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Objective: To establish a radiomics signature and a nomogram model based on
enhanced CT images to predict the Ki-67 index of lung cancer.

Methods: From January 2014 to December 2018, 282 patients with lung cancer who
had undergone enhanced CT scans and Ki-67 examination within 2 weeks were
retrospectively enrolled and analyzed. The clinical data of the patients were collected,
such as age, sex, smoking history, maximum tumor diameter and serum tumor markers.
Our primary cohort was randomly divided into a training group (n=197) and a validation
group (n=85) at a 7:3 ratio. A Ki-67 index ≤ 40% indicated low expression, and a Ki-67
index > 40% indicated high expression. In total, 396 radiomics features were extracted
using AK software. Feature reduction and selection were performed using the lasso
regression model. Logistic regression analysis was used to establish a multivariate
predictive model to identify high and low Ki-67 expression in lung cancer. A nomogram
integrating the radiomics score was established based on multiple logistic regression
analysis. Area under the curve (AUC) was used to evaluate the prediction efficiency of the
radiomics signature and nomogram.

Results: The AUC,sensitivity, specificity and accuracy of the radiomics signature in the
training and validation groups were 0.88 (95% CI: 0.82~0.93),79.2%,84.3%,81.2% and
0.86 (95% CI: 0.78~0.94),74.6%,88.1%,79.8%, respectively. A nomogram combining
radiomics features and clinical risk factors (smoking history and NSE) was developed. The
AUC, sensitivity, specificity and accuracy were 0.87 (95% CI: 0.80~0.95), 75.0%, 90.2%
and 83.5% in the validation group, respectively.

Conclusion: The radiomics signature and nomogram based on enhanced CT images
provide a way to predict the Ki-67 expression level in lung cancer.
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INTRODUCTION

Lung cancer is one of the most common malignant tumors that
endangers human health and life, ranking first in the number of
cancer-related deaths (1, 2). The proliferation mode and speed of
tumor cells are related to the malignancy and prognosis of lung
cancer (3–5). Ki-67 is a nuclear antigen expressed by cells in the
proliferation phase that accurately reflect the proliferation activity
of cells.Becauseof its short half-life,Ki-67 is significantlybetter than
those proliferating cell nuclear antigens with a long half-life in
evaluating the proliferative activity of tumor (6–9).

Presently, Ki-67 expression in lung cancer must be determined
by biopsy or surgical histopathology, but biopsy samples generally
represent only a small part of the tumor tissue. Because of the
heterogeneous expression of Ki-67 in tumors, the Ki-67 index
obtained by needle biopsy samples cannot fully and accurately
represent the Ki-67 level of the entire tumor. This situation leads to
deviations in results and evenmisdiagnosis andnonoptimal clinical
decision-making (10). As a new research field, radiomics has
obvious advantages in assessing tumor heterogeneity. It can
discover and analyze different cell phenotypes of tumors (11–13)
andprovide comprehensive andquantitative tumormeasurements,
including texture, intensity, heterogeneity and morphological
information, enabling a comprehensive analysis of the tumor
phenotype (14–16). Zhou B et al. (17) found that twelve CT
radiomic features were significantly associated with the Ki-67 of
lung cancer, but they did not build a predictive model. Gu Q et al.
(18) built a machine learning-based radiomics classifier to predict
the Ki-67 index of non-small cell lung cancer, however, their study
did not include cases with small cell lung cancer, so the model was
not applicable to all patients with lung cancer. Moreover, these past
studies have not established a nomogram model that combines
radiomic features with clinical parameters, which may have better
prediction efficiency. This study aimed to establish a radiomics
Frontiers in Oncology | www.frontiersin.org 2
signature based on enhancedCT images and a nomogrambased on
radscores and clinical parameters to predict the Ki-67 index of
lung cancer.
MATERIALS AND METHODS

Data Cohort
This retrospective study was approved by the Institutional
Review Board. The data of 2286 consecutive patients with lung
cancer confirmed by surgery between January 2014 and
December 2018 were identified for this retrospective study.

The inclusion criteria were as follows: (1) a diagnosis of lung
cancer by surgical pathological specimens and immuno-
histochemical Ki-67 examination and (2) dual-phase enhanced
chest CT examination before surgery.

The exclusion criteria were as follows: (1) no Ki-67
immunohistochemistry or enhanced CT examination at our
hospital (n=1280); (2) poor image quality or image layer
thickness greater than or equal to 5 mm (n=130); (3) incomplete
clinical data (n=335); (4) prior neoadjuvant treatment before
surgery (n=91); (5) small lesions (long diameter < 1 cm) (n=104);
(6) other primary malignancies in the same period (n=64).

Two hundred eighty-two patients (178 men and 104 women
with a mean age of 62.0 ± 8.9 years) were enrolled in our study
(Figure 1), 158 patients with adenocarcinoma (ACC), 69 with
squamous cell carcinoma (SCC), and 55 with neuroendocrine
carcinoma (NEC) (including 38 patients with small cell lung
cancer, 13 patients with large cell lung cancer, and 4 patients with
carcinoid cancer). Using a stratified random sampling method,
the patients were divided into a training group and a validation
group at a ratio of 7:3.

The following information of the enrolled patients was
evaluated: smoking history, sex, age, maximum tumor diameter,
FIGURE 1 | Flow diagram of the patient selection.
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pathological type, and serum tumor markers, including neuron-
specific enolase (NSE) serum, gastrin-releasing peptide precursor
(ProGRP), carcinoembryonic antigen (CEA), squamous cell
carcinoma antigen (SCCA) and cytokeratin 19 fragment
(cYFRA21-1). Smoking history was defined as smoking for more
than one year and smoking more than 20 cigarettes per day on
average. Histological classification was based on H&E staining
according to the WHO classification of malignant lung tumors.

CT Protocol
All patients were scanned using a SOMATOM (Siemens Medical
Systems, Germany) scanner or Brilliance iCT 256 (Philips
Healthcare, Netherlands) scanner. The scanning parameters
were as follows: tube voltage: 120 kVp; pixel size: 512×512;
detector collimation: 64×0.6 and 128×0.625 mm; slice
thickness: 5 mm; and reconstructed section thickness: 1 mm.
Contrast-enhanced CT images were obtained by intravenous
injection of 1.0 ml/kg of contrast material (iohexol injection; 300
mg/ml; Beijing, China) at a rate of 3.0-3.5 ml, followed by a saline
flush (20 mL). CT images were acquired at 25 seconds and 70
seconds after the start of contrast medium injection,
corresponding to the arterial and venous phases, respectively.

Ki-67 Expression Measurement
Formalin-fixed, paraffin-embedded tissue sections with a
thickness of 4 µm were created. The sections were then dried,
dewaxed with xylene, rinsed in graded ethanol and rehydrated in
double-distilled water. Immunohistochemistry (IHC) staining
was performed using a Ki-67 protein antibody (Santa Cruz
Biotechnology, California, USA) diluted 1:100. Cells with
brown nuclei were considered positive.

The whole specimen was scanned, and positive cells in five
areas with the highest positive density were selected, then a
percentage of positively labeled cells were determined by
counting more than 1000 tumor nuclei at 400 magnification.
Because the most active part of tumor proliferation can represent
the degree of tumor malignancy and affect the prognosis of
patients. So according to previous relevant studies (19–21), the
Ki-67 index in this study was the average value of the five areas
Frontiers in Oncology | www.frontiersin.org 3
with the highest percentage of Ki-67-labeled cells, and according
to previous studies (22), low Ki-67 expression was defined as ≤
40% positive staining, while over 40% positive staining was
defined as high Ki-67 expression.

Image Normalization and
Feature Extraction
The workflow of radiomics implementation is displayed in Figure 2.
All the images were normalized by z-score transformation, with
intensity ranges for each imaging modality across all subjects with a
mean of 0 and a standard deviation of 1.ITK-SNAP software (http://
www.itksnap.org, version: 3.8.0, USA) was used to outline the lesion
on theCT imagewith the largestdiameterof the lesion.All lesionROI
outliningwas completedby two radiologistswith 12 years (HYB) and
10 years (SLL) of chest CT diagnosis experience, and the intragroup
correlation coefficient (ICC) between among the observers was
calculated. The ROI was outlined by the HYB once, and the second
ROIwasperformedafter aweek toassess theobserver’s ICC.SLLonly
performed the ROI once to evaluate the ICC between this physician
and HYB. ICC>0.75 considers that the consistency is good. Both
radiologists were blinded to the patient’s clinicopathological
information. Commercial software (Analysis Toolkit 1.0.3; GE
Healthcare, USA) was used to extract features. In total, 396
quantized features were extracted, such as 9 form factor features, 10
Haralick features, 11 gray level size zonematrix (GLSZM) features, 42
histogram features, 48 gray level cooccurrence matrix (GLCM)
features with an offset of 1/4/7, and 60 gray level run-length matrix
(GLRLM) features with an offset of 1/4/7.

Development of the Radiomics Signature,
Clinical Model, Radiomics Nomogram
To minimize overfitting, the least absolute shrinkage and
selection operator (lasso) regression method was used to select
the most valuable features from the primary datasets, and then
validated in the validation cohort. The linear combination of
selected features was used to calculate the radiomic scores
(Rad-scores) for each patient. For validation, we evaluated
the difference of rad score between the training set and
the verification set, and calculated the sample size of the
FIGURE 2 | Flowchart of radiomics implementation in this study.
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verification set using the method of “comparing the mean
between the two groups”, which meets the statistical power of
more than 0.8. The cut-off value obtained from the training set
was used to calculate the metrics of the validation set.The
predictive accuracy of the radiomics signature was quantified
by the area under the receiver operating characteristic (ROC)
curve (AUC) in both the training and validation sets.

Univariate logistic regression was used to select clinical risk
factors for high Ki-67 lung cancer. The clinical features and
imaging omics features with P<0.05 were used to develop a
predictive model to distinguish low Ki-67 lung cancer from high
Ki-67 lung cancer using multivariate logistic regression in the
primary cohort. In logistic regression, backward stepwise
selection was applied using a likelihood ratio test with Akaike’s
information criterion as the stopping rule.

To provide clinicians with a quantitative tool to predict the
Ki-67 level of lung cancer, a radiomics nomogram was
established based on multivariate logistic analysis in the
primary cohort. The algorithm built by the training set was
used to calculate the Rad score in the validation set.

Validation and Assessment of the
Radiomics Nomogram
We assessed the value of the radiomics nomograms in training
(n=197) and validation (n=85) data sets, including identification,
calibration, and clinical value, and quantified the differential
performance of AUC. The Hosmer-Lemeshow test was used
together with the calibration curve to determine the goodness-of-
fit of the nomogram. The validation data set was used to test the
internal value of the radiomics nomogram.

Decision curve analysis (DCA) was used to calculate the net
benefit of the threshold probability range in the training and
validation data sets to estimate whether the nomogram was
sufficiently reliable for clinical use. The net benefit was
determined by calculating the difference between the true
positive rate and weighted false positive rate of different
threshold probabilities in the validation set. A “decision curve”
was then drawn based on the threshold probability.

Statistical Analysis
R statistical software (http://www.Rproject.org, version 3.4.4) was
used for statistical analysis. Lasso regression was performed using
the “glmnet” package. The “RMS” package was used to construct
Frontiers in Oncology | www.frontiersin.org 4
multivariate logistic regression, nomogram and calibration charts.
DCA was performed using the “DCA. R” function. ROC curves
were drawn and analyzed using the “proc” package. The
Kolmogorov-Smirnov test was used to test the normality of
the quantitative data, and the measurement data conforming to
the normal distribution were expressed as x ± s. Counting data was
expressed in frequency. Chi-squared test or Fisher’s exact test was
used to compare the count data between groups, and independent
samples t test was used to compare the measurement data. P<0.05
indicated a statistically significant difference.
RESULTS

Comparison of the Clinical Data Results of
the Training and Validation Groups and the
Low Ki-67 and High Ki-67 Lung Cancer
Groups
No significant differences were found in age, sex, the tumor
diameter or pathological type between the training and
validation groups (P>0.05; Table 1). Statistically significant
differences were found in sex, age, and the pathological type
between the high and low Ki-67 expression groups (P<0.05)
(Table 2). High Ki-67 expression was more common in men,
elderly individuals, and SCC patients.

Extraction/Selection of Radiomics
Features and Construction of the
Radiomics Signature
First, we performed repeatability evaluation (between and within
data sets with a consistency coefficient> 0.75), and then removed
highly correlated features (correlation coefficient> 0.6). Finally,
we used lasso logistic regression to screen out 16 features
(Figures 3A–C),including Low Intensity Small Area Emphasis,
difference Variance, Surface Volume Ratio, Cluster Shade_
angle135_offset7, Inverse Difference Moment_All Direction_
offset7_SD, Max Intensity, High Intensity Large Area Emphasis,
Zone Percentage,Correlation_All Direction_offset7_SD, Inverse
Difference Moment_All Direction_offset1_SD, Haralick
Correlation_All Direction_offset4_SD, Large Area Emphasis,
Short Run High Grey Level Emphasis_All Direction_offset1_SD,
Grey Level Non uniformity_All Direction_offset7_SD, Haralick
TABLE 1 | Comparison of the clinical data and pathological staging results of patients in the training and validation groups.

Clinical feature Training group (n = 197) Verification group (n = 85) p value t value or c2 value

Sex Male 126 (64.0%) 52 (61.2%) 0.66 0.20
Female 71 (36.0%) 33 (38.8%)

Age (years) 61.6 ± 8.9 62.4 ± 9.2 0.49 0.69
Tumor maximum diameter (cm) 4.1 ± 2.2 4.0 ± 2.3 0.58 0.55
Smoking Yes 111 (56.3%) 41 (48.2%) 0.18 1.81

No 86 (43.7%) 44 (51.8%)
Pathological type ACC 110 (55.8%) 48 (56.5%) 0.91 0.19*

SCC 48 (24.4%) 21 (24.7%)
NEC 39 (19.8%) 16 (18.8%)
Octo
ber 2021 | Volume
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Correlation_angle45_offset7, ShortRunLowGreyLevelEmphasis_All
Direction_offset7_SD.The Rad-scores of each patient in the training
and validation sets are shown in Figures 4A, B.

Predictive Efficacy of the Imaging
Radiomics Signature
The ROC curves of the training and validation groups are
shown in Figures 5A, B. The AUC, accuracy sensitivity,
specificity, positive predictive value, and negative predictive
value were 0.88 (95% CI: 0.82~0.93), 81.2%, 79.8%, 84.4%,
88.9%, and 72% in the training group and 0.86 (95% CI:
0.78~0.94), 79.8%, 74.6%, 88.1%, 90.9%, and 68.5% in the
validation group, respectively.

Establishment of a Nomogram Combining
Radiomics With Clinical Risk Factors
Univariate analysis showed that the clinical factors were
significantly related to the classification of low Ki-67 lung
cancer and high Ki-67 lung cancer (Table 3). They include
serum NSE and smoking (P < 0.05). The results of multivariate
logistic regression analysis suggested that smoking, serum
NSE and the rad score were independent predictors of low
Frontiers in Oncology | www.frontiersin.org 5
and high Ki-67 lung cancer classification (Table 4). A
radiomics nomogram incorporating the predictive factors
(including smoking, NSE, and the Rad score) was constructed
(Figure 6).

The calibration curve showed that the predicted probability of
the nomogram was consistent with the pathological findings
(Figure 7). The results in Table 5 and Figure 8 show that the
nomogram had better prediction efficiency than the radiomics
signature and clinical model. The AUC value of the nomogram
in the validation set was 0.87 (95% CI: 0.80-0.95), the accuracy
was 0.83 (95% CI: 0.75-0.90), the sensitivity was 75.0%, and the
specificity was 90.2%. Figure 9 shows the DCA of the radiomics
nomogram. When the threshold probability is in the range of
0.1–1.0, the radiomics nomogram is superior to the model of “all
treatment” and “no treatment” strategies.
DISCUSSION

Ki-67 nuclear protein is a marker of cell cycle and proliferation
(9, 23, 24) and is typically used to estimate the population of
proliferating cells. In malignant tumors, the percentage of Ki-67-
A B C

FIGURE 3 | Use of lasso logistic regression to select features. (A) Binomial deviation versus parameter l. Least absolute shrinkage and selection operator (LASSO)
regression was used to screen the radiomic features, and cross-validation was used to select the optimal model parameter l. The vertical axis is the binomial deviation,
and the horizontal axis is the log (l) value. l, which represents the smallest binomial deviation of the model, is the optimal value (vertical dashed line). (B) Graph of the
variation of the imaging omics feature coefficient with l. The number above indicates the number of filtered features. (C) Screened 16 radiomics features and their weights.
TABLE 2 | Comparison of the clinical data results between the low Ki-67 and high Ki-67 lung cancer groups.

Clinical feature low Ki group (n = 175) high Ki group (n =1 07) p value t value or c2 value

Age (years) 62.2 ± 8.8 61.8 ± 9.1 0.74 0.33
Sex Male 93 (53.1%) 85 (79.4%) <0.01 19.73

Female 82 (46.9%) 22 (20.6%)
Smoking Yes 76 (43.4%) 76 (71.0%) <0.01 20.36

No 99 (56.6%) 31 (29.0%)
Tumor diameter (cm) 3.7 ± 2.0 4.6 ± 2.4 <0.01 -3.46
Pathological type ACC 135 (77.1%) 23 (21.5%) <0.01 89.77

SCC 29 (16.6%) 40 (37.4%)
NEC 11 (6.3%) 44 (41.1%)
Oc
tober 2021 | Volume
Continuous variables were analyzed by t test, and categorical variables were analyzed by c2 test. *u value: the overall variance of the two groups of data was uneven, and the rank-sum test
was performed.
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positive cells is related to tumor invasion or tumor progression.
Presently, the Ki-67 proliferation index is considered a tumor
biomarker that is valuable for tumor diagnosis, treatment and
prognosis (4, 24, 25). Previous studies on the CT texture features
Frontiers in Oncology | www.frontiersin.org 6
of non-small cell lung cancer (10, 26, 27) have shown that tumors
have internal heterogeneity due to different biological behaviors
and metabolic levels, and CT texture analysis can quantify tumor
heterogeneity. Lung cancer is a highly heterogeneous tumor, and
A B

FIGURE 4 | A set of verified rad scores in the training set (A) and validation set (B). Red and green represent the true classification: the complete separation of red
and green indicates that the radiomics rad-score can be classified well.
A B

FIGURE 5 | ROC curves to distinguish low Ki-67 lung cancer from high Ki-67 lung cancer based on the CT imaging model prediction model. The AUC in the
training set was 0.88. (A), and that in the validation set was 0.86 (B).
TABLE 3 | Positive results of univariate analysis for the classification of low and
high Ki-67 lung cancer.

Variable OR (95% CI) P-value

Smoking 3.45 (1.78-6.88) <0.01
Serum 1.00 (1.00-1.00) 0.02
NSE 1.05 (1.02-1.09) <0.01
TABLE 4 | Positive results of multivariate logistic regression analysis for the
classification of low and high Ki-67 lung cancer.

Variable OR (95% CI) P-value

(Intercept) 0.48 (0.17-1.30) 0.16
Smoking 2.78 (1.17-6.90) 0.02
NSE 1.02 (0.99-1.06) 0.25
rad_score 5.16 (3.09-9.50) <0.01
October 2021 | Volume 11 | Article
 743490
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the heterogeneity of Ki-67 expression also exists in lung cancer.
The Ki-67 labeling index can range from 1% to 90% in different
intratumoral regions (28). High and low Ki-67 expression results
in heterogeneity in the tumor cell proliferation rate, cell
differentiation and subclonal region composition. Radiomics
is a revolution to the traditional visual image features. It
obtains high-throughput data and extracts a large number of
quantitative features from the image through computer learning
software to mine the quantitative information of the shape,
texture and heterogeneity of the tumor itself, and screen the
most valuable radiomic features to establish a prediction model
(18, 29, 30). Radiomics can not only reduce the pain of patients
undergoing biopsy, but also improve work efficiency and
reduce the cost of patients. Therefore, predicting the
expression of Ki-67 by analyzing the CT images of lung cancer
is clinically significant.
Frontiers in Oncology | www.frontiersin.org 7
The present study first used quantitative imaging histology, and
then, based on CT images routinely used to diagnose tumors
clinically, quantitative image texture analysis was used to estimate
Ki-67 expression in lung cancer patients. The radiomics signature
was an independent predictor of the expression status of Ki-67 in
lung cancer and can distinguish between lowKi-67 lung cancer and
high Ki-67 lung cancer well. The AUC of the validation group
reached0.86, and the accuracy, sensitivity, and specificitywere 0.80,
0.75, and 0.88, respectively. Radiomics is expected to provide a
noninvasive, convenient, and reproducible method to predict the
Ki-67 expression status in lung cancer.

In the present study, the training and validation group showed
differences in sex, the maximum tumor diameter, smoking status,
and pathological type. High Ki-67 expression is more common in
men, smokers, and patients with large lesions, SCC and small cell
lung cancer. This finding is consistent with previous reports (31,
32). To predict the Ki-67 index, the AUC value of the clinical
predictionmodel established in this studywas only 0.72, while that
of the radiomics signature was 0.86, much higher than that of the
clinical model, indicating that the radiomics signature was
significantly better than the simple clinical data prediction model
in predicting the Ki-67 index of lung cancer. This study also
established a nomogram prediction model combining the
radiomics signature and clinically related factors. The data
revealed that the AUC value of the validation group was 0.87,
which was slightly higher than the predictive power of the
radiomics signature alone (AUC=0.86) but significantly higher
than the predictive power of the clinical model (AUC=0.72), and
the prediction accuracy and specificity of the nomogram were
improved. The prediction efficiency of the nomogram was better
than that of the clinical model and radiomics signature model. A
certain complementarity exists between the radiomics signature
model and clinical model, but it is not obvious. The subjects of this
study covered all pathological subtypes of lung cancer, so our
FIGURE 6 | Nomogram used to distinguish between high and low Ki-67
expression levels in lung cancer.
A B

FIGURE 7 | Calibration curve of the nomogram in the training group (A) and validation group (B). The solid diagonal line represents the perfect prediction of the
ideal model, and the dashed pink line represents the performance of the model. Closer plots of the two lines indicate that the prediction results are in good
agreement with the pathological results, and the prediction ability is better.
October 2021 | Volume 11 | Article 743490
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FIGURE 9 | Decision curve analysis (DCA) of the nomogram. The y-axis shows
net income, the red line represents the radiomics nomogram, the blue line
represents the hypothesis that all patients have high Ki-67 expression, and the
black line represents the hypothesis that no patient has high Ki-67 expression.
The x-axis shows the threshold probability—that is, the expected benefit of the
number of treatments equals the expected benefit of not receiving treatment. The
decision curve shows that when the threshold probability is between 0.1 and 1,
using a radiomics nomogram to predict Ki-67 expression is more beneficial than
treating all patients or not treating patients.

Fu et al. Predicting Ki-67 Index of Lung Cancer by Radiomics
model had better universality. Moreover, the results of this study
showed that our model was more effective in predicting the Ki 67
index of lung cancer than the models built in previous studies (17,
18).Our model may become an accurate and noninvasive method
to predict the status of Ki-67 in patients with lung cancer.

This study also has some limitations. First, this is a retrospective
study with potential selection bias. Second, the sample size of this
study was still relatively small, and the predictive ability of
radiomics for the Ki-67 index of lung cancer must be further
verified in a large sample. Third, although this study included
patients with different pathological types of lung cancer, it did not
specifically analyze the prediction of the Ki-67 index in a specific
pathological type of lung cancer by radiomics. Different cutoff
values of the Ki-67 index may need to be established for different
pathological types of lung cancer, but the sample size of this study
was not sufficiently large to perform this analysis. Therefore, this
study is a preliminary exploratory study on the relationship
between imaging features and the Ki-67 index of lung cancer.
We will expand the sample size and integrate more clinical
information to improve the performance and universality of the
radiomics model.
Frontiers in Oncology | www.frontiersin.org 8
In conclusion, we developed and validated the first
nomogram model with good diagnostic performance for the
classification of low Ki-67 lung cancer and high Ki-67 lung
cancer based on the radiomics signature and clinical factors.
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Radiomics signature Train 0.88 (0.82~0.93) 0.81 0.79 0.84
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Radiomics nomogram Train 0.91 (0.85~0.98) 0.83 0.79 0.85
Test 0.87 (0.80~0.95) 0.83 0.75 0.90
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FIGURE 8 | ROC analysis was used to compare the prediction efficiency
among the nomogram, radiomics signature and clinical models. The red line
shows the nomogram with AUC=0.87, indicating that the radiomics nomogram
had better predictive performance than the clinical model (green line; AUC=0.72)
or radiomics signature (blue line; AUC= 0.86).
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