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Purpose: Herein, we developed a deep learning algorithm to improve the segmentation of the clinical target volume (CTV) on daily
cone beam computed tomography (CBCT) scans in breast cancer radiation therapy. By leveraging the Intentional Deep Overfit
Learning (IDOL) framework, we aimed to enhance personalized image-guided radiation therapy based on patient-specific learning.
Methods and Materials: We used 240 CBCT scans from 100 breast cancer patients and employed a 2-stage training approach. The
first stage involved training a novel general deep learning model (Swin UNETR, UNET, and SegResNET) on 90 patients. The second
stage used intentional overfitting on the remaining 10 patients for patient-specific CBCT outputs. Quantitative evaluation was
conducted using the Dice Similarity Coefficient (DSC), Hausdorff Distance (HD), mean surface distance (MSD), and independent
samples t test with expert contours on CBCT scans from the first to 15th fractions.
Results: IDOL integration significantly improved CTV segmentation, particularly with the Swin UNETR model (P values < .05). Using
patient-specific data, IDOL enhanced the DSC, HD, and MSD metrics. The average DSC for the 15th fraction improved from 0.9611 to
0.9819, the average HD decreased from 4.0118 mm to 1.3935 mm, and the average MSD decreased from 0.8723 to 0.4603. Incorporating
CBCT scans from the initial treatments and first to third fractions further improved results, with an average DSC of 0.9850, an average
HD of 1.2707 mm, and an average MSD of 0.4076 for the 15th fraction, closely aligning with physician-drawn contours.
Conclusion: Compared with a general model, our patient-specific deep learning-based training algorithm significantly improved CTV
segmentation accuracy of CBCT scans in patients with breast cancer. This approach, coupled with continuous deep learning training
using daily CBCT scans, demonstrated enhanced CTV delineation accuracy and efficiency. Future studies should explore the
adaptability of the IDOL framework to diverse deep learning models, data sets, and cancer sites.
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Introduction
Radiation therapy (RT), including that for whole breast
or chest wall and regional nodes, plays a crucial role in
breast cancer treatment by reducing the risk of local
recurrence after surgery and enhancing survival rates.1-6

Technical advancements in RT for breast cancer, includ-
ing the implementation of intensity-modulated RT,
simultaneously integrated boost, and partial breast irradi-
ation, have enabled a more precise treatment for the
affected area.7-9 Contemporary radiation techniques used
in breast cancer treatment require a precise definition of
target areas and organs at risk to devise personalized
treatment that efficiently covers the targeted regions while
minimizing radiation exposure to organs at risk to miti-
gate the risk of toxicities.10,11 These techniques necessitate
special attention for RT planning, accurate positioning,
and patient monitoring during treatment delivery.

Recently, the importance of adaptive planning using
image-guided RT (IGRT) has been demonstrated, and
cone beam computed tomography (CBCT) has emerged as
a valuable tool for adaptive RT (ART) by enabling accurate
and timely guidance.12,13 Well-implemented ART can min-
imize treatment-related side effects and avert inadvertent
dosage variations in specific regions. The crux of ART pro-
cess involves aligning and comparing the target volume on
the initial planning computed tomography (CT) scan with
the corresponding area on the daily CBCT scan. When
notable discrepancies between the 2 scans can substantially
impact dose distribution, a new ART plan is instituted.
However, despite its importance, comprehensive daily
comparison between CBCT and planning CT scans can be
time-intensive and impractical. Studies have proposed
CBCT-guided IGRT for head and neck or prostate
treatment.14,15 Additionally, deep learning (DL)-based
methods have been proposed for automatic segmentation
of breast masses on ultrasound imaging, breast cancer diag-
nosis via magnetic resonance imaging (MRI), and detection
in mammography.16-18 DL not only aids in the accurate
identification of breast abnormalities but also plays a cru-
cial role in supporting clinical decision-making.19

In breast cancer treatment, the area of the patient’s
body included in the clinical target volume (CTV) can
change significantly throughout therapy. To evaluate how
these daily changes impact the actual delivered radiation
dose and the need for adaptive planning, physicians
should manually delineate the CTV on each daily CBCT
scan or use deformable registration. However, deformable
registration from CT to CBCT is often insufficient
and inaccurate, necessitating manual delineation of the
CTV on each CBCT scan. This labor-intensive and
time-consuming process highlights the convenience of an
automatic contouring system. After delineating the CTV
on CBCT, it can be compared with the planning CT to
determine the dose difference and the necessity for an
adaptive plan. Because RT is conducted daily, prompt
assessment and implementation of adaptive plans are cru-
cial to ensure accurate radiation delivery and reduce side
effects. Automating the CTV contouring process can save
time, improve efficiency, and enhance accuracy. However,
the application of DL for automatic segmentation of
breast CTV on daily CBCT scans remains unexplored.

This study primarily aimed to develop a DL algorithm
for accurate CTV segmentation using daily CBCT scans
of patients with breast cancer who underwent breast-con-
serving surgery and adjuvant RT. By leveraging the Inten-
tional Deep Overfit Learning (IDOL) framework, we
sought to incorporate prior knowledge, typically available
as fractionated ART, to further improve segmentation
performance for fraction images.20 By using the IDOL
framework, our study aimed to enable patient-specific
learning through individual CBCT data to enhance the
accuracy and efficiency of IGRT, which has important
implications in CTV segmentation in the context of breast
cancer RT and may substantially advance the field.
Material and Method
Patient data

This retrospective study analyzed data from 100
patients with breast cancer who underwent adjuvant RT
after breast-conserving surgery between March 2020 and
December 2021 at Yongin Severance Hospital were
included in this study. The patients underwent whole-
breast irradiation using the volumetric modulated arc
therapy technique and a simultaneous integrated boost to
the tumor bed; RT planning was performed according to
the institutional treatment policy.21 The prescribed doses
were 40.05 Gy and 48 Gy in 15 fractions to the whole
breast and tumor bed each, respectively.21-23 All patients
were treated on the Elekta Versa HD linear accelerator
(Elekta AB) equipped with an ELEKTA XVI CBCT scan-
ner. As part of the IGRT process, daily CBCT images
were acquired before each treatment session for all
patients using an ELEKTA XVI scanner with a voltage of
100 kVp, voxel size of 1.367 mm £ 1.367 mm £ 3 mm,
and voxel size of 512 £ 512 £ (range: 122-179).

To train our basic DL model, 1 CBCT scan per patient
was obtained from 90 patients, whereas 15 daily CBCT
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scans during the entire treatment period were obtained
from the remaining 10 patients for validation and person-
alized model development. Furthermore, for enhanced
patient-specific modeling, the CBCT fraction data of the
remaining 10 patients were used. This involved leveraging
a pretrained model and further training it using all 14
CBCT scans available per patient. In the acquired CBCT
scans, the breast CTV on CBCT scans (CTVcbct) was
manually delineated using MIM software by a board-cer-
tified radiation oncologist with 10 years of experience, in
the same manner as on the planning CT. This study was
approved by the Institutional Review Board at the Yongin
Severance Hospital (approval no. 9-2022-0198), and all
procedures were performed in accordance with the rele-
vant guidelines and regulations. The requirement for
Table 1 Demographic, tumor, and treatment characteristics o

Variables

Age (y)

ECOG performance status 0

1

Laterality Right

Left

Pathology DCIS

IDC

ILC

Others

T stage* Tis

T1

T2

T3

Unknown

N stage* N0

M stage* M0

Chemotherapy Performed

Not performed

Neoadjuvant CTx Performed

Not performed

Adjuvant CTx Performed

Not performed

Herceptin Performed

Not performed

Hormone therapy Not performed

Performed (during RT)

Performed (after RT)

Abbreviations: CTx = chemotherapy; DCIS = ductal carcinoma in situ; ECOG
cinoma; ILC = invasive lobular carcinoma; RT = radiation therapy.
*TNM stage according to the AJCC 8th edition.
informed consent was waived because of the retrospective
nature of the study and the use of anonymized data.

The median age of the patients was 54 years (range: 21-
86 years), and all patients underwent whole-breast RT
after breast-conserving surgery for invasive carcinoma or
ductal carcinoma in situ. A total of 58 and 42 patients
received treatment for left- and right-sided breast cancer,
respectively. The baseline clinical characteristics of the
patients are summarized in Table 1.
Models

In designing our CTVcbct segmentation approach
within the IDOL framework, the selection of Swin
f patients included in this study

No. of patients (n = 100) %
Median 54 (range: 21-86)

77 77

23 23

42 42

58 58

18 18

68 68

3 3

11 11

21 21

67 67

10 10

1 1

1 1

100 100

100 100

28 28

72 72

4 4

96 96

23 23

77 77

16 16

84 84

15 15

80 80

5 5

= European Cooperative Oncology Group; IDC = invasive ductal car-



Figure 1 Illustration of the overall 3D network architecture for the IDOL framework. (a) Illustrate Swin UNETR architecture.
(b) Illustrate UNET architecture. (c) Illustrate SegResNET architecture.
Abbreviation: IDOL = Intentional Deep Overfit Learning.
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UNETR, UNET, and SegResNET was driven by a meticu-
lous evaluation of their individual strengths and their col-
lective synergistic impact on the task at hand.24-27 The
Swin UNETR model, renowned for its successful integra-
tion of transformer and convolutional neural network fea-
tures, demonstrated exceptional performance across
diverse medical image analysis tasks. Notably, the Swin
UNETR model, proposed in 2022, secured the first position
in the “Beyond the Cranial Vault” challenge in 2023. Our
implementation (Fig. 1a) leverages the Swin UNETR archi-
tecture, featuring an encoder network for robust feature
extraction and a decoder network for precise segmentation
map generation. This unique blend of transformer and
convolutional features proved particularly effective in
addressing the intricate challenges associated with CTVcbct

segmentation in breast cancer patients.
In addition to Swin UNETR, we incorporated the UNET

architecture (Fig. 1b), a well-established model recognized
for its proficiency in detection tasks since its proposal in
2019. The inclusion of UNET complements our segmenta-
tion strategy, enhancing our ability to capture detailed infor-
mation crucial for accurate CTVcbct delineation.

Furthermore, the integration of the SegResNET model
(Fig. 1c) was motivated by its documented effectiveness in
brain tumor segmentation using 3-dimensional (3D) MRI
since its introduction in 2018. Although our primary
focus is on CTVcbct segmentation in breast cancer
patients, we strategically chose SegResNET for its unique
architectural characteristics, particularly its capacity to
handle complex spatial relationships. We recognize that
these attributes can be advantageous in the nuanced task
of delineating CTVcbct boundaries.

Our decision to opt for Swin UNETR, UNET, and Seg-
ResNET is grounded in their proven performance in med-
ical image analysis, and their integration within the IDOL
framework is tailored to address the specific challenges
associated with CTVcbct segmentation in the context of
breast cancer. This considered selection ensures that our
approach leverages the strengths of each 3D model to
achieve optimal segmentation outcomes, emphasizing the
importance of preserving volumetric information for
accurate delineation.
IDOL framework

We employed the innovative IDOL framework to
develop a patient-specific DL model through a 2-stage
training methodology. Initially, we trained novel DL mod-
els using CBCT scans from 90 patients, with a focus on
the first fraction, and evaluated performance on the 15th
fraction of the remaining 10 patients. The second stage
involved patient-specific learning, achieved by intentional
overfitting of the pretrained network with CBCT scans
from the first to 14th fractions and testing on the remain-
ing fraction. A schematic representation of the IDOL
framework, highlighting the optimal model architecture
(Fig. 2a), is presented in Fig. 2.

During the first stage, the IDOL framework may exhibit
a higher computational loss in the validation set and a gen-
eralization error, Egen, comparable with traditional DL
methods. Challenges such as saturation in the validation
error, Evalid, were observed initially, attributed to factors
like data set size, generalization limitations, and model
architecture constraints. In the second stage, intentional
overfitting of the pretrained network occurred, leveraging
task- and patient-specific prior information. This deliberate
overfitting aimed to create a personalized IDOL model
with a customized learned hypersurface, leading to a signif-
icant reduction in Evalid and an improvement in the IDOL
framework error, EIDOL (detailed in Appendix E1).20

Although sharing elements with transfer learning, the
IDOL framework surpasses conventional practices. In the
first stage, similarities to traditional DL methods may
emerge, including challenges like Egen. However, inten-
tional overfitting in the second stage distinguishes IDOL
from typical transfer learning approaches. Notably, IDOL
transitions from generalization to personalization, whereas
transfer learning moves from one generalization to
another. This deliberate overfitting incorporates patient-
specific information, enabling the creation of a highly cus-
tomized model that excels in patient-specific performance.

The IDOL framework’s distinctive advantage lies in its
ability to adapt to patient-specific nuances. Through inten-
tional overfitting based on individualized data, the IDOL
framework tailors the DL model to the specific patient and
task, resulting in enhanced generalization performance and
reduced errors. This patient-centric approach positions the
IDOL framework as a powerful tool for optimizing DL
models in the realm of personalized medical applications.
Training setting

We used several networks and automated segmenta-
tion methods to contour the breast CTV and further
enhanced it using various preprocessing techniques to
improve the segmentation accuracy. These techniques
included pixel value clipping, resolution standardization,
random cropping, flipping, rotation, and intensity shift-
ing. The Houndsfield Units (HU) of the CBCT scans were
normalized by clipping values outside the range of �450
HU to 250 HU, and the resolution was standardized to
1.5, 1.5, and 2.0 mm for all scans. In addition, we aug-
mented the data set by randomly cropping the volume
images to 96, 96, and 96 sizes and randomly flipping and
rotating them with a probability of 0.1 for all 3 axes. To
further improve the intensity information, we randomly
shifted the intensity range with a probability of 0.5 and an
offset of 0.1. The DL model was optimized using a combi-
nation of dice and cross-entropy losses as the loss func-
tion, with the AdamW optimizer and GradScaler for



Figure 2 (a) The workflow demonstrating the efficacy of the IDOL framework using multiple networks, enhancing the segmen-
tation accuracy of breast CTV for the 15th fraction. Conversely, (b) illustrates a workflow that emphasizes the optimal juncture
of the IDOL effect. This considers additional training involving varying numbers of patient fractions and employs the best model
architecture used in (a).
Abbreviations: CTV = clinical target volume; IDOL = Intentional Deep Overfit Learning.
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scaling. We employed a learning rate of 1.00E-04 and a
weight decay of 1.00E-05. In the first stage of the IDOL
framework, we pretrained the network using 30,000 itera-
tions with CBCT scans from 90 patients. In the second
stage, we loaded the pretrained network and trained it for
50 epochs using the first to 14th fractions of CBCT scans
of the patients, followed by an evaluation of the patient-
specific network on the remaining fractions. (See Appen-
dix E2 for further details.)
Evaluation

To evaluate network performance, we used the Dice
Similarity Coefficient (DSC), 95 percentile Hausdorff dis-
tance (HD), and mean surface distance (MSD). The DSC
is a statistical measure commonly used to assess the simi-
larity between 2 sets or regions in data analysis, particu-
larly in image segmentation tasks. The DSC equation is
represented by equation (1):
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DSC ¼ 2� jX \Y j
jX j þ jY j ð1Þ

X represents the network output volume, and Y repre-
sents the corresponding ground truth of the reference
label volume.

The HD is a mathematical measure that quantifies the
extent of dissimilarity between 2 subsets of a metric space.
Regarding image analysis or point cloud data, HD meas-
ures how far 1 set can be from another while remaining
within a certain distance of the closest point on the other
set. It provides a robust method to compare the similarity
or dissimilarity between 2 sets by considering both the
closeness and spread of points in the sets. HD is particu-
larly useful for evaluating the discrepancy between seg-
mented regions in medical imaging or any other scenario
where sets of points or shapes need to be compared.28

The HD equation is represented in equation (2):

H X; Yð Þ ¼ max supx2Xinfy2 Yd x; yð Þ; supy2 Y infx2Xd x; yð Þ� �

ð2Þ
dðx; yÞ represents the distance between points x and y

in metric space. sup denotes supremum, which is the low-
est upper bound. inf denotes the infimum, which is the
highest lower bound.

MSD is a metric used to quantify the average distance
between corresponding points on the surfaces of 2 objects
or regions. It is commonly employed to evaluate the accu-
racy of segmentation results, registration methods, or
other spatial mapping tasks in medical image analysis and
computer vision. The MSD equation is represented by
equation (3):

MSD ¼ 1
N

XN

i¼1

d xi; yið Þ ð3Þ

N is the total number of corresponding point pairs,
and dðxi; yiÞ represents the distance between correspond-
ing points xi and yi on the surfaces of the 2 objects or
regions being compared.

To ascertain the statistical significance between the 2
data sets, we employed the differences in the means for
DSC, HD, and MSD as metrics. Assuming a normal distri-
bution for the 2 data sets, an independent samples t test
was conducted to compare the means of 2 distinct samples
derived from separate populations. By analyzing the aver-
age DSC, HD, and MSD differences between the 2 data
sets, we decided whether to accept or reject the null
hypothesis. The null hypothesis postulated that the average
DSC, HD, and MSD values between the 2 data sets are
identical, and the significance level chosen is below 0.05.

Our analysis involved comparing the data sets for 2
scenarios: first, between the generalized DL models and
the deformed planning CT, where the planning CT was
matched to the CBCT using a deformable image registra-
tion technique, and the resulting vector field was applied
to the planning CT’s CTV for evaluation; second, between
the generalized DL model and IDOL model trained with
multiple fractions. Additionally, we compared the data
sets for the IDOL model trained with subsequent frac-
tions. All statistical evaluations were conducted using the
R programming language.
Results
Generalized Models with IDOL result

The accuracy of the breast CTV contours generated by
the DL models was assessed using DSC. For the 15th frac-
tion of CBCT of the patients, the average DSC values were
0.9611, 0.9646, 0.9634, and 9322 for the Swin UNETR,
UNET, SegResNET, and deformed planning CT, respec-
tively. Additionally, the training process was evaluated
through the examination of loss graphs. The loss graphs of
the networks demonstrate a notable convergence, indicating
effective learning during the training phase. Specifically,
both the network train loss and the validation mean DSC
exhibit pronounced convergence, signifying the robust per-
formance and generalization capabilities of the models. Fur-
ther details, including the loss graph trajectories, can be
found in Appendix E3. Importantly, considering the compu-
tational cost aspect, the training durations for each model
were 210 minutes for Swin UNETR, 135 minutes for UNET,
and 141 minutes for SegResNET, using the NVIDIA TITAN
RTX. The inference time for processing a single patient aver-
aged around 120 seconds. These computational costs high-
light the efficiency and practical feasibility of implementing
the Swin UNETR, UNET, and SegResNET models in our
study. Notably, when incorporating the IDOL-enhanced first
fraction training results, the average DSC values for the 15th
fraction substantially improved to 0.9819, 0.9806, and
0.9788 for Swin UNETR, UNET, and SegResNET, respec-
tively. Table 2 illustrates the average DSC plot for the DL
models with the IDOL outcomes of Fig. 2a.

The average HD values for Swin UNETR, UNET, Seg-
ResNET, and deformed planning CT were 4.0118, 3.5295,
3.6574, and 5.9585 mm, respectively. Notably, when
incorporating the IDOL-enhanced first fraction training
results, the average HD values for the 15th fraction
decreased substantially to 1.3935, 1.5039, and 1.6675 mm
for Swin UNETR, UNET, and SegResNET, respectively.
Table 2 illustrates the average HD plot for the DL models
with the IDOL outcomes of Fig. 2a.

The average MSD values were 0.8723, 0.8530, 0.8772,
and 2.053 for Swin UNETR, UNET, SegResNET, and
deformed planning CT, respectively. Notably, when
incorporating the IDOL-enhanced first fraction training
results, the average MSD values for the 15th fraction



Table 2 The average DSC, HD, and MSD of the IDOL framework using several networks with standard deviation, as illustrated in Fig. 2a

Train step (pretrain + fractions)
Evaluation
metric Network Pre Pre+1 Pre+2 Pre+3 Pre+4 Pre+5 Pre+6 Pre+7 Pre+8 Pre+9 Pre+10 Pre+11 Pre+12 Pre+13 Pre+14

DSC Swin UNETR 0.9612 §
1.138E-2

0.9819 §
2.570E-3

0.9835 §
2.573E-3

0.9843 §
2.628E-3

0.9847 §
2.619E-3

0.9853 §
1.918E-3

0.9856 §
2.146E-3

0.9861 §
1.913E-3

0.9861 §
2.551E-3

0.9860 §
1.939E-3

0.9865 §
1.547E-3

0.9868 §
1.837E-3

0.9865 §
1.595E-3

0.9869 §
1.951E-3

0.9872 §
1.848E-
3

UNET 0.9646 §
1.204E-2

0.9806 §
2.842E-3

0.9826 §
2.213E-3

0.9829 §
2.342E-3

0.9834 §
2.179E-3

0.9840 §
2.190E-3

0.9845 §
2.333E-3

0.9845 §
2.109E-3

0.9847 §
1.735E-3

0.9846 §
2.049E-3

0.9845 §
2.360E-3

0.9854 §
2.490E-3

0.9855 §
1.960E-3

0.9848 §
2.213E-3

0.9856 §
2.192E-
3

SegResNET 0.9634 §
1.089E-2

0.9788 §
2.574E-3

0.9809 §
2.761E-3

0.9824 §
2.119E-3

0.9820 §
2.541E-3

0.9830 §
1.923E-3

0.9829 §
1.938E-3

0.9831 §
2.481E-3

0.9834 §
2.264E-3

0.9843 §
2.028E-3

0.9837 §
2.230E-3

0.9834 §
1.841E-3

0.9843 §
2.025E-3

0.9842 §
2.674E-3

0.9846 §
2.120E-
3

HD Swin UNETR 4.012 §
1.797E0

1.393 §
4.193E-1

1.271 §
3.080E-1

1.124 §
2.001E-1

1.166 §
2.139E-1

1.083 §
1.746E-1

1.083 §
1.746E-1

1.083 §
1.746E-1

1.083 §
1.746E-1

1.083 §
1.746E-1

1.083 §
1.746E-1

1.041 §
1.310E-1

1.083 §
1.746E-1

1.000 §
0.000E0

1.000 §
0.000E0

UNET 3.530 §
1.869E0

1.504 §
3.919E-1

1.224 §
3.353E-1

1.239 §
2.691E-1

1.166 §
2.139E-1

1.166 §
2.139E-1

1.124 §
2.001E-1

1.207 §
2.183E-1

1.124 §
2.001E-1

1.183 §
3.348E-1

1.207 §
2.183E-1

1.124 §
2.001E-1

1.083 §
1.746E-1

1.207 §
2.183E-1

1.083 §
1.746E-
1

SegResNET 3.657 §
1.950E0

1.668 §
3.644E-1

1.522 §
3.061E-1

1.266 §
3.300E-1

1.363 §
2.155E-1

1.166 §
2.139E-1

1.239 §
2.691E-1

1.197 §
2.709E-1

1.207 §
2.183E-1

1.083 §
1.746E-1

1.207 §
2.183E-1

1.166 §
2.139E-1

1.124 §
2.001E-1

1.083 §
1.746E-1

1.083 §
1.746E-
1

MSD Swin UNETR 0.8723 §
2.434E-1

0.4603 §
6.925E-2

0.4264 §
6.620E-2

0.4076 §
5.164E-2

0.3980 §
7.058E-2

0.3871 §
4.760E-2

0.3754 §
4.103E-2

0.3607 §
5.162E-2

0.3634 §
5.121E-2

0.3673 §
5.530E-2

0.3563 §
4.727E-2

0.3449 §
4.763E-2

0.3559 §
4.662E-2

0.3394 §
3.942E-2

0.3354 §
3.870E-
2

UNET 0.8530 §
2.648E-1

0.5027 §
1.004E-1

0.4525 §
7.873E-2

0.4480 §
6.757E-2

0.4335 §
6.556E-2

0.4205 §
5.856E-2

0.4084 §
6.017E-2

0.4081 §
6.878E-2

0.3988 §
5.496E-2

0.4044 §
7.103E-2

0.4085 §
6.336E-2

0.3829 §
5.724E-2

0.3811 §
5.916E-2

0.3971 §
5.162E-2

0.3767 §
5.973E-
2

SegResNET 0.8772 §
2.349E-1

0.5466 §
8.870E-2

0.4885 §
1.032E-1

0.4617 §
6.703E-2

0.4661 §
6.147E-2

0.4410 §
3.815E-2

0.4432 §
6.166E-2

0.4417 §
7.569E-2

0.4359 §
5.948E-2

0.4098 §
4.737E-2

0.4314 §
6.816E-2

0.4360 §
4.835E-2

0.4117 §
5.671E-2

0.4166 §
5.460E-2

0.4054 §
5.368E-
2

Abbreviations: DSC = Dice Similarity Coefficient; HD = Hausdorff distance; MSD = mean surface distance.
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substantially decreased to 0.4603, 0.5027, and 0.5466 for
Swin UNETR, UNET, and SegResNET, respectively.
Table 2 illustrates the average MSD plot for the DL mod-
els with the IDOL outcomes of Fig. 2a, revealing the nota-
ble accuracy of the DL models in generating breast CTV
contours.

We selected Swin UNETR because of its capacity to
achieve high-accuracy contours, particularly when com-
bined with the IDOL framework. Statistical analysis indi-
cated significant differences in the average DSC for a
patient’s 15th fraction between Swin UNETR and UNET
and between Swin UNETR and SegResNET (P values <
.05). Similarly, for average DSC data sets using IDOL
results from the first fraction training, significant differen-
ces were observed between Swin UNETR and UNET and
between Swin UNETR and SegResNET (P values < .05).
However, the analyses for the average HD and MSD data
sets yielded no significant differences for Swin UNETR
compared with UNET and SegResNET.
IDOL framework of finding the optimal point

By implementing the IDOL framework using the CBCT
scans acquired during the initial treatment, noteworthy
improvements were observed in the average DSC for the
15th fraction, which increased from 0.9611 to 0.9819.
Across all patients and fractions spanning the second to
15th, the average DSC increased from 0.9622 to 0.9817.
Notably, further enhancements were achieved by incorpo-
rating CBCT scans from the first to third fractions for
training, yielding an average DSC of 0.9850 for the 15th
fraction and 0.9843 for all patients and fractions from the
4th to 15th. Table 3 shows the average DSCs of the IDOL
framework using Swin UNETR, which is a result of Fig. 2b.

In addition, a preliminary statistical analysis was con-
ducted to compare the performance of the generalized DL
model (Swin UNETR) and IDOL model trained with
varying patient fractions. The results showed a significant
improvement in the segmentation accuracy with the
IDOL model (P value < .05) (see more in Appendix E4).
Subsequently, a more detailed statistical assessment was
conducted to compare the performance of the IDOL
model trained with subsequent fractions. A comparison
between the IDOL model trained using the first and sec-
ond fractions and that trained with the first to third frac-
tions demonstrated a significant enhancement in
segmentation accuracy (P value < .05). However, for sub-
sequent comparisons, the differences were not significant
(P values > .05) (see more on Appendix E5).

Furthermore, the implementation of the IDOL frame-
work using the CBCT scans from the initial treatment led
to noteworthy improvements in the average HD for the
15th fraction, reducing it from 4.0118 mm to 1.3935 mm.
Similarly, for all patients and fractions spanning the sec-
ond to 15th, the average HD decreased from 4.6879 mm
to 1.5649 mm. Similar to the DSC analysis, the incorpo-
ration of CBCT scans from the first to third fractions for
training further amplified these improvements, which
resulted in an average HD of 1.2707 mm for the 15th frac-
tion and 1.3616 mm for all patients and fractions from the
4th to 15th. Table 3 presents the average HDs of the IDOL
framework using the Swin UNETR.

Regarding the MSD, the implementation of the IDOL
framework using the CBCT scan from the patient’s initial
treatment led to noteworthy improvements in the average
MSD for the 15th fraction, reducing it from 0.8723 to
0.4603. Similarly, for all patients and fractions spanning
the second to 15th, the average MSD decreased from
0.8530 to 0.5027. Similar to the DSC analysis, the incorpo-
ration of CBCT scans from the first to third fractions for
training further amplified these improvements, which
resulted in an average MSD of 0.4076 for the 15th fraction
and 0.4480 for all patients and fractions from the 4th to
15th. Table 3 presents the average MSD results of the
IDOL framework using the Swin UNETR.

Overall, these findings emphasize the substantial
improvements achieved through the IDOL framework in
terms of both DSC and HD metrics and highlight the sig-
nificance of these enhancements. The IDOL training pro-
cess required an average of 107s for 1 CBCT scan and
331s for 3 CBCT scans.
IDOL result comparison with image

Figure 3a-c presents a visual comparison of a reference
contour manually drawn by a physician, the CTV output
of deformed planning CT output, CTV output of the pre-
trained network (Swin UNETR), and CTV output of the
additional training using the first fraction. The visualiza-
tions are provided in the horizontal, sagittal, and coronal
planes. The CTV output obtained from additional train-
ing with the first fraction demonstrated a significant
improvement in contouring accuracy compared with the
pretrained network output or the deformed planning CT.
This improvement aligns with the higher DSC scores and
lower HD and MSD values observed, indicating the
enhanced performance of the model. The reference con-
tour served as the gold standard for comparison, and
additional training incorporating patient-specific infor-
mation resulted in a contour that closely matched the
contour drawn by the physician (Fig. 3d-f) (see more in
Appendix E6). The red and blue colors represent the dif-
ference between the 3D contour drawn by the physician
as seen in Fig. 3d-f.
Discussion
In recent years, considerable progress has been made
in the field of IGRT. Notably, studies have investigated
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the application of CBCT for precise IGRT in head, neck,
and prostate treatments.14,15 These endeavors have con-
tributed substantially to the development of IGRT proto-
cols, ultimately enhancing the accuracy of RT delivery.
Furthermore, the integration of DL methodologies into
the field of medical imaging has marked a transformative
phase. Recent investigations have effectively used DL to
automate the segmentation of breast masses in ultrasound
and diagnose breast cancer through MRI.16,17 These
advancements underscore the burgeoning role of artificial
intelligence in augmenting breast cancer diagnosis and
management.

Despite the advances in the application of DL in medi-
cal image processing, the use of DL for segmentation of
daily CBCT scans has not been attempted. We employed
DL techniques for the automated segmentation of the
CTV of the breast using daily CBCT scans, which is
important to address a fundamental need in breast cancer
RT. Herein, the challenge was to ensure a continuous and
dynamic segmentation of the breast CTV, accounting for
variations in patient anatomy and positioning throughout
the treatment course. Unlike previous studies, our
research was focused exclusively on this task, aiming to
establish a robust solution for daily CBCT-based breast
CTV delineation.14-17

The introduction of the IDOL framework is central to
this study. Our approach is novel due to its extensive use of
real clinical ART patient data for testing, which enabled
the construction of patient-specific DL networks tailored to
the evolving anatomy and treatment progress of patients.
The impact of the IDOL framework was profound, yielding
remarkable improvements across key metrics, such as DSC,
HD, and MSD. Compared with other studies, we achieved
the highest DSC score, exceeding 0.98, whereas other stud-
ies typically reported scores below 0.9.16,17 Similarly, our
approach yielded an HD value <2 mm, a critical achieve-
ment for breast CTV segmentation, as other studies have
mostly reported values >2 mm when employing the IDOL
framework.14,15 This is primarily because of the unique
challenges posed by breast anatomy.

These outcomes underscore the immense potential of
the IDOL framework for enhancing the precision and effi-
ciency of breast CTV segmentation using CBCT scans.
Through rigorous experimentation, we identified the opti-
mal points for implementing the IDOL framework to
ensure its practical efficacy. Most notably, our patient-
specific model not only streamlined the labor-intensive
manual segmentation process but also reduced the time
demands. Crucially, it significantly enhanced the segmen-
tation accuracy, establishing our approach as a compelling
and versatile solution for a range of ART applications.

Our study further demonstrated that physicians could
confidently perform CTV contouring up to the third frac-
tion, which led to substantial improvements in DSC
scores, reduced HD and MSD values, and reduced labor
time. This study underscores the effectiveness of the



Figure 3 (a-c) Comparison of reference contour (red), deformed planning CT output (yellow), pretrained (Swin UNETR) net-
work CTV output (green), and additional training with the first fraction CTV output (blue). (a) Horizontal axial view. (b) Sagittal
axial view. (c) Coronal axial view. (d) Comparison between reference contour and deformed planning CT output. (e) Compari-
son between reference contour and network (Swin UNETR) CTV output. (f) Comparison between reference contour and addi-
tional training with the first fraction CTV output.
Abbreviation: CTV = clinical target volume.
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IDOL framework in enhancing the precision and effi-
ciency of CTV contouring in breast cancer RT. In actual
clinical routine, the generalized DL model can be trained
with a large data set initially. When a new patient comes
in for treatment requiring more than 15 fractions, the
model can be trained up to the third fraction. After this
point, the IDOL network can be used, allowing physicians
to make minor adjustments and apply the model clinically
with ease. As demonstrated in Table 3 and through P
value comparisons, the results obtained after training up
to the third fraction were not significantly different from
those obtained by training beyond the third fraction.
Moreover, training and applying the model clinically after
the third fraction showed better and more reliable results
compared with training only up to the first or second frac-
tions. Therefore, training up to the third fraction and then
applying the model in clinical practice is highly recom-
mended. These findings are also of importance for ART
and offer advancements in IGRT for patients with breast
cancer while mitigating the workload on physicians.

However, our study had some limitations. Reliance on
a single physician for CTV contouring and evaluation
introduced a potential constraint considering the possibil-
ity of interobserver variability stemming from different
contouring techniques. Furthermore, our evaluation
focused exclusively on breast CTV, limiting the applica-
bility of the findings to other anatomic regions. To
enhance the robustness and broad applicability of the
IDOL framework, future investigations should involve
multiple physicians and diverse CTVs to ensure compre-
hensive insights across various clinical contexts. Exploring
the adaptability of the IDOL framework to different DL
models, data sets, and cancer sites is a promising avenue
for advancing IGRT and optimizing treatment outcomes.
Additionally, the exploration of radiomics and volume
studies of breast tumor growth prognosis provides
intriguing opportunities for further research.
Conclusion
Our study introduced a transformative patient-specific
DL-based algorithm that significantly enhanced the preci-
sion and efficiency of breast CTV segmentation in CBCT
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scans. These findings may elevate IGRT in adjuvant breast
cancer treatment and are relevant for various ART appli-
cations, offering benefits such as labor reduction, time
efficiency, and heightened segmentation accuracy. In the
future, the adaptability of the IDOL framework to diverse
DL models, data sets, and cancer sites will be explored,
with the potential to substantially enhance treatment out-
comes across a broader patient spectrum.
Disclosures
None.
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Supplementary material associated with this article can
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