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Veno-venous extracorporeal membrane oxygenation (vvECMO) has become a routine

treatment for severe lung failure in specialized centers. Spontaneous bleeding

complications, however, are observed in 30–60% of patients during vvECMO treatment.

Bleeding increases mortality by factors 2–3. Anticoagulation in combination with several

acquired bleeding disorders caused by the mechanical pump and the foreign layer of the

extracorporeal system contribute to the risk of bleeding. In this review, the mechanisms

of the underlying pathologies and the route from diagnosis to treatment are described.
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INTRODUCTION AND HISTORY

Several intra- and extra pulmonary triggers can cause pulmonary inflammation leading to lung
failure and consecutive acute respiratory distress (1). Today, the different etiologies and the severity
are summarized as acute respiratory distress syndrome (ARDS) (2). When a severe form of ARDS
develops, mechanical lung-protective (3) ventilation alone may not sufficiently supply patients with
oxygen or adequately support them to eliminate carbon dioxide. Increasing pressure or oxygen
concentration at the ventilator will probably aggravate the problem: the more invasive ventilator
settings are adjusted, the more damage will be caused to the lungs (ventilator-induced lung injury,
VILI) (4). To overcome this vicious circle, Hill and Bramson presented the first system for bedside
extracorporeal carbon dioxide removal, the Bramson membrane lung in 1972 (5). The Bramson
membrane lung was a huge machine connected to the patient in a veno-arterial approach to
support him for 3 days. During this period, 10 units of packed red blood cells, 8 units of frozen
plasma, and 13 units of platelet concentrates had to be transfused. In the 1970s, the idea of
extracorporeal lung support was evaluated in clinical trials (6); however, it took several years to
establish lung support as veno-venous rather than veno-arterial procedure (7). In the following
years, “extracorporeal membrane oxygenation” (ECMO) was applied only in several specialized
centers worldwide, because the invasive procedure to implant the cannulas, the thromboembolic
complications, and the short half-life of the components prevented this procedure from becoming
routine. The coincidence of two different events around the year 2010 paved the way for the
renaissance of extracorporeal lung support: The worldwide influenza A H1N1 pandemic causing
severe respiratory failure in thousands of patients (8) and the discovery of polymethylpentene (9)
as ideal material to produce cheap, effective, and long-lasting fibers for oxygenator membranes
(10). Veno-venous ECMO (vvECMO) provided a survival benefit for well-selected patients with
severe ARDS during the H1N1 pandemic (8, 11). In a meta-analysis including two prospective
randomized trials performed before the SARS-CoV2-pandemic, 90-day mortality was significantly
lowered by vvECMO compared with conventional management in patients with severe ARDS (12).
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Modern vvECMO systems drain venous blood from the
inferior or superior cava vein or the right atrium by negative
pressure, accelerate the blood in a centrifugal pump, and press
the blood with positive pressure along a membrane made of
hollow fibers in which gas exchange takes place (13–15). After
oxygenation and decarboxylation, the blood is returned into the
right atrium, right ventricle, or even in the pulmonary artery,
defined by the type of cannulas used (10, 16–19). The same
systems but with different cannulation sites may be applied in
veno-arterial ECMO, used for heart, and lung support (20).
As several other issues complicate perfusion, turbulences, and
coagulation in veno-arterial systems leading to various additional
aspects, this article exclusively focuses on coagulation disorders
during vvECMO.

According to findings from Kalbhenn, Zieger et al. typical
clinical bleeding at vvECMO can be attributed primarily to severe
disorders of primary hemostasis (21–23). First described between
2014 and 2018 in intensive care patients at Freiburg University
Medical Center, acquired von Willebrand syndrome (AVWS),
thrombocytopenia, and platelet dysfunction are characteristic
findings that can be detected in virtually all vvECMO patients.
Secondary waste coagulopathy with a deficiency of fibrinogen
and factor XIII becomes apparent. The blood flow through a
vvECMO system generates negative pressures of up to minus
200 mmHg in the supplying tube system. A positive pressure
is then generated in the pump which can be up to plus
200 mmHg depending on the tube diameter, hematocrit, and
pump speed. In the pump, but also when flowing through
oxygenators or by pressing the recirculated blood through
the cannula which narrows for technical reasons, considerable
turbulence and tensions are generated that affect the blood
components. Shear forces unfold the von Willebrand factor
(vWF) high-molecular-weight (HMW) multimers and thus
present the A2 domain at which a specific metalloprotease
[A disintegrin and metalloproteinase with a thrombospondin
type 1 motif, member 13 (ADAMTS13)] attaches (24). The
physiologic function of ADAMTS13 is the degradation of
unfolded HMW vWF multimers. Excessive cleavage into vWF
which is missing the high-molecular-weight (HMW) multimers
and which shows a far less hemostatic activity occurs. The
increased degradation leading to a significant reduction or
complete loss of HMW vWF multimers is typical for “acquired
von Willebrand syndrome” (AVWS). AVWS is a bleeding
disorder similar to vonWillebrand disease that occurs when there
are deficiencies in VWF concentration, structure, or function as a
result of acquired conditions (25). It is characterized by deficiency
or complete loss of HMW vWF multimers increasing the risk
of spontaneous bleeding from mucous membranes and, for
example, catheter insertion sites (21, 26, 27). Routine coagulation
analyses (e.g., international normalized ratio or activated partial
thromboplastin time) are unsuited in detecting AVWS. The
diagnosis of AVWS requires documentation of reduced vWF
binding to either collagen (vWF collagen binding capacity, vWF:
CB) or to platelet glycoprotein Ib receptors (vWF activity,
vWF:A) in relation to vWF antigen (vWF: Ag). Test kits for
quick determination of vWF: Ag and vWF: A meanwhile are

commercially available and may routinely be provided by every
clinical laboratory. In case of decreased vWF: CB/vWF: Ag or
vWF: A/vWF: Ag ratio during vvECMO, AVWS is the most
likely pathology. To confirm this diagnosis and for differentiation
between AVWS and some types of inherited von Willebrand
disease, however, multimer analysis by sodium dodecyl sulfate-
agarose (SDS) gel electrophoresis is required (28, 29). SDS gel
electrophoresis can only be performed in specialized coagulation
laboratories and is relatively time-consuming.

The above mentioned pressure phenomena not only induce
AVWS but also have impact on the relatively fragile platelet
membrane inducing thrombocytolysis (“accelerated platelet
destruction”) with consecutive thrombocytopenia (30–32). The
mechanical destruction of the blood cells leads to the detachment
of small membrane particles from platelets and also erythrocytes.
These microparticles can present thrombogenic antigens and
activate plasmatic coagulation (33, 34). Consecutively, this leads
to the activation and accumulation of more platelets. It is not
surprising that the higher the pump flow is set at the ECMO,
the more pronounced is the platelet consumption (35, 36). Also
contributing to thrombocytopenia is platelet consumption due
to the activation of the platelets on the foreign materials of the
tubing and oxygenators (57).

Besides the determination of platelet count, also platelet
function was determined (37) in a subgroup of vvECMO patients
(21). Basic platelet function test aggregometry was performed
after stimulation of platelets with ristocetin, collagen, adenosine
diphosphate (ADP), and epinephrine (38). Regardless of which
of these substrates, a relevant hypoaggregation resulted which
was still detectable days after ECMO explantation (21). This
functional test was complemented by flow cytometry (39) to
investigate the expression of several platelet receptors and
secretion of α- and δ-platelet granules (40, 41) after staining
of receptors with fluorescein-labeled monoclonal antibodies.
In addition, vWF-binding capacity was determined using
fluorescein-labeled monoclonal antibodies against vWF and
fibrinogen. These investigations revealed highly reduced CD62
and CD63 expression (hinting to impaired α- and δ-granule
secretion, respectively) and a reduced vWF-binding capacity
(21). Taken together, these findings represent a reduced
activatability of platelets whichmay be due tomechanical damage
by ECMO or by exhaustion due to former activation of the
platelets in the cannula or in the ECMO.

ANTICOAGULATION AND ECMO

Because of the increased risk of thrombosis within the
extracorporeal system leading to malfunction and embolism,
therapeutic anticoagulation was a paradigm not questioned
during vvECMO for a long time (42). This was based
on experiences from cardiac bypass surgery when patients
without therapeutic anticoagulation had a larger waste of
fibrinogen and platelet concentrates compared to those who
were anticoagulated (43). Anticoagulation is established with
unfractionated heparin (UFH) in the majority of patients
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(44). Modern cannulas, pumps, and membranes are coated
with heparin or phosphorylcholine (45). A phosphorylcholine
coating is considered to mimic the biological endothelial
surface because phosphorylcholine is an integral component of
the cell membrane (46). Phosphorylcholine coating (PHISIO)
of tubes, cannula, oxygenator, and filter is associated with
statistically unchanged vWF: ristocetin cofactor activity during
cardiopulmonary bypass (47). Without doubt, the risk of
bleeding when using anticoagulants is increased and has to
be carefully weighed against the risk of thrombosis. Gail
Annich focused on this dilemma in 2015 (48). The safe and
effective use of low-molecular-weight heparin (LMWH) like
enoxaparin and minimized anticoagulation concepts meanwhile
have been proven in several studies (49, 50). As heparin-
induced thrombocytopenia (HIT), a potential life-threatening
reaction after recurrent exposition to heparin (51) may occur,
and some centers use direct thrombin inhibitors like bivalirudin
or argatroban instead of UFH or LMWH for anticoagulation.
Independent of the type of anticoagulant, monitoring of
anticoagulation still is sophisticated as acquired coagulation
disorders may not be assessed by or influence routine laboratory
markers (see below). Panigada et al. quoted that “ECMO [. . . ]
does not change coagulation parameters” but “major bleedings
occurred” in an observational study in 2016 (61). It is obvious
that bleeding caused by ECMO was probably induced by factors
not observed by routine coagulation tests such as prothrombin
time or aPTT.

BLEEDING DURING ECMO

Hemorrhagic diathesis has been described in nearly every ECMO
patient. Registry data report bleeding complications in 22%
(52) up to 45% (53) of vvECMO patients. Cannulation site and
surgical site bleeding are themost frequent bleeding localizations,
followed by pulmonary and spontaneous gastrointestinal
hemorrhage. Registry data tend to underreport “minor”
hemorrhage due to several reasons, and the Extracorporeal Life
Support Organization (ELSO), for example, in 2014 defined
bleeding to be documented not before a blood loss of ≥20 ml/kg
bw/24 h or ≥10 ml/kg bw/24 h RBC transfused (42). Prospective
trials assessing bleeding draw a different picture: epistaxis and
hematuria complicated treatment of ECMO patients in even two-
thirds of all patients in a cohort of patients with veno-arterial and
veno-venous ECMO (54). Almost every third vvECMO patient
suffered from relevant bleeding, and bleeding was associated
with poor survival (54). While bleeding from cannula insertion
sites and mucous membranes hints to impairment of primary
hemostasis and can be controlled by local interventions, 4 to
19% of patients develop spontaneous intracranial bleeding with
a survival rate of only 20% (55–60). In the aforementioned data,
also patients with veno-arterial ECMO are partly included. In
vvECMO according to ELSO registry data, intracranial bleeding
seems to be more frequent compared to vaECMO (52). The exact
incidence of intracranial bleeding is difficult to assess, as not all
ECMO patients routinely receive cranial imaging and not all of
the deceased undergo cerebral autopsy.

TRANSFUSION

Continuous blood loss and hemolysis on ECMO also necessitate
the transfusion of blood products. Transfusion thresholds,
however, are mainly based on experts’ opinions and differ
between guidelines and recommendations. It is widely accepted
that hemoglobin levels below 7–9 g/l should not be tolerated
in adult vvECMO resulting in almost 90% of all patients
receiving at least one packed red blood cell transfusion (RBC)
during vvECMO (44, 52, 61). Treating anemia can improve
oxygen delivery and may support coagulation at bleeding
sites. Several studies, however, demonstrated that a restrictive
threshold has acceptable outcomes in single-center cohorts (62).
The recommended threshold to substitute platelet concentrates
ranges from 50 to 100 thousand platelets/µl (44). Platelets
are indispensable for primary hemostasis, but on the contrary
platelet count does not necessarily correlate with platelet
function; therefore, even with a platelet count above the
aforementioned threshold, platelet transfusionmay be reasonable
in bleeding patients.

On the contrary, not indicated transfusions may be
disadvantageous for patients: transfusions induce inflammatory
cascades, have immunomodulatory effects, and are associated
with the transmission or development of infections (63–66).

STEPS TO CONTROL BLEEDING

The “Treat Before They Bleed” Approach
As spontaneous intracranial hemorrhage—the most feared
complication—should be avoided and blood transfusions should
be restricted, early diagnosis, and treatment of acquired bleeding
disorders should be performed before clinical bleeding can
be observed. In our center, we established a diagnosis and
treatment protocol for vvECMO patients (Table 1). This is
mainly based on the key points such as prevention of
bleeding, minimized anticoagulation, and correction of acquired
coagulation disorders. The protocol and the treatment algorithm
(Figure 1) at the author’s department go far beyond what is
recommended in current international guidelines (44). This is
due to the high experience of this center and made possible by
the good availability of a coagulation laboratory.

Minimizing Anticoagulation
Bleeding diathesis may be enhanced by anticoagulants (56, 67).
Annich pointed out the “precarious balance of hemostasis during
ECMO therapy” (48), and Ranucci described anticoagulation
in extracorporeal therapy as “navigating difficult seas between
thrombosis and bleeding” (68).

Reducing anticoagulation in vvECMO to prophylactic doses
is safe and feasible and reduces the risk of bleeding. Krueger
et al. reported data of more than 60 patients on vvECMO
who received enoxaparin in only prophylactic dose and did
not develop thromboembolic events or bleeding episodes. In
combination with correction of acquired coagulation disorders,
there was no increase in thrombotic pump failure (49). Incidence
of bleeding and need for blood transfusion with a mean of
only 1,15 RBC units and 0,6 fresh frozen plasma units per
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TABLE 1 | Routine blood drawings for the determination and treatment of acquired bleeding disorders during vvECMO in our department.

Interval Parameter Target Intervention

Hourly Hemoglobin >10 g/dl Red cell concentrate

Daily Platelets (citrate) INR aPTT >100 000/µl <1.35 <40 s Platelet concentrate

PPSB

Fresh frozen plasma

Monday +

Thursday

and if clinical bleeding signs are

present

Factor VIII-activity >70 % 10 IU/kg Factor VIII concentrate i.v.

Factor XIII-activity >50% 1,250 IU Factor XIII concentrate i.v.

vWF:Ag vWF:A vWF:A/vWF:Ag ratio >0.73 0.3 µg/kg Desmopressin i.v.

if target value not reached repetition of 0.2 µg/kg

desmopressin i.v.

if target value still not reached administration of

vWF-containing concentrate (10 IU/kg i.v.)

PPSB, Prothrombin complex concentrate; vWF:A, von Willebrand factor activity; vWF:Ag, von Willebrand factor antigen.

ECMO day was relevantly lower compared to other reported
cohorts (35, 69, 70). Meanwhile, concepts with low dose or even
without anticoagulation have only been applied in a few centers
(71, 72). Low-molecular-weight heparin seems to be the better
anticoagulant compared to UFH with regard to the prevention of
thromboembolic events (50).

Balancing Benefit and Risk With the Use of
Anticoagulation and Transfusion in
vvECMO
When patients begin to present with ongoing bleeding
and transfusion of blood components becomes necessary
during vvECMO, it should be critically revised whether
the extracorporeal therapy still is beneficial for the patient.
Probably, explantation of the vvECMO in favor of accepting
a more invasive mechanical ventilation may be the less
complicative approach.

Control of Acquired Disorders of Primary
Hemostasis
When preconditions like INR, aPTT, blood pH, temperature, and
calcium levels are optimized and patients clinically still bleed,
transfusion of platelet concentrates is a reasonable approach.
Depending on the medical center, a particular platelet count
has to be determined as trigger for transfusion. In our center,
for example, we chose a transfusion threshold of >100 000
/µl platelets analogous to national guidelines for the treatment
of traumatic brain injury (73). If bleeding still occurs after
platelet transfusion, it should be taken in account that the
bleeding symptoms may be due to impaired platelet function.
Objectivation of platelet function in clinical practice is difficult, as
point-of-care systems may fail to detect ECMO-induced platelet
dysfunction. Therefore, calculated transfusion of platelets may be
effective to control bleeding even when platelet count is still>100
000 platelets/µl.

Adhesion of platelets to collagen presented in case of
endothelial injury is promoted by the von Willebrand factor.

As described above, vvECMO leads to acquired impairment
of vWF function, so-called AVWS. For detection of AVWS, at
least determination of vWF: Ag and vWF: A is necessary (29).
In case of a reduced vWF: A/vWF: Ag ratio, AVWS is likely.
First-line treatment is therapy with desmopressin (DDVAP) with
0,3 µg/kgbw to induce secretion of vWF multimers stored in
endothelial cells (28, 74, 75). The next step is the substitution of
vWF-containing concentrates. The most common drug is factor
VIII/vWF concentrate derived from human plasma (76). A new
option is recombinant von Willebrand factor concentrate (77).

Waste Coagulopathy
Diffuse activation of the coagulation system by platelet-derived
microparticles, contact activation via factor XII, endothelial
damage, and inflammation lead to waste coagulopathy (69, 78).
In this context, deficiency of fibrinogen and/or factor XIII are
common findings and may enhance bleeding diathesis (23, 35,
79–84). As fibrinogen is essential as well for clot formation as also
for the activation of platelets, it is necessary to maintain normal
fibrinogen levels by either transfusion of fresh frozen plasma
(FFP) or fibrinogen concentrate. Clot firmness is dependent
on cross-linking of fibrin with coagulation factor XIII (23, 79,
84–87). As many vvECMO patients present with factor XIII
deficiency (23) which may enhance bleeding, substitution with
factor XIII concentrates can be necessary to maintain clot
firmness. In addition, hyper fibrinolysis should be diagnosed by
viscoelastic tests like thrombelastography (88) and treated with
infusion of tranexamic acid (89). Tranexamic acid may also be
applied locally at bleeding sites.

Exchange of Components
As bio-coating of the extracorporeal circuit continuously is
washed away and coagulation activating fragments accumulate in
the oxygenator membrane, an important step to control ongoing
bleeding and hemolysis during prolonged vvECMO is complete
exchange of extracorporeal pump and/or oxygenator membrane
(90, 91). Cannulas may be left in situ and connected to the new
system in order to minimize the risk of cannulation.
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FIGURE 1 | Departmental treatment algorithm for clinical bleeding in venovenous ECMO patients.
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Recombinant Factor VII
In case of uncontrollable bleeding during extracorporeal therapy
despite optimization of the abovementioned preconditions, the
careful use of recombinant factor VII has been described (92–
94). This therapy has to be weighed carefully against the risk
of acute clot formation within the extracorporeal system and
possible thrombotic pump failure. Doses up to 60 µg/kgbw of
recombinant factor VII seem to present an acceptable risk profile
as ultima ratio option when all formerly described interventions
have failed to control bleeding.

Hypercoagulopathy Following ECMO
Only hours after explantation of vvECMO, vWF: A, vWF: CB,
and factor VIII activity not only recover, but also become
overcorrected beyond values before vvECMO. These findings
imply that the risk of thromboembolic events is particularly
high after vvECMO decannulation which needs to be taken into
account when planning appropriate anticoagulation (21, 78).
According to a standardized protocol in our center, all patients
receive a subcutaneous dose of 80 IU/kg bw enoxaparin 1 h after
decannulation. According to the anti-Xa parameter (4 h later),
the following doses of enoxaparin are adjusted aiming for an
aXa of 0.5–0.8 IU/ml (therapeutic anticoagulation). Therapeutic
anticoagulation with enoxaparin or rivaroxaban ismaintained for
at least 6 weeks (even if the patient is meanwhile discharged from
the hospital).

SUMMARY

- Treat before they bleed
- Decrease anticoagulation

- Control primary hemostasis
- Substitute wasted coagulation factors
- Consider membrane exchange and ECMO explantation
- Do not underestimate hypercoagulatory status after
ECMO explantation.
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