relevant
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FIGURE 1 | Study selection.

documents, the reference lists of excluded literature reviews
were screened.

After removal of duplicates from the scientific and gray
literature search (n = 1,008), the titles and abstracts of 2,398
documents were screened for inclusion by two researchers
independently (VK and MV) (see Figure 1). This resulted
in 49 documents that underwent full-text screening by three
researchers independently (ZS, JS, and VK) based on the
same inclusion and exclusion criteria as for title and abstract
screening. Disagreements during title/abstract and full-text
screening were resolved through discussion and key informant
feedback (MK and NP). In addition, a total of 86 documents
were identified through title screening of reference lists in
both included documents and excluded literature reviews. After
abstract screening of these 86 additional documents, 10 were
identified for full-text screening based on the same inclusion and
exclusion criteria.

Step 4: Charting the Data
For all included documents, data were extracted by the same
three researchers using Microsoft Excel, based on the following
categories: Author(s), year, title, sample size, child/youth
age, child/youth gender, child/youth acquired or congenital
disability, child/youth race and ethnicity [Hispanic, non-
Hispanic], family socio-economic status, family income,

parental education level, how participation is operationalized,
term(s) used to denote participation, whether a definition was
provided for participation, participation activity addressed,
approach to data collection (i.e., reported, observation,
estimates), data source(s) (i.e., child/youth, caregiver, researcher,
re/habilitation professional, other type of professional/not
specified, facial/skeleton/eye recognition, sensors, EEG, distance
estimate, other), type(s) of AI used [i.e., cognitive modeling,
computer vision, constraint satisfaction and optimization,
game theory, human-agent/computer/robot interaction, human
computation and crowdsourcing, knowledge representation
and reasoning, ML, NLP, planning/routing/scheduling,
robotics, and visualization and VR (12)], and mode of
administration (i.e., remotely, in person). The selection
of demographic categories for extraction was guided by
prior research on common predictors of child and youth
participation (30–32). To ensure clarity and relevance of these
categories, the data extraction tool was first trialed by three
researchers (VK, ZS, and JS) with 5 included documents
selected at random.

Step 5: Collating, Summarizing, and
Reporting Results
Following data charting, we summarized the included studies
according to their publication date, sample size, included
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FIGURE 2 | Conceptualization of participation based on contemporary

frameworks of participation. Informed by the family of Participation-Related

Constructs (fPRC) (2, 3) as paired with research on the conceptualization of

involvement (6–8).

child and youth age, gender, acquired or congenital disability,
race and ethnicity, and their family’s socio-economic status
and/or income and their parents’ education level. We calculated
frequencies for the approach to data collection, data source(s),
the type(s) of AI used, mode of administration, and whether
a definition for participation was provided. Additionally, the
first author (VK) sorted the data in the category of how
participation is operationalized according to the fPRC (2, 3)
paired with research on the conceptualization of involvement
(6–8) and as visualized in Figure 2. More specifically, data
was mapped to (1) child and youth attendance, (2) their
involvement (2, 3), as indicated by child or youth behavioral,
cognitive, and emotional involvement (6–8), (3) participation-
related constructs (i.e., activity competence, sense of self,
preferences, environment/context), and 4) a category “other” in
situations where data could neither be mapped to participation
(i.e., attendance, type of involvement) nor participation-related
constructs. For participation assessment approaches that focused
on involvement without specifying the type, we assumed a focus
on all types of involvement. Uncertainties were discussed with a
key informant (MK).

RESULTS

Our scientific and gray literature search revealed 3,406
documents, with 1,008 duplicates, resulting in 2,398 documents
that we screened based on their title and abstract (see Figure 1).
A total of 2,349 documents were excluded, resulting in 49
documents that underwent full-text screening, and another 10
documents that were identified by screening the reference lists
of excluded literature reviews and included studies. While most
documents were excluded because they did not use AI to capture
participation (n = 24), additional reasons for exclusion were

the lack of data on children and/or youth with a congenital or
acquired disability (n = 8), document format (i.e., protocol or
demonstration papers, only an abstract was available) (n = 4),
and duplicates (e.g., a study from a dissertation already included
in form of a published article) (n = 2). This resulted in 21
included studies for this scoping review, each representing a
different AI-based participation assessment approach.

Demographic Characteristics of the
Included Samples
We describe the included studies based on their publication date,
included sample size, sampled child and/or youth age, gender,
congenital or acquired disability, and race and/or ethnicity
[Hispanic, non-Hispanic], as well as the family’s socio-economic
status or income and the parental education level.

The 21 included studies were published between 2007 and
2020, with most of them (n = 13/21; 62%) published after 2016
(33–45). The sample size of the included studies ranged from 2
to 35 children and/or youth, with a mean age up to 20.8 years
(see Table 1). Of the 12 studies that reported on child and/or
youth gender, 11 studies (92%) included male majority samples
(33, 34, 38–41, 45, 46, 49, 50, 53). The vast majority of the
included studies focused on children and/or youth with autism
spectrum disorder (ASD) (n = 19/21; 91%) (33, 34, 37–53),
followed by single instances of studies including children with
Down syndrome (5%) (50), children with a visual impairment
(5%) (35), and children with cerebral palsy (5%) (36). None of the
studies reported on family socio-economic status, family income,
or child or youth ethnicity [Hispanic, non-Hispanic]. Only 1
study reported on child or youth race (33) and only 1 study
reported on parental education level for one of the caregivers
sampled (40).

Capturing Participation
We synthesize findings about capturing participation, according
to how existing AI-based assessment approaches gathered
data, the data source(s) used, and the type(s) of AI used to
capture participation.

Of the 21 assessment approaches, 20 (95%) (34–53) used
annotated observations of child and youth participation as
collected by the re/habilitation professional (n = 8/20; 40%)
(34, 35, 39, 40, 43, 45, 52, 53), researcher (n = 5/20; 25%)
(35, 36, 40, 46, 47), or other type of professional (e.g.,
psychologist, expert human rater) (n = 12/20; 60%) (34, 35,
37, 38, 40–42, 44, 48–51) to include in predictive models
of participation (see Table 2). More specifically, re/habilitation
professionals, researchers or other types of professionals rated
the child or youth participation via observation in real-time
or on video and then a classification model was trained to
predict participation based on that labeled data. None of the
included participation assessment approaches included the child
or youth perspective (e.g., annotations conducted by the child or
youth, self-reported data), and only one included the caregiver
perspective (i.e., annotated observations by caregivers) in their
predictive model of participation (40). Liu et al. (53) collected
youth and caregiver report data (i.e., annotations done by youth
and caregiver), in addition to therapist annotations; however,
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TABLE 1 | Included studies.

Race/ethnicity, socio-

Child/youth Child/youth economic status, parental

References Sample (n) Child/youth age, Mean(SD); range [years] gender, male diagnosis education, or family income

Ahmed et al. (33) 7 children M (SD) = 12.7; range = 8–19 57% ASD 71% White, 29% AA

Bian (34) 30 youth M (SD) = 15.2 93% ASD NR

Chorianopoulou et al. (38) 17 children Range = 1.2–6.7 82% ASD NR

Fan et al. (46) 16 youth M (SD) = 15.2 (1.6); range = 13–18 100% ASD NR

Fan et al. (39) 20 youth M (SD) = 15.3 (1.7) 95% ASD NR

Feil-Seifer et al. (47) 8 children NR NR ASD NR

Feil-Seifer et al. (48) 13 children NR NR ASD NR

Feil-Seifer et al. (49) 8 children Children: range = 5–10; youth: M (SD) = 20.8 Children: NR ASD, TD NR

and 7 youth Youth: 86%

Feng et al. (40) 2 children M (SD) = 4.5 (0.7); range = 4–5 100% ASD Greater than high school

Fleury (36) 5 children M (SD) = 3.8 (1.8); range = 2–6 20% CP, TD NR

Ge et al. (50) 3 children M (SD) = 12.3 (1.5); range = 11–14 100% ASD, DS NR

Hashemi et al. (41) 33 children M (SD) = 2.2 88% ASD, TD NR

Kalantarian et al. (42) 13 children M (SD) = 6.9 (2.5) NR ASD NR

Khamassi et al. (43) 12 children NR NR ASD NR

Krupa et al. (51) 20 children NR NR ASD NR

Lahiri et al. (52) 8 youth M (SD) = 16.1 (2.1); range = 13–18.3 NR ASD NR

Liu et al. (53) 3 youth M (SD) = 14.3 (1.2); range = 13–15 100% ASD NR

Rudovic et al. (37) 30 children Range = 3–13 NR ASD NR

Rudovic et al. (44) 35 children Range = 3–13 NR ASD NR

Rudovic et al. (45) 35 children M (SD) = 8.5; range = 3–13 82% ASD NR

Volta et al. (35) 17 children NR NR VI NR

AA, African American; DS, Down syndrome; ASD, autism spectrum disorder; CP, cerebral palsy; VI, visual impairment; NR, not reported.

only therapist annotations together with collected physiological
indices (e.g., heart sound) were included in the predictive model
of participation.

These annotated observations were paired with data collected
from facial, skeleton, or eye recognition tools (n = 9/20; 45%)
(33, 37, 40–42, 44, 45, 50, 52), sensors (n = 6/20; 30%) (34,
40, 44, 45, 51, 53), EEG (n = 4/20; 20%) (34, 36, 39, 46), via
distance estimates (n= 3/20; 15%) (47–49), and/or other tools (n
= 6/20; 30%) such as microphones or electrodes (34, 38, 40, 43–
45). To capture or predict participation, 18 of the 21 participation
assessment approaches used multiple types of AI (86%) (34–
50, 52). The vast majority of participation assessment approaches
applied ML (n = 20/21; 95%) (34–53), followed by CV (n =

13/21; 62%) (33–35, 37, 41, 42, 44, 45, 47–50, 52), robotics
and HCI (n = 9/21; 43%) (36, 37, 40, 43–45, 47–49), VR (n
= 4/21; 19%) (34, 39, 46, 52) and NLP (n = 1/21; 5%) (38).
ML and NLP were used to classify (i.e., automatically group
based on prediction) data into categories of participation (e.g.,
engagement; non-engagement) (34–53). For example, Krupa et
al. (51) paired physiological parameters (i.e., electro dermal
activity and heart rate captured via sensors) with annotated
observations of child participation to train a machine learning
model to predict participation. CV was used to extract facial
features (e.g., facial expressions, whether a face is directed toward
the screen) to support capturing participation (33–35, 37, 41,
42, 44, 45, 47–50, 52). For instance, Kalantarian et al. (42)

used a face tracker algorithm to locate the child’s face within a
video frame during a game session. These data [i.e., indicator
for participation according to (42)] together with annotated
observations on child participation were included in a ML model
to predict child participation. VR, robotics and HCI were only
used in combination with other types of AI (34, 36, 37, 39, 40, 43–
49, 52). For example, Khamassi et al. (43) used ML to predict
child participation by pairing data on a robot’s expressivity with
annotations on child participation. Similarly, Fan et al. (39, 46)
used VR for driving simulations while participation was captured
through paired annotated observations and collected EEG data
entered in a predictive ML model.

In contrast to the pairing of annotated observation and
recognition tools to collect data on child and youth participation,
Ahmed et al. (33) captured participation using solely a threshold
for facial action unit intensity, detected by a CV tool. This
way of capturing participation was examined with children and
youth with ASD completing self-contained academic lessons with
tests (33).

Of the 21 included participation assessment approaches, 17
(81%) (34–37, 39, 40, 43–53) were delivered in person and
outside the child or youth natural environment (e.g., laboratory)
and 4 (19%) (33, 38, 41, 42) were either delivered remotely in
the child’s natural environment or the authors indicated their
intention to deliver the developed assessment approach remotely.
The purpose of assessing for child and/or youth participation in
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TABLE 2 | Data collection, data source, and type(s) of AI used.

References Data collection method and source Type(s) of AI used to

capture participation

Reported Observation Estimates

Re/habilitation Other type of professionals, Facial/skeleton/ Distance

Child/youth Caregiver Researcher professional not specified eye recognition Sensors EEG estimate Other

Ahmed et al. (33) X CV

Bian (34) X X X X X Exp. 1: CV, ML, VR

Exp. 2: ML, VR

Chorianopoulou

et al. (38)

X X ML, NLP

Fan et al. (46) X X ML, VR

Fan et al. (39) X X ML, VR

Feil-Seifer et al.

(47)

X X CV, ML, R, HCI

Feil-Seifer et al.

(48)

X X CV, ML, R, HCI

Feil-Seifer et al.

(49)

X X CV, ML, R, HCI

Feng et al. (40) X X X X X X X ML, R, HCI

Fleury (36) X X ML, R, HCI

Ge et al. (50) X X CV, ML

Hashemi et al.

(41)

X X CV, ML

Kalantarian et al.

(42)

X X CV, ML

Khamassi et al.

(43)

X X ML, R, HCI

Krupa et al. (51) X X ML

Lahiri et al. (52) X X CV, ML, VR

Liu et al. (53) X X X X ML

Rudovic et al. (37) X X CV, ML, R, HCI

Rudovic et al. (44) X X X X CV, ML, R, HCI

Rudovic et al. (45) X X X X CV, ML, R, HCI

Volta et al. (35) X X X CV, ML

Total (n) 1 2 5 8 12 9 6 4 3 6 ML= 20; CV = 13; R = 9;

HCI = 9; VR = 4; NLP = 1

AI, Artificial intelligence; R, Robotics; NLP, Natural language processing; CV, Computer vision; ML, Machine learning; HCI, Human-agent/computer/robot interaction; VR, Visualization and virtual reality; EEG, Electroencephalogram.
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most studies was to contribute to building autonomous robots
(n = 11/21; 52%) (36, 37, 40, 43–45, 47–50, 53) or systems that
automatically adjust for task difficulty level based on the child
and/or youth participation level (n= 4/21; 19%) (34, 39, 46, 52).

Operationalizing Participation
We synthesize findings pertaining to how participation was
operationalized per the terms used, and what was intended and
actually captured.

None of the included assessment approaches used the term
participation. Rather, most of them used the term engagement (n
= 17/21; 81%) (33–46, 50, 52, 53), followed by social interaction
(n = 3/21; 14%) (47–49) and involvement (n = 1/21; 5%) (51).
About half of the included studies (n = 10/21; 48%) provided a
definition for the term(s) used (33, 35–38, 43, 49, 50, 52, 53).Most
assessment approaches examined participation in play activities
(n = 8/21; 38%) (36, 38, 42, 47–50, 53), followed by driving (n
= 3/21; 14%) (34, 39, 46), social interaction activities (n = 3/21;
14%) (40, 43, 52), academic lessons or mathematical problem
solving (n= 2/21; 10%) (33, 35), and watching a movie (n= 1/21;
5%) (41). One study (5%) investigated assessing participation in
varied activities (from simple games on smart phone to cycling)
(51) and 3 studies (14%) (37, 44, 45) did not specify the activity.

In terms of how participation was intended to be captured,
none of the included assessment approaches intended to capture
attendance. To assess for involvement, only 1 participation
assessment approach (5%) intended to capture both behavioral
and emotional involvement (33), and only 1 assessment approach
(5%) intended to capture emotional involvement (51) (see
Table 3). The remaining 19 participation assessment approaches
(91%) did not specify which aspects of involvement they intended
to capture (34–50, 52, 53), so we assumed they intended to
capture involvement generally.

In terms of actual capturing of child and youth participation,
all participation assessment approaches captured behavioral
involvement. A total of 13 assessment approaches captured
aspects not pertaining to participation (34–36, 38, 39, 43–
46, 50–53) according to the used contemporary definition
of participation (2, 3, 6–8). More specifically, 3 assessment
approaches (14%) captured aspects that pertain to activity
competences (i.e., quality of the doing such as quality of
facial expression and actions on partner or object while
playing or performing a non-specified activity) (38, 44, 45), 2
(10%) captured aspects of the environment and context (e.g.,
robot expressions) (38, 43), and 12 assessment approaches
(57%) captured aspects that are outside of the scope of
the fPRC framework (2, 3) and/or behavioral, cognitive, or
emotional involvement (6–8) (e.g., heart rate, skin temperature)
(34–36, 38, 39, 44–46, 50–53). None of the participation
assessment approaches captured attendance, nor emotional or
cognitive involvement.

DISCUSSION

Child and youth participation is a multidimensional and
complex outcome in pediatric re/habilitation (2, 3, 9, 11, 18).
Conceptually sound assessments are critical for shaping the

enactment of the therapeutic processes (4, 5, 14, 18) and ensuring
consistent interpretation of research findings across studies (5).
While child and youth participation is characterized as both
attendance and involvement (2, 3) (i.e., behavioral, cognitive,
and emotional involvement) (6–8) few non-AI participation-
focused assessments actually capture it as such (5). The
increased use of AI in pediatric re/habilitation (17) provides
an important opportunity for undertaking this scoping review,
which examined how the concept of participation has been
captured and operationalized in AI-based assessment approaches
(4, 5, 14, 18) and identified gaps for future research at the
intersection of pediatric re/habilitation and computer science,
with potential for relevant extension into related fields [e.g.,
health informatics (15)].

Lack of Reported Demographics and
Sample Representativeness
Samples of included research were mainly skewed toward greater
representation of male participants and children and youth with
ASD and lacked reporting on family socio-economic status,
family income, parental education, and child or youth race and
ethnicity [Hispanic, non-Hispanic]. The concern of skewed data
(e.g., oversampling of male participants and select diagnoses) as
well as the lack of reporting on demographics in the training sets
for applications of AI has been raised in prior literature (17, 54).
Skewed and missing data in predictive models raise questions
about their generalizability to the population and the degree
they may reinforce existing inequalities in healthcare settings
(54). Therefore, future research on this topic should consistently
report on family socio-economic status and child and/or youth
race and ethnicity as well as improve sampling strategies to better
represent child or youth gender (55) and the range of diagnoses
in children who experience unmet participation need (56, 57).

Lack of AI-Based Participation
Assessment Approaches Integrating the
Child or Youth Perspective
All included AI-based assessment approaches integrated
objective (i.e., observable) data to capture participation, with
the vast majority using annotated observations. Only one of
the 21 included participation assessment approaches integrated
proxy-reported (e.g., caregiver-reported) data (40), and none of
the included assessment approaches integrated child or youth
self-reported data to capture participation.While the dominating
focus on objective data is congruent with prior research not
involving AI (4, 5, 58, 59), additional challenges for using AI
to capture self-reported participation (15) may have amplified
this result. Previously reported challenges include the lack of a
machine-readable ontology describing components for activity
and participation and the lack of annotation standards and data
for this type of work (15). The dominating focus on objective data
in this review might also be explained by the targeted population
(i.e., mainly children and youth with ASD) that might be
non-verbal communicators. Alternatively, it might be reflective
of the common type(s) of AI employed (i.e., robotics, HCI, and
VR) in participation-focused pediatric re/habilitation research
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TABLE 3 | Operationalization of participation.

References Attendance Involvement Activity

competence

Sense of

Self

Preference Environment/

context

Other

Behavioral

involvement

Cognitive

involvement

Emotional

involvement

Ahmed et al. (33) Tried to measure X X

Actually measured X

Bian (34) Tried to measure X X X

Actually measured X X

Chorianopoulou et

al. (38)

Tried to measure X X X

Actually measured X X X X

Fan et al. (46) Tried to measure X X X

Actually measured X X

Fan et al. (39) Tried to measure X X X

Actually measured X X

Feil-Seifer et al.

(47)

Tried to measure X X X

Actually measured X

Feil-Seifer et al.

(48)

Tried to measure X X X

Actually measured X

Feil-Seifer et al.

(49)

Tried to measure X X X

Actually measured X

Feng et al. (40) Tried to measure X X X

Actually measured X

Fleury (36) Tried to measure X X X

Actually measured X X

Ge et al. (50) Tried to measure X X X

Actually measured X X

Hashemi et al. (41) Tried to measure X X X

Actually measured X

Kalantarian et al.

(42)

Tried to measure X X X

Actually measured X

Khamassi et al.

(43)

Tried to measure X X X

Actually measured X X

Krupa et al. (51) Tried to measure X

Actually measured X X

(Continued)
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(17). Many included participation assessment approaches
employing robotics, HCI and VR aimed at integrating real-time
participation data through using CV and/or ML (i.e. annotated
observations) to simultaneously adapt the robotic behavior or
VR task difficulty (34, 39, 43, 45, 47–49, 52).

The importance of the subjective dimension for participation
assessment has been identified in prior research involving
children and youth with acquired and congenital disabilities and
their caregivers (5, 60–62). One way to include self-reported
participation data in such applications might be through
annotations conducted by children or youth themselves.
However, due to interpersonal differences in experiencing
and expressing participation (2, 3, 18, 44) generalization
of such predictive models might be limited. Alternatively,
non-AI participation assessments are often used within
pediatric re/habilitation to gather self- or proxy-reported data
for individual goal setting. For example, the Participation
and Environment Measures (PEM) (63–65) assess for how
often a child, youth or young adult participates in home,
(pre-)school/daycare/work and community activities, their level
of involvement in those activities, the desire for participation
to change, applied participation-focused strategies, and the
perceived impact of the environment on child, youth or young
adult participation. Applications of AI such as recommender
algorithms (e.g., constraint satisfaction and optimization)
or NLP might provide simplified, more practical and low-
cost ways for self- or proxy-reported data collection and
interpretation for individual goal setting such as by systematically
integrating responses into the individual child or youth
participation profile, their participation goal, and intervention
planning (12, 16, 66, 67).

Lack of Remotely Administered AI-Based
Assessment Approaches Capturing
Participation
Few participation assessment approaches were administered
remotely and in the natural environment [e.g., a child’s home
(38, 41)]. This result is surprising, due to the potential for
leveraging technology to administer participation assessment
approaches remotely and the previously reported importance of
the environment in shaping child or youth participation (68–71).
However, it aligns with results from a previous scoping review
revealing only a few remotely delivered AI-based interventions
targeting child or youth participation (17).

This result might be explained by the need for special
equipment (e.g., camera equipped rooms) to administer the
included AI-based participation-focused assessment approaches
and interventions, with children and youth in attendance
(17). Measuring participation with children and youth in
attendance might also be the reason for the lack of measuring
“attendance” in the included participation-focused assessment
approaches. Alternatively, AI may be better suited to managing
the higher complexity associated with assessing for a child’s
involvement when compared to their attendance (2, 3, 5). In
pediatric re/habilitation, there are few non-AI participation-
focused assessments that capture data on involvement which has
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been discussed as a key limitation (5). This review highlights
early attempts to capture involvement through the use of AI,
may reveal a unique opportunity for combining existing non-
AI participation-focused assessments with new approaches using
AI, to more fully assess child and youth participation. Therefore,
there is need for further validation of these approaches to
capturing involvement through AI (72).

Lack of AI-Based Assessment Approaches
Fully Aligned With Contemporary
Definitions of Participation
While most included participation assessment approaches
intended to capture all three aspects of involvement, none
of them actually captured the two non-observable aspects of
involvement (i.e., cognitive or emotional involvement). This
mismatch between what was intended vs. actually captured
might be connected to the lack of subjective data collection in
the included participation assessment approaches as previously
discussed. Subjective data could complement and/or extend
recent efforts to quantify engagement, including behavioral
engagement (58, 59).

Assessment approaches included in this scoping review
captured aspects of activity competence and environment that
were mistakenly labeled as participation or involvement. In
addition, this review included a high number of participation
assessment approaches that capture aspects that could not be
mapped to the fPRC (2, 3). One such example are data on body
functions such as kinematics data (50) that neither belong to the
participation construct nor to participation-related constructs.
One reason for researchers to collect body functions to capture
participation might be related to the terms used to describe
the types of involvement [i.e., behavioral, cognitive, emotional
(6–8)]. In re/habilitation, the terms “behavioral, cognitive and
emotional” have often been used in combination with “skills”
such as concentration, attention, and asking questions (8), which
arguably are body functions or activity competencies (15). Terms
that have often been related to body functions or participation-
related constructs (5) maymisguide researchers and practitioners
to focus on such constructs when designing assessments on
involvement. Thus, findings of this review may indicate a need
for different terms describing types of involvement. One way
could be by differentiating between “observable” and “non-
observable” aspects of involvement instead of using behavioral,
cognitive, and emotional involvement as visualized in Figure 3.
According to existing literature, observable involvement can
be described as the observed partaking in an activity, for
example, through focusing on a task. In contrast, non-
observable involvement can be described as the feeling of
inclusion, acceptance, and belonging as well as the felt
engagement in an activity such as through flow or investment
(5, 8, 73, 74).

The distinction between observable and non-observable
aspects of involvement may also help to emphasize the
importance to include subjective data to fully capture
participation, which has been identified as a limitation
in existing participation assessments with and without

FIGURE 3 | Participation encompassing observable and non-observable parts

of involvement. Informed by the family of Participation-Related Constructs

(fPRC) (2, 3) and research on the conceptualization of involvement

(2, 3, 6–8, 72, 73).

the use of AI (5). Because knowledge on the construct
involvement is still emerging (73), future research on child
and youth involvement in attended activities is needed
for its conceptualization in participation assessments in
pediatric re/habilitation.

Limitations
The main limitation of this research is the risk of having missed
relevant documents. For example, when AI was not mentioned in
the title or abstract, that document was likely excluded from our
search and/or when applying our selection criteria. Additionally,
we did not evaluate the quality of included studies. However, this
is not typically done in scoping reviews due to their purpose of
providing a map of existing evidence vs. synthesizing the best
available evidence (21).

CONCLUSIONS

There is an increasing number of research studies on the use
of AI to capture participation involvement, which indicates the
promise of AI to capture participation and an opportunity to
further investigate the construct of participation, particularly
child and youth involvement. Our results show that most of the
included assessment approaches captured participation through
observation and by applying ML, CV or robotics and HCI.
There was a mismatch between what assessment approaches
intended to capture and what they actually captured, with
a high number of assessments collecting data unrelated to
participation, according to contemporary frameworks of child
and youth participation (2, 3, 6–8). Our results suggest 4
main gaps that need to be addressed in future research: (1)
a lack of research reporting on common demographic factors
and including samples representing the population of children
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and youth with a congenital or acquired disability; (2) lack
of AI-based participation assessments integrating the child or
youth perspective; (3) lack of remotely administered AI-based
assessments capturing both the attendance and involvement
dimensions of child and youth participation; and (4) lack of AI-
based assessments that fully align with contemporary definitions
of child and youth participation.
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