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Abstract: Nonspecific low back pain (NSLBP) constitutes a critical health challenge that impacts
millions of people worldwide with devastating health and socioeconomic consequences. In today’s
clinical settings, practitioners continue to follow conventional guidelines to categorize NSLBP
patients based on subjective approaches, such as the STarT Back Screening Tool (SBST). This study
aimed to develop a sensor-based machine learning model to classify NSLBP patients into different
subgroups according to quantitative kinematic data, i.e., trunk motion and balance-related measures,
in conjunction with STarT output. Specifically, inertial measurement units (IMU) were attached to the
trunks of ninety-four patients while they performed repetitive trunk flexion/extension movements
on a balance board at self-selected pace. Machine learning algorithms (support vector machine
(SVM) and multi-layer perceptron (MLP)) were implemented for model development, and SBST
results were used as ground truth. The results demonstrated that kinematic data could successfully
be used to categorize patients into two main groups: high vs. low-medium risk. Accuracy levels
of ~75% and 60% were achieved for SVM and MLP, respectively. Additionally, among a range of
variables detailed herein, time-scaled IMU signals yielded the highest accuracy levels (i.e., ~75%).
Our findings support the improvement and use of wearable systems in developing diagnostic and
prognostic tools for various healthcare applications. This can facilitate development of an improved,
cost-effective quantitative NSLBP assessment tool in clinical and home settings towards effective
personalized rehabilitation.

Keywords: objective clinical decision-making; wearable systems; trunk kinematics; pattern
recognition; classification; STarT back screening tool

1. Introduction

Considered as the most common cause of disability, as well as the most widespread musculoskeletal
disorder worldwide, low back pain (LBP) remains a tremendous health and socioeconomic challenge
of pandemic proportions [1,2]. It is estimated that around 84% of the global adult population will
experience LBP at least once during their lifetimes, where every second, up to 33% adults, or one
in every three people, suffer an LBP episode [3–5]. In both developed and developing countries,

Sensors 2020, 20, 3600; doi:10.3390/s20123600 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-8941-0182
http://www.mdpi.com/1424-8220/20/12/3600?type=check_update&version=1
http://dx.doi.org/10.3390/s20123600
http://www.mdpi.com/journal/sensors


Sensors 2020, 20, 3600 2 of 16

LBP has been identified as the fourth-most frequent condition warranting a visit to a physician, the
fifth-most common reason for hospitalization, and the third-most frequent cause for surgery [4,6].
Meanwhile, about 90% of LBP patients are identified as nonspecific low back pain (NSLBP) patients, or
LBP patients with no recognizable specific pathology [7]. There is, therefore, a compelling need for
investigating this highly prevalent condition and leveraging readily.

Meanwhile, researchers confirm that there is no “one-size-fits-all” management approach for
NSLBP patients, given the elusive etiology, complexity, and trigger heterogeneity among sufferers [8,9].
Evidence-based guidelines and outcomes, on the other hand, emphasize the necessity of stratifying
NSLBP patients in primary care according to (a) risk for subsequent disability, and (b) specific treatment
approaches [10,11]. While this may seem straightforward, it is quite challenging to implement. Indeed,
several methods have been proposed towards improved NSLBP patient classification [12–15]. One of
the most commonly accepted and reliable available instruments for stratifying treatment based on
prognosis risk is the STarT Back Screening Tool (SBST) [12,16–19]. This approach requires NSLBP
patients to complete a screening questionnaire, the results of which are used to assign the respondent
into one of three groups: low, medium, and high risk [20], with specific guidelines prescribed for each
of the three groups. Notably, high-risk ranking requires the patient to undergo a series of six individual
physiotherapy sessions over three months, which significantly differs from the proposed treatment
for the other risk groups, both in terms of dose and type of therapy. The SBST approach focuses on
reducing pain and disability, along with improving psychological functional state of mind, by means
of combined physical and cognitive-behavioral therapies. In contrast, low- and medium-risk groups
are typically treated with less demanding strategies, including providing therapeutic information
to low-risk patients, and suggesting a brief course of physiotherapy for medium risk patients. It is,
therefore, critical to distinguish the high-risk individuals among NSLBP patients, in order to allow for
timely much-needed targeted intervention.

Earlier studies have confirmed that stratifying patients into different groups and prescribing
appropriate treatment leads to improved therapeutic outcomes (e.g., decreasing NSLBP disability and
reducing time off work) [21]. Clinical decision-making in primary care is currently mostly based on
qualitative questionnaires. On the other hand, recent advances in wearable sensor technology provide
new opportunities to develop quantitative assessment methodologies, such as capturing and analyzing
patients’ movements during walking or other daily life activities [22–26]. The underlying principle
behind these studies centers around utilizing variability in trunk motion (i.e., trunk kinematics) to
assess and discriminate people suffering from NSLBP.

A great deal of studies have investigated kinematic-based approaches for diagnostic and clinical
decision making in primary care [22,27–32]. Earlier studies involving LBP sufferers have confirmed
a correlation between the quality of motion in people and their health status [33–36]. The main
hypothesis in these studies assumes that LBP instigates changes in trunk kinematics. Marras et al.
implemented several models to classify healthy versus NSLBP subjects, based on trunk angular motion
features during trunk flexion/extension and bending, in various symmetric and asymmetric planes of
motion [34,37]. Marras et al. implemented the same approach to classify the LBP patients according to
the anatomic aspects and pain locations [34]. In our earlier study, we were also able to distinguish
healthy individuals from LBP patients based on measurements obtained from an inertial measurement
unit (IMU) sensor placed on the trunk [22]. In addition to LBP, similar studies have focused on the
neck region or cervical spine. For example, Bahat et al. revealed that neck pain could lead to lower
peak and mean velocity of the neck during flexion/extension movements [38]. This suggests that pain
in any particular musculoskeletal region could alter motion.

All of the above-mentioned studies, and many more, have sought to explore models that could
distinguish NSLBP patients from their healthy counterparts. By contrast, far fewer scholarly works
aimed to stratify NSLBP patients using kinematic data [34], particularly in alignment with clinical
guidelines and treatment options [39]. The purpose of this study was, therefore, to use AI techniques
to investigate the categorization of NSLBP patients based on kinematic data obtained from wearable
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sensors, balance-related measures, and psychosocial parameters, in conjunction with STarT output.
We postulate that various aspects of the STarT questionnaire, including psychological features, are
reflected in altered human kinematics/motion, and hence recording that motion inherently captures
these features. This study is expected to facilitate the objective assessment and categorization of NSLBP,
which may help clinicians and healthcare providers make better informed decisions regarding patient
risk levels, towards effective targeted diagnosis and treatment.

2. Materials and Methods

The system diagram provided here depicts the overall protocols utilized for data collection and
analyses in this study (Figure 1). Details about each aspect are described in the following sections.
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Figure 1. Schematic system diagram of the platform for the classification of NSLBP (nonspecific low
back pain) patients. (a) Sensor and data collection procedure. (b) Data analysis procedure.

2.1. Participants

Ninety-four male volunteer NSLBP patients were recruited for this study. The average (standard
deviation) age, height, and weight of the participants were 43.6 (6.9) years, 172.6 (7.3) cm, and 79.5 (12.5)
kg, respectively. There were no significant differences among the groups in terms of age, height, weight,
and body mass index (BMI) (Table 1). According to the results of the STarT questionnaire, the number
of high, medium, and low risk patients were 28, 37, and 29, respectively. Three inclusion criteria were
implemented: (1) Participants, between the age of 20–50, had to be identified with nonspecific low
back pain with or without radiating leg pain [40]; (2) During the assay, pain intensity had to remain
less than five on the Visual Analog Scale (VAS) [41,42]; and (3) All included participants had to be
free of any form of spinal surgery. The NSLBP patients were examined by an orthopedic surgeon to
meet the inclusion criteria, and participation was voluntary. Each individual was also required to sign
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an informed consent form, approved by the Shahid Beheshti University of Medical Sciences Ethics
Committee, prior to taking part in this study.

Table 1. Statistical analysis on demographic data from three risk groups. The numbers in parenthesis
indicated the standard deviation.

Low-Risk Medium-Risk High-Risk p-Value (ANOVA)

Age (year) 43.8 (8.2) 43.4 (5.6) 43.6 (7.3) 0.98
Height (cm) 172.4 (8.3) 173.7 (6.7) 171.5 (6.9) 0.47
Weight (kg) 80.3 (12.5) 80.5 (12) 77.5 (13.3) 0.6
BMI (kg/m2) 26.9 (3) 26.7 (3.8) 26.2 (3.4) 0.74

2.2. Experimental Design

Each subject was asked to perform as many trunk flexion/extension movements as he comfortably
could in the sagittal plane, within a 14-s time period [22]. They were instructed to start the movement
from standing in an upright relaxed position. An IMU sensor (9DOF Razor IMU, Sparkfun®, Niwot,
CO, USA), composed of a 3-axis accelerometer and a 3-axis gyroscope with sampling frequency and
full-scale range of 20 Hz and ±2000 ◦/s was utilized to acquire trunk kinematic data. The sensor was
placed on the sternum of the patients during movement, based on literature [22,34,37,43] (Figure 1),
to track the linear acceleration and angular velocity. The sensor collected the data in three directions
of X, Y, and Z, which were defined as Vertical (proximal-distal), mediolateral, and anteroposterior
directions, respectively.

In addition to the kinematic data, a Wii Balance Board (Nintendo®, Kyoto, Japan), with the same
function of a typical force plate was used to record center of pressure (COP) data. This signal
was employed to calculate balance-related measures while the participants performing trunk
flexion/extension. The sampling frequency and full-scale of the board were 40 Hz and 150 kg
respectively. Moreover, each participant was required to complete the Hospital Anxiety Depression
Scale (HADS) [44], as well as, the Tampa Scale of Kinesiophobia (TSK) [45] questionnaires. These
quantitative measures were implemented to analyze if the kinematic data, in combination with other
types of information (balance board data and psychosocial factors), can yield better results. Finally, the
subjects were asked to complete the translated version of the STarT questionnaire [46], which divided
(labeled) the NSLBP patients into three risk groups (low, medium, and high). The output of STarT was
implemented as ground truth input in our machine learning algorithms.

2.3. Data Processing

2.3.1. Data Preparation

For each subject, the collected data were processed using in house custom codes written in
MATLAB (Mathworks, Inc., Natick, MA, USA) to provide feature vectors for classification. Since the
participants were instructed to perform flexion/extension as fast as they comfortably could within a
specific time period (i.e., 14 s), the number of cycles varied from one person to another. Therefore,
for each participant, each sensor signals were aggregated into one cycle, in order to produce a single
motion profile representing the kinematic features of the reported signal. This step led to determining
the angular/linear acceleration and angular velocity profiles for each subject in only one resultant cycle.
We segmented the flexion/extension cycles using the X-axis gyroscope data. Filtration of the X-axis
gyroscope (which is in line with flexion/extension axis) data with a very low frequency of 1 Hz resulted
in obtaining the kinematic signal for the main flexion/extension movement. Given the points that
angular velocity in X-axis alter from negative value to positive value, starting points of each cycle were
identified. As all of the sensor data are harmonized in terms of the time of measurement, we selected
the identified points in the signals of the remaining gyroscopes and accelerometers. We, therefore,
segmented the identified cycles accordingly. Since these cycles could last for different amounts of
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time, they were time-scaled to obtain 101 data points from each cycle. The resultant signal was then
calculated by averaging (using the root mean square) all of the associated points in these cycles, given
Equation (1):

Ci =

√
Ci12 + Ci22 + Ci32 + . . .+ Cin2

n
(1)

where, Ci is the ith point in the aggregated cycle, Ci j is the ith data point of the jth cycle, and n is
the number of cycles in the signal. For example, to calculate data point number 50 in the resultant
signal, the root mean square of the data point 50 in all of the cycles was calculated. Since the initial
point for each segment was the same, it was excluded from feature vectors, and consequently each
signal included only 100 data points. Therefore, the time variable was eliminated from the data,
and the resulting data represented the kinematics profiles in each percentile of task completion. The
segmentation, time-scaling, and aggregating processes was performed on all the components (x, y, and
z) of the linear/angular acceleration and angular velocity signals. Finally, the signals were concatenated
to have a single dimension signal, which included all signals together.

2.3.2. Feature Selection

This study included four performance-oriented types of features: (1) linear acceleration, (2)
angular velocity, (3) angular acceleration, and (4) force platform data. The angular acceleration was
derived from angular velocity before segmentation and time-scaling. It should be noted that by
removing the time variable from the signals, through time-scaling and averaging the cycles, the effect
of the different number of cycles for each trial could be eliminated. Hence, the main reason for adding
angular acceleration was reflection of important changes in the angular velocity due to the difference
in the number of cycle among the participants. To shed light on this point, if we assume two different
signals for angular velocity—a single cycle and four cycles, the resultant signals would be the same
as long as they have the same range and trend of angular velocity. However, the range of angular
acceleration corresponds to the number of cycles for each subject, such that more flexion/extension
cycles during a fixed period of time (i.e., 14 s) result in a wider range of angular acceleration.

As to Table 2, we employed four feature sets in this study:

• Full signal features including angular velocity, linear acceleration and angular acceleration in
three directions of X, Y and Z. This feature set resulted in 900 features.

• Sixteen significant statistical features from the variables in the full signal, as they are described
in Table 2. For example, frequency at maximum power indicates the frequency associated to
the maximum power in spectral analysis of the signal and median frequency estimates the
median normalized frequency of the power spectrum of the signal. It is noteworthy that these 16
scales were calculated for each of the variable (angular velocity, linear acceleration and angular
acceleration) in each direction (X, Y and Z). Hence, each feature vector has the length of 144
(16 × 3 × 3).

• Balance analysis features that were extracted from the COP data for the whole duration of
the experiment. These four measures obtained from the force platform placed underneath the
participants’ feet, namely, the COP range of displacement in both x and y directions, the COP
path length during the motion, and the ellipse area of the COP’s amplitude which was area of the
motion ellipse, which captured 95% of the COP data [47]. These features enabled the algorithm to
consider balance factors as a part of the discriminating protocol.

• Subjective features included HADS and TSK questionnaire.



Sensors 2020, 20, 3600 6 of 16

Table 2. The description of various features and their sources.

Feature Source Description

Full Signal (FS) IMU Sensor
Linear/angular acceleration and angular velocity
in X, Y, and Z directions (all time-scaled to have

100 data points)

Sixteen Significant Features from
variables in FS (FT16) IMU Sensor

Max, min, range, mean, quartiles, interquartile
range (IQR), IQR divided by median, standard
deviation, kurtosis, skewness, entropy, power,

frequency at maximum power, and median
frequency of the signal

Balance Analysis (Wii) Balance Board
From COP data; x and y range (balance board’s
axes), path length, and area of the ellipse which

could capture 95% percent of the data

Subjective Features (ADT) Questionnaires Participants filled out HADS and
TSK questionnaires

Finally, to avoid the bias of the difference of feature types, all of the features were scaled to have
an absolute value of ≤1 scale variance prior to applying any machine learning algorithm. To this end,
the following equation was implemented:

Xi j new =
Xi j −X j

σ j
(2)

where, Xi j new is the value of the normalized feature, Xi j is the measured value for the feature, X j is the
average value of that feature for all the subjects, and σ j is the variance of each observation.

2.4. Classification Approaches

After data processing, a total of three AI algorithms were implemented in MATLAB to classify the
patients into distinct risk groups. First, the K-means algorithm was applied to cluster the participants
based on their kinematic data without the use of any labels (unsupervised learning). According to a
recently published review paper, the two common supervised machine learning approach in studies
related human movement are support vector machine (SVM) and Neural Network (NN) [48]. Hence,
the data was evaluated using a SVM and NN algorithm. To determine the best discriminating approach,
the feature set of FS (i.e., full signal, see Table 2) was implemented in all the algorithms.

2.4.1. K-Means

K-means is an unsupervised learning method used to cluster data without labeling. In this
study, we used K-means to (1) check how many subgroups could appropriately represent all NSLBP
patients based on trunk kinematics, and (2) assess if the kinematic data was properly classified. The
latter objective intended to obtain general observations about the kinematic behavior of the patients.
This algorithm generally starts at initial/center points (equal to the number of clusters), and then
systematically adds each point to one of the clusters, based on its distance from center points (calculated
by the squared Euclidean distance metric). After each iteration of assigning the data points to their
relevant clusters, the center points of the clusters update according to the latest results. This process
continues until the center points converge to their final values. Finally, all of the sample data is assigned
to one of the clusters. Since the K-means algorithm uses the optimal number of clusters as input, it is
critical to find this number a priori.

Here, the proper clustering number was determined based on the Calinski–Harabasz index. It
was calculated for different kinematic features, including the angular velocity, linear acceleration, and
combination. The formulation of the index was as follows [49]:

Calinski−Harabasz index =
SSB

SSW
×

N − k
k− 1

(3)
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where SSB is the overall between-cluster variance, SSW is the overall within-cluster variance, N is the
total number of observations, and k is the number of clusters. The number of clusters was determined
such that this index could attain the maximum possible value. The first ratio illustrates the case of
having more variance between clusters yet less variance in each cluster, thus causing the index to
increase. (i.e., the index increases if the clusters are far away from each other).

2.4.2. Support Vector Machine (SVM)

The SVM method was utilized to see how the labeled data could be discriminated using a
supervised learning algorithm. Specifically, a leave-one-participant-out cross-validation was employed,
which is typically useful when the sample size is not large. Specifically, in this approach, during
each iteration, the method excludes the data from one participant and is trained based on the rest of
dataset. Then, the trained model predicts the label of the excluded participant according to his/her
input. Comparison of the predicted and true labels determine the accuracy of the model. The kernel
function was selected based on the best outcome among linear, polynomial, and Gaussian radial basis
kernel functions. According to [22], we tried three regularization parameters (C), i.e., (0.1, 1, 10) along
with second-degree for polynomial function and also three RBF kernel scales, i.e., (0.1, 0.5, 1) for the
RBF function. The SVM algorithm was implemented for each of the subjects, such that all other subjects
were considered for training data in that particular run. The algorithm then predicted the label of the
patient using the relevant trained network.

Initially, multi-class SVM was used to segregate patients into the three risk groups: low, medium,
and high. Since the accuracy of the three-class SVM approach for all feature combinations was less than
40%, we combined two groups and compared them to the third one. To this end, the SVM algorithm
was run to calculate the accuracy, sensitivity, and specificity of the method based on comparing the
predicted label with the ground truth.

Considering that the SVM method is a distance-based approach, the balance of a particular dataset
could make a significant difference in the accuracy of discrimination. Since the 3 group patients were
stratified into two subgroups, the sample size for the first group (Low–Medium risk) was almost
twice the size of the second (High risk). To address this, sample data was randomly selected from the
larger group. For example, in addition to the 28 high-risk patients, another 28 patients were randomly
selected from the pool of 56 low-medium risk patients. This procedure was repeated ten times, and
the model was implemented to avoid the effects of random biased sampling. We also explored other
machine learning tools using the same dataset to compare the data. The results of these analyses are
reported as mean and standard deviation of the ten runs.

2.4.3. Neural Network

Multi-layer perceptron (MLP), a class of feedforward artificial neural network (ANN) algorithm,
was also implemented in this work. For each subject, 900 features (FS feature set) were considered
as the input layer neuron. The architecture of the network was designed with eight hidden layers of
700, 500, 300, 100, 50, 15, 10, and 5 neurons, respectively. These values were determined based on a
manual trial-and-error process to increase the accuracy of the model. The system included a 10-layer
feedforward network, where a sigmoid function was used for the hidden layers, while a softmax
transfer function was applied for the output layer. Similar to the SVM model, we have implemented the
leave-one-participant-out cross validation to evaluate the accuracy of the MLP model. The algorithm
was run for a three-class classification. Similar to the SVM approach, the accuracy for all feature
combinations did not exceed 40%; we opted for 2-class classification.
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2.5. Performance Evaluation

The performance of the machine learning models were calculated by comparing the predicted
label of the patients with ground truth data. The performance measures in binary classification of high
(H) vs. low-medium (LM) risk are defined according to [50,51] as follows:

Accuracy =
( TP + TN

TP + FP + TN + FN

)
× 100% (4)

Sensitivity or Recall =
( TP

TP + FN

)
× 100% (5)

Speci f icity =
( TN

TN + FP

)
× 100% (6)

Precision =
( TP

TP + FP

)
× 100% (7)

F1− score = 2×
(

Sensitivity× Precision
Sensitivity + Speci f icity

)
(8)

G− index =

√
(1− Sensitivity)2 + (1− Precision)2 (9)

where true positive (TP) is the number of patients labelled as high risk correctly, true negative (TN) is
the number of patients labelled as low-medium correctly, false positive (FP) is the number of patients
labelled incorrectly as high risk, and false negative (FN) is the number of patients labelled incorrectly
as low-medium risk. Accuracy indicated the ability of the model to recognize the label of the patients
correctly. Sensitivity and specificity are the ability of the model to recognize high and low-medium risk,
respectively. F1-score is the harmonic mean of the sensitivity and precision. G-index represents the
Euclidean distance between the [01] point on the receiver operating characteristic (ROC) curve, which
associates with the best classifier, with the point associated with our model. In order to evaluated
the model according to the G-index, the following categorization is implemented [51]: (i) optimum if
G ≤ 0.25; (ii) good if 0.25 < G < 0.70; (iii) random if G = 0.70; and (iv) bad if G > 0.70.

As mentioned earlier, all three machine learning algorithms, i.e., SVM, MLP, and K-means, were
run for the FS feature set. However, the approach yielding the highest accuracy was utilized for all
feature combinations. Accordingly, a full factorial combination of the four feature sets (24

− 1 = 15 cases)
was analyzed. Comparison of accuracy, sensitivity, and specificity for all cases produced the feature
set(s) with the highest accuracy.

3. Results

Analyzing the Calinski–Harabasz index for different features (i.e., angular velocity and linear
acceleration) revealed that the maximum value for all the plots (representing different cluster numbers)
occurred for the 2-cluster formulation (Figure 2). In other words, by clustering the data into two groups,
we achieved the most significant variance between the clusters, as well as the lowest variance within
each cluster. To evaluate the efficiency of the k-means algorithm, each cluster was labeled based on the
largest sample population. For example, assuming 40 samples in the first cluster, where 34 samples
had an ‘A’ label, the entire cluster would be labeled as the ‘A’ group. Accordingly, accuracy, sensitivity,
and specificity for the K-means algorithm were calculated as 57%, 43%, and 63%, respectively.
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After implementing the SVM and MLP algorithms for 2-class data classification accuracy, sensitivity,
specificity, F1-score, and G-index of the various approaches were calculated for all possible 2-class
categories (see Table 3). Out of the different combinations for the optimal regularization parameter and
RBF kernel scale, the pair of (1, 10) yielded the highest accuracy in SVM models. As noted earlier, the
sample size for each of the two selected classes was made equal, which required a random selection of
samples from the larger group (among the two classes). This process was repeated ten times to avoid
biased selection. Hence, the numbers reported here are values of the means for the ten runs and their
associated standard deviation values (Table 3).

Table 3. The accuracy, sensitivity, specificity, F1-score, and G-index of the different combinations of the
classes for SVM (support vector machine) and MLP (multi-layer perceptron) algorithms.

Low vs.
Medium-High

Medium vs.
Low-High

High vs
Low-Medium

SVM

Accuracy 46.3 (6.3) 45.5 (6.8) 75.4 (4.2)
Sensitivity 45.0 (10) 59.7 (7.5) 72.5 (3.8)
Specificity 47.6 (8.6) 31.4 (7.2) 78.2 (5.3)
F1-score 45.6 (12.1) 52.3 (10.4) 74.6 (14.4)
G-index 0.76 (0.19) 0.8 (0.15) 0.35 (0.09)

MLP

Accuracy 51.2 (4.8) 45.4 (6.3) 61.8 (5.7)
Sensitivity 42.8 (8.7) 44.8 (8.9) 66.2 (7.1)
Specificity 59.6 (7.2) 46.1 (7.6) 57.5 (7.3)
F1-score 46.7 (12.7) 45.1 (11.6) 63.7 (10.8)
G-index 0.7 (0.16) 0.77 (0.17) 0.54 (0.14)

Since using the SVM approach for discriminating high vs., low-medium risk NSLBP groups
yielded the highest performance, the same algorithm was run for the full factorial combination of the
feature sets to evaluate the effects of different types of features on the accuracy of the model (Table 4).
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Table 4. SVM accuracy, sensitivity, specificity, F1-score, and G-index for high vs. low-medium
classification considering different feature sets including full signal (FS), which was the processed signal
of IMU (inertial measurement units), 16 features from that signal (FT16), the output of balance board
(Wii), and finally HADS (Hospital Anxiety Depression Scale) and TSK (Tampa Scale of Kinesiophobia)
questionnaire data (ADT). The reported numbers are in the format of the mean (standard deviation) of
the ten runs.

FS FT16 Wii ADT FS +
FT16 FS +Wii FS +

ADT
FT16 +

Wii
FT16 +
ADT

Wii +
ADT

FS +
FT16 +

Wii

FS +
FT16 +
ADT

FS +Wii
+ ADT

FT16 +
Wii +
ADT

ALL

Accuracy 75.4
(4.2)

66.9
(5.4)

39.5
(8.3) 54.8 (6.8) 63.5 (5.6) 65.2 (6.6) 66.6 (6.3) 58.9 (5.1) 52.7 (7.4) 46.8 (4.8) 64.8 (5.5) 66.8 (6.2) 64.2 (4.9) 54.9 (6.2) 59.3

(5.4)

Sensitivity 72.5
(3.8)

58.3
(5.1)

40.4
(8.8) 55.7 (6.9) 65.8 (5.5) 61.6 (7.9) 67.4 (8.7) 52.1 (5.5) 42.5 (8.6) 48.2 (5.3) 58 (4.9) 68.4 (6.7) 64 (6.1) 44.7 (7.7) 61.5

(4.8)

Specificity 78.2
(5.3)

75.7
(6.5)

38.6
(9.8) 53.9 (7.3) 61.2 (7.3) 68.7 (5.5) 65.7 (7.7) 63.6 (8.9) 62.8 (8.5) 45.3 (6.9) 71.6 (6.4) 65.1 (7.4) 64.4 (5.5) 65.1 (7.6) 65.4

(6.7)

F1-score 74.6
(14.4)

63.9
(13.1)

40.0
(11.5)

55.2
(13.5)

64.3
(14.6)

63.9
(14.9)

66.8
(15.9)

55.3
(16.6)

47.3
(17.3)

47.5
(19.6)

62.2
(11.7)

67.3
(14.4)

64.1
(15.4)

49.8
(14.4)

62.7
(12.3)

G-index 0.35
(0.09)

0.48
(0.12)

0.86
(0.19)

0.64
(0.14)

0.52
(0.13)

0.50
(0.13)

0.47
(0.16)

0.60
(0.14)

0.68
(0.17)

0.75
(0.12)

0.51
(0.11)

0.47
(0.14)

0.51
(0.12)

0.65
(0.15)

0.52
(0.12)

4. Discussion

This study aimed to design and develop a machine learning-based model with the capability
of classifying NSLBP patients into different risk groups identified by STarT questionnaire outcome
data based on the combination of quantitative trunk kinematic data obtained from an IMU sensor
and other feature sets such as FT16, Wii, and ADT. We hypothesized that the outcomes of the STarT
questionnaire, largely considered as the clinical golden standard tool for LBP assessment in clinical
settings, are partially reflected by the variability in trunk kinematics during flexion/extension tasks,
and hence can be used to categorize patients a priori.

Initially, an unsupervised algorithm was implemented in order to evaluate the separability of the
data. After determining the optimal number of groups (i.e., two classes), two different supervised
machine-learning algorithms (SVM and MLP) were utilized. When we compared the outcomes of
these two methods, it was clear that the SVM model delivered the highest accuracy for classifying
NSLBP patients, with a maximum accuracy and lowest G-index level of 75.4% and 0.35, respectively
(Table 3). Finally, using the SVM approach, other feature sets, such as FT16, Wii, and ADT (see Table 2),
were added to the feature vector to investigate if the accuracy of the model could be improved by
adding more information to the input data set. Our accuracy-related findings for the full factorial
combination of the feature sets confirmed that the IMU full signal (FS feature set) remained the best
feature for identifying NSLBP patients (Table 4).

As previously noted, we had originally planned to include the three typically identified NSLBP
risk categories of low, medium, and high risk. However, based on the unsupervised machine learning
approach employed here, the optimal number of groups was identified as two and not three. This was
supported by the supervised machine learning results, which yielded moderate accuracy for three-class
classification. Thus, based on our earlier discussion regarding the clinical value of discriminating the
high-risk NSLBP patients, we opted for a 2-class classification. This decision was further bolstered
by the lack of significant differences in treatment between the low and medium risk groups, as
identified by our clinical STarT questionnaire results [20]. Interestingly, outcomes from the SVM model
also demonstrated the substantially better discriminative capability of the motion-sensor signal in
distinguishing patients with high risk vs. low-medium risk (Table 3). Further work is warranted to
identify relevant delineations within the low-medium risk groups and to devise more sensitive tools
and technologies to capture them.

In order to avoid the confounding effects of demographic data variability, statistical analysis,
i.e., t-test, was performed on the data of all combinations of 2-class classification (Table 5). The
results indicated no significant differences in age, height, weight, or BMI among the various groups in
2-class classification.
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Table 5. Statistical analysis on demographic data for all combinations of 2-class classification.

Low vs Medium-High Medium vs Low-High High vs Low-Medium

L MH p-Value (t-Test) M LH p-Value(t-Test) H LM p-Value(t-Test)

Age [year] 43.7
(8.2)

43.5
(6.3) 0.86 43.4

(5.6)
43.7
(7.7) 0.84 43.6

(7.3)
43.6
(6.8) 0.97

Height [cm] 172.4
(8.3)

172.8
(6.8) 0.75 173.7

(6.7)
171.9
(7.6) 0.24 171.5

(6.9)
173.1
(7.4) 0.34

Weight[kg] 80.3
(12.5)

79.2
(12.6) 0.71 80.5 (12) 79.2 (13) 0.56 77.5

(13.3)
80.5

(12.3) 0.31

BMI [kg/m2] 26.9 (3) 26.5
(3.6) 0.56 26.7

(3.8)
26.6
(3.2) 0.91 26.2

(3.4)
26.8
(3.5) 0.48

It is noteworthy to mention that a recent study was successful at discriminating between healthy
subjects and lower back pain patients based on trunk kinematics [22]. However, the differences in trunk
kinematics between the patient group and the healthy cohort were more significant, in comparison to
those within the NSLBP group. In general, classifying subjects into healthy and NSLBP groups could be
performed more accurately, as compared to subgrouping the NSLBP patients into different risk levels.
It should also be kept in mind that there always remains a gray zone within the reference method, the
STarT questionnaire in this study, in terms of appropriate group assignment for a particular patient.
For example, according to the STarT questionnaire, if a patient’s score is less than 4, s/he would be
assigned to the low-risk group. The challenge, however, of the extent to which can the questionnaire
successfully assign patients “on the cusp” to the proper group, remains elusive. The uncertainty
in labeling “cusp patients” to one group or another could also introduce inaccuracies in the results
obtained from motion-based classification. Consequently, less accuracy was in fact anticipated in
stratifying the NSLBP patients, as compared to discriminating between healthy and NSLBP groups.

Our results demonstrated that the accuracy of the K-means clustering was not sufficiently
high, most likely reflecting the lack of clear data boundary between the high and low-medium risk
groups. This analysis highlights the need to implement supervised algorithms to develop models
with higher accuracy. Since we found no other existing studies which classified NSLBP patients,
we used machine-learning-based models developed for other forms of clinical decision making for
comparison [52–54]. The accuracy for the best machine learning model (i.e., the SVM algorithms)
obtained in this study was in the range of clinical decision-making models, based on IMU signals
or other body-worn sensors, as described in literature (<80%) [52–55]. However, G-index of 0.35
demonstrates that the model is not yet optimal (optimal model: G-index < 0.25) and could be improved
in future. As compared to the SVM model, the MLP approach implemented here yielded lower
accuracy (~60%), which may be due to the fairly small sample size in this study (94 for the 3-class and
56 for the 2-class classifications). Other analogous studies have indeed included a greater number of
observations for each class [56,57], particularly when implementing a neural network approach [58].

The accuracy of the SVM model was investigated in connection with different feature sets. We
confirmed that the COP data for the Wii feature was inadequate for discriminating between high vs.
low-medium risk NSLBP patients (accuracy of ~40%). However, the ADT feature set (which included
psychological information, such as anxiety and depression) achieved better results. The FT16 feature
set, however, which included 16 statistical measures of the IMU signal, led to better accuracy (~67%),
and specificity (~76%), as compared to the ADT. On the other hand, both demonstrated roughly the
same capability in identifying high-risk subjects (sensitivity of ~56% and ~58% for ADT and FT16,
respectively). Overall, the kinematic feature set of the FS was by far better than the others individually,
or in combination with the FS itself (see Table 4). Combining the FS and ADT feature sets, however,
did not increase the accuracy of our model. This possibly suggests that the kinematic data had already
been incorporated through the psychosocial factors included in the ADT feature set, as postulated
earlier. Hence, despite STarT questionnaire outcome which does not clarify the difference among
different risk group in terms of physical performance and mental aspects, our results unveiled that
out of all combinations of the trunk kinematic, balance measures, and psychosocial parameters, trunk
kinematic was the factor that could categorize the patients in different risk groups. While balance and
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other measures can be important, our study has shown trunk kinematic had the largest influence on
the patients’ risk labels. This knowledge could facilitate development of more targeted and effective
intervention for the patients.

The inclusion criteria used in this study regarding the pain level during the experiment is
noteworthy. In consultation with clinicians, we used a pain level of less than 5, based on the VAS score
during trunk flexion/extension. This criterion was selected to ensure the safety of patients and prevent
aggravation of their conditions. However, it may have led to the elimination of many patients who
belonged to the high-risk group, hence, limiting this group to include many patients in the previously
discussed grey zone (between the high and medium risk groups). This could adversely affect the
results of this study and decrease the efficiency of the proposed model. Future work can benefit from
adding other pain scales and neuroimaging modalities to provide additional clarity in this regard.

In current clinical settings, the risk status of NSLBP patients is assessed largely based on the
subjective STarT questionnaire, where a qualified healthcare provider must analyze the results in order
to prescribe appropriate treatment/rehabilitation protocols. The approach presented here only utilized
the data from one motion sensor during trunk flexion/extension in the sagittal plane. The setup was
intentionally designed as such, in order to render data collection as simple and quick as possible with
some training, without the help of an expert. Such methodology can hence be implemented on an
application and installed on today’s widely used smartphones, which are already ubiquitous and
expected to further grow in sophistication [59,60]. As a future direction the present study, this will
facilitate the data collection from a large pool of NSLBP patients remotely which in turn may increase
the accuracy of the model to be implemented in clinical setting. Furthermore, it provides the patients
with a real-time analysis platform during which the kinematic data will transmit to the server instantly.
Having access to this data, we would be able to implement the trained model and send the results,
patient’s label, to the smartphone along with the medical centers to keep the clinic updated about
the patient’s status (Figure 3). However, several steps need to be taken to have such a practical tool.
For example, the effects of the orientation and specification of the smartphone on the results must
be investigated.
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It is important to acknowledge the challenges/limitations encountered here, and suggest possible
mitigation. Due to hospital policy, all the participants in this study were males, hereby eliminating
gender-balanced results and conclusions. Furthermore, the hyper-parameters in MLP approach
were tuned through a manual trial-and-error process. However, formal hyper-parameter tuning is
recommended for further studies. Another major limitation pertains to the sample size, which based
on the results may have affected the machine learning analyses. Accordingly, a follow-up investigation
should recruit a larger sample size, to enhance the generalizability of the findings and the accuracy
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of machine learning algorithms. Investigating patient clustering during treatment also represents
another interesting opportunity for future research. Specifically, investigating the impact of various
treatment protocols on patient kinematics and/or self-reported clinical questionnaire data is warranted
in future work.

5. Conclusions

This study explored the capability of using a simple cost-effective motion-capture sensor, in
conjunction with STarT—the current gold standard clinical assessment NSLBP questionnaire—as
a potential quantitative decision-making tool in clinical settings and telemedicine/rehabilitation
applications. Our results demonstrated that machine learning methods, especially SVM, can distinguish
high vs. low-medium risk NSLBP patients with an accuracy of >75%. This study also revealed that the
STarT questionnaire could implicitly be captured partially by monitoring trunk motion. The findings
from this investigation could facilitate the development of objective NSLBP assessment tools, with
potential diagnostic and prognostic value, by leveraging modern hardware and software technologies.
Closing the loop by developing an application for today’s widely available smartphones and sharing
quantitative patient data with clinicians can open the door to a wide spectrum of healthcare applications
with the long-awaited benefits of personalized precision medicine.
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