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Abstract: In this paper, the inhibition effect of an alternative current (AC) electric field on ice crystal-
lization in 0.9 wt % NaCl aqueous solution was confirmed thermodynamically with characterization.
An innovative experimental and analytical method, combining differential scanning calorimeter
(DSC) measurement with an externally applied electric field was created by implanting microelec-
trodes in a sample crucible. It was found that the ice crystallization, including pure ice and salty ice,
was obviously inhibited after field cooling with an external AC electric field in a frequency range
of 100 k–10 MHz, and the crystallization ratio was related to frequency. Compared with non-field
cooling, the crystallization ratio of ice crystals was reduced to less than 20% when E = 57.8 kV/m and
f = 1 MHz. The dielectric spectrum results show that this inhibition effect of an alternating electric
field on ice crystal growth is closely related to the dielectric relaxation process of hydrated ions.

Keywords: ice crystals; microelectrodes; electric field; dielectric relaxation; hydrated ions

1. Introduction

Water–ice phase transition is a common phenomenon in nature, which has never failed
to remain an important topic in many research fields. For example, a significant issue is how
to avoid the formation of ice crystals in the cryopreservation of biological tissues [1–6]. Since
biological tissues contain a lot of water, ice crystals formed during the freezing process
damage tissues and cells, directly through mechanical crushing or indirectly through
solution effects [7–10]. At present, common methods to eliminate ice crystallization include
rapid cooling, adding high concentrations of low-temperature protective agents [7,10–15],
etc. However, these methods have disadvantages, such as being impossible for large
samples or the difficulty in removing the protective agents in subsequent steps [16,17].
Recently, the latest research has revealed that ice crystallization is affected by external
fields, such as microwave, ultrasonic, magnetic, and electric fields [18–24].

In this paper, an innovative experimental and analytical method, combining differen-
tial scanning calorimeter (DSC) measurement with an applied electric field was realized
by implanting microelectrodes in a sample crucible. The effect of alternative current (AC)
electric field on ice crystallization in NaCl aqueous solution was studied with quantitative
calculation. The results show that the crystallization ratio of ice crystals is significantly
reduced under external AC electric field, varies with frequency, and is related to the relax-
ation polarization of hydrated ions. This may provide a potential physical approach and
theoretical basis for cryopreservation technology.

2. Materials and Methods

A 0.9 wt % NaCl aqueous solution, which is also called normal saline, was used as the
sample. The corresponding molality was 1.552 × 10−4 mol/g, and the osmotic pressure
was basically equal to that of mammalian blood plasma. Deionized water was also used as
a reference.
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In order to ensure that the electric field was applied simultaneously during the DSC
(TA Instruments, New Castle, DE, USA) cooling processes, a bespoke crucible was specially
designed, as shown in Figure 1. A pair of microelectrodes were placed in a ceramic crucible
perpendicularly to the crucible bottom. Two small notches were drilled at the edge of
the crucible cover to ensure that the cover could still be placed flat, with enameled wires
extending from the crucible. The measured samples were placed in the gap between the
microelectrodes. The width of the gap was 350 µm. Microelectrodes were connected to
a voltage source providing adjustable sinusoidal AC voltage (Vpp = 20 V, E = 57 kV/m,
f = 0~10 MHz). The physical and chemical properties of this crucible with microelectrodes
remained stable in the whole experimental temperature range and did not affect the
performance of other related instruments and the subsequent test results.
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Figure 1. DSC sample crucible with microelectrodes.

The DSC procedure is illustrated in Figure 2. For the experimental group, i.e., the
field cooling group, the procedure was as follows: maintained at 4 ◦C for 2 min, cooling to
−60 ◦C at 3 ◦C/min with applied AC electric field E, constant temperature at −60 ◦C for
5 min, turning off the voltage source, and rising to 10 ◦C at 3 ◦C/min. The procedure of the
control group, i.e., the non-field cooling group, was the same, except that E = 0 kV/m dur-
ing cooling. Deionized water was also tested as a reference in this group. All measurements
were repeated three times. In order to compare the results more intuitively and avoid the
impact of different sample sizes, 4 µL solution was taken for each test using a micropipette.
Rewarming DSC curves were selected for quantitative analysis, since supercooling while
freezing brings great interference to the quantitative calculation of cooling DSC curves, and
differences in crystallization among samples can be directly reflected through rewarming
DSC curves.

The dielectric spectra of 0.9 wt % NaCl solution were also investigated. The complex di-
electric constant ε* was measured, and the dielectric loss tangent tanδ was calculated [25,26]
in the range of 1 Hz–10 MHz from 4 ◦C to −6 ◦C.

ε∗ = ε′ − jε′′ (1)

tan δ = ε′′/ε′ (2)

ε′ is the relative dielectric constant, ε” is the dielectric loss factor, and δ is the dielectric
loss angle. tanδ refers to the energy consumed by the dielectric in converting electric energy
into heat energy per unit volume per unit time, and is an attribute of the dielectric itself. In
many cases, tanδ is much more sensitive to the change of medium characteristics.
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Figure 2. Temperature–time procedure for DSC measurement.

A broadband dielectric spectrometer (Novocontrol Technologies, Montabaur, Ger-
many) was used for dielectric measurement. The measurement accuracy of tanδ was better
than 3 × 10−5, and the measurement resolution was less than 10−5. For each measured
frequency, the output result of the spectrometer was an average value obtained by multiple
automatic measurements.

A liquid parallel plate sample cell BDS1308 with two parallel electrodes inside was
used, which was sealed to prevent liquid evaporation. The diameter of electrodes was
20 mm. The gap between electrodes was 0.1 mm, adjusted by two silicon dioxide spacers
placed in parallel. The stray capacitance of the sample cell was taken into account by
open-circuit calibration before measurements. The root-mean-square value of the AC
voltage applied to the electrodes was Vrms = 1 V.

The sample and the sample cell were pre-cooled to 4 ◦C for 10 min before the start
of measurements, to exclude the influence of thermal history on the measurement results.
From 4 ◦C to −6 ◦C, the dielectric spectrum was measured every 2 ◦C. The temperature
remained constant during the measurement. Each measurement took about 5 min. The
temperature control accuracy was ±0.5 ◦C.

3. Results
3.1. Variation of DSC Rewarming Curves under AC Electric Field

Figure 3 shows the rewarming DSC curves of the NaCl solution and deionized water.
The sole melting peak of deionized water is caused by pure ice (PI) which is crystals
formed by the ordered arrangement of water molecules, and so is the higher temperature
melting peak of NaCl solution. The lower temperature melting peak is a eutectic melting
peak related to the ions, and is caused by the salty ice (SI), which is a mixture of fine ice
crystals and NaCl·2H2O [27,28]. During freezing, pure ice crystals first grow around the
ice nuclei formed by water clusters. The leftover liquid water molecules and ions near
crystal boundaries then tend to form a high-concentration solution, and finally transform
into salty ice. Salty ice melts first, and pure ice later, during rewarming.

Compared with non-field cooling, the positions of the salty ice peaks and pure ice
peaks remain steady after field cooling, which indicates that the physical properties of pure
water ice and salty ice do not change under an electric field, since the melting point is one
of the symbolic physical properties of a material.

The area of each peak equals the melting heat ∆Q and can be obtained by integra-
tion [29,30]:

∆Q =
1
β

∫ T2

T1

ΦdT (3)

where Φ is the heat flow, β is the heating rate, and T1 and T2 are the starting and ending
temperature of the peak.
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Figure 3. DSC rewarming curves of 0.9 wt % NaCl solution after non-field cooling and field cooling.

The integration results are given in Figure 3. The ∆Q after field cooling decreased
significantly, indicating that the amounts of pure ice and salty ice involved in the melting
process were less than after non-field cooling. That is, the external AC electric field hindered
the crystallization during the freezing process and provides a promising method to reduce
the formation of ice crystals. The possibility remains that the change of ∆Q was due
to water transforming into ice with another crystal structure, but previous studies have
shown that the electric field mainly affects the water–ice transition through changing the
nucleation process, as well as the crystal growth, rather than through variation of ice
structure [31,32].

3.2. Variation of Crystallization Ratio with Electric Field Frequency

In order to analyze quantitatively, with normalization, the crystallization ratio of pure
ice ηPI and all ice crystals ηall with field cooling and non-field cooling were defined and
calculated based on melting heat ∆Q.

ηPI =
∆QPI

∆Q0
PI

, (4)

ηall =
∆QPI + ∆QSI

∆Q0
PI + ∆Q0

SI
(5)

∆QPI and ∆QSI correspond to melting heats after field cooling, while ∆Q0
PI and ∆Q0

SI
are after non-field cooling. The smaller the ηPI and ηall, the more effective the corresponding
applied electric field.

The calculation results are shown in Figure 4. It can be seen that the application of
an AC electric field decreases ηPI and ηall. The minimum ηPI and ηall both exist at the
optimum frequency f = 1 MHz. In addition, the changing trend of ηPI and ηall is common
to both, and the difference between them is unclear. Thus, the effect of an AC electric field
on solution freezing is mainly reflected in the inhibition of the growth of pure ice crystals.
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3.3. Dielectric Spectrum of NaCl Aqueous Solution during Cooling

To further explore the mechanism of the strong dependence of ηPI and ηall on frequency,
the dielectric spectra of a 0.9 wt % NaCl aqueous solution during cooling were measured.
Since the electric field was applied during freezing for DSC measurement, it is important to
pay attention to the dielectric spectrum near the liquid–solid phase transition temperature
during cooling, which can be very helpful for discovering the mechanism of the effect of an
electric field on crystallization inhibition. Figure 5 shows the dielectric temperature spectra
of 0.9 wt % NaCl aqueous solution from 4 ◦C to −6 ◦C, close to its liquid–solid transition
temperature range of −5.9 to −7.4 ◦C [33].
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The relative dielectric constant ε′ decreases very quickly with the increase of frequency,
which suggests a relaxation process of hydrated ions. Previous investigations have shown
that such a process can be interpreted using the Mangelsdorf and White model [34] from
the point view of dielectrophoresis (DEP). The rise of ε′ at low frequency can be ascribed
to the effect of electrodes [35]. However, the electrode polarization occurs below 1 kHz,
which does not interfere with the observation and analysis of the concerned relaxation
polarization of hydrated ions.

The dielectric loss tangent tanδ has an obvious peak near f max = 1 MHz, consistent
with the optimum frequency of the DSC study above. This reveals that the effect of an
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external AC electric field on the freezing process is related to some kind of relaxation
polarization. Since the orientation polarization of water molecules and the induced polar-
ization of hydrated ions appear in the range of 0.1–20 GHz [36,37] and 10 kHz–10 MHz [34],
respectively, and the relative dielectric constant ε′ decreases more rapidly above 10 kHz,
the relaxation polarization effect is not caused by the water molecules, but hydrated ions.

Thus, it is inferred that the relaxation polarization of hydrated ions is the main reason
for the inhibition of ice crystallization in a solution when freezing under an AC electric field.

4. Discussion

To complete the transition from liquid phase to solid phase and integrate into the
lattice structure of ice, water molecules need to overcome the constraints of kinetic energy
and potential energy generated by thermal motion and overcome the solid–liquid interface
energy.

In NaCl solution, Na+ and Cl− ions are hydrated to form bilayer hydrated ions with
opposite charge signs, as shown in Figure 6. The inner layer is strongly bound, and the
outer layer is weakly bound. Under an external electric field, the central ion and the
strongly bound layer move towards the field direction, and the positive and negative
centers of hydrated ions no longer coincide, resulting in induced dipole moments.
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Under the application of an AC electric field, the polarization relaxation of hydrated
ions destroys the original charge balance, interferes with the original molecular arrange-
ment structure in the solution, and increases the kinetic energy of water molecules because
of the friction between the weakly bound water and the water molecules surrounding the
hydrated ions; thus, inhibiting the crystal growth of ice.

When the electric field frequency is low enough, the polarization of hydrated ions can
keep up with the change of frequency, and the change in direction of the induced dipole is
slow. The relatively small disturbance of the solution has a slight influence on the formation
and growth process of ice crystals. With an increase of frequency, the polarization gradually
lags behind the electric field, resulting in relaxation polarization, the disturbance of the
molecular distribution in solution increases, and this has a significant impact on the growth
process of ice crystals. With a further increase of frequency, the polarization of hydrated
ions cannot keep up with the change of the electric field and can only make small vibrations
at the original position; the disturbance is weakened, and the influence on crystallization is
also weakened.
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Therefore, the influence of hydrated ions on the solution phase transition process
under an AC electric field is related to frequency and is the most significant near the range
of dielectric relaxation. In addition, this corresponding dielectric relaxation is consistent
with the theoretical calculations of the frequency range of induced polarization for hy-
drated ions in previous works [34,38], which also provide convincing evidence that the ice
crystallization inhibition is contributed to by the dielectric relaxation of hydrated ions.

5. Conclusions

An innovative crucible with microelectrodes was designed, which enabled a syn-
chronous application of an external electric field during DSC measurements. According
to quantitative calculations based on DSC rewarming curves, it was found that ice crys-
tallization in 0.9 wt %NaCl aqueous solution can be effectively inhibited by AC electric
field cooling in the range of 100 kHz to 10 MHz. Compared with non-field cooling, the
crystallization ratio of pure ice ηPI and all ice crystals ηall decreases at first, and then in-
creases, with the increase of frequency, when field cooling with an external AC electric
field. A window effect appears near f = 1 MHz, where ηPI and ηall are reduced to less
than 20%. This frequency is related to the frequency corresponding to the polarization
relaxation process of hydrated ions near the liquid–solid transition temperature of the
solution. This study may provide a theoretical basis for ice crystal inhibition while freezing
and has application potential for the cryopreservation of biomaterials.

6. Patents

Two patents resulting from the work are in the application process and are listed as
follows:

1. DSC Thermal Analysis Method for Action of Applied Electric Field, Publication
No.US-2021-0041381-A1;

2. DSC Electrode System Capable of Applying Electric Field, Publication No.US-2021-
0037812-A1.
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curation, X.S.; writing—original draft preparation, X.S.; writing—review and editing, X.S., L.Z. and
J.G.; visualization, X.S.; supervision L.Z. and J.G.; project administration, L.Z.; funding acquisition,
L.Z. All authors have read and agreed to the published version of the manuscript.
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