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Abstract 
Computational models that predict effects of neural stimulation can be used as a 
preliminary tool to inform in-vivo research, reducing the costs, time, and ethical 
considerations involved. However, current models do not support the diverse neural 
stimulation techniques used in-vivo, including the expanding selection of electrodes, 
stimulation modalities, and stimulation paradigms. To develop a more comprehensive 
software, we created several extensions to The Virtual Electrode Recording Tool for 
EXtracellular Potentials (VERTEX), the MATLAB-based neural stimulation tool from 
Newcastle University. VERTEX simulates input currents in a large population of multi-
compartment neurons within a small cortical slice to model electric field stimulation, 
while recording local field potentials (LFPs) and spiking activity. Our extensions to its 
existing electric field stimulation framework include multiple pairs of parametrically 
defined electrodes and biphasic, bipolar stimulation delivered at programmable delays. 
To support the growing use of optogenetic approaches for targeted neural stimulation, 
we introduced a feature that models optogenetic stimulation through an additional 
VERTEX input function that converts irradiance to currents at optogenetically 
responsive neurons. Finally, we added extensions to allow complex stimulation 
protocols including paired-pulse, spatiotemporal patterned, and closed-loop stimulation. 
We demonstrated our novel features using VERTEX’s built-in functionalities, illustrating 
how these extensions can be used to efficiently and systematically test diverse, 
targeted, and individualized stimulation patterns. 
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1. Introduction 
Neural stimulation has significant history and promise for treating neurological disorders 
characterized by damaged or aberrant neural activity, such as movement disorders, 
epilepsy, and stroke. However, the effectiveness of stimulation-based treatments has 
variable outcomes across clinical and preclinical trials. This inconsistency is attributed to 
the use of non-individualized stimulation and diverse methods employed across 
experiments, including variations in electrode types, spatial and temporal stimulation 
dynamics, and open versus closed-loop approaches. While it is critical to investigate 
methods that consistently yield optimal outcomes, in-vivo experiments are time-
intensive, expensive, and raise ethical considerations regarding the use of humans and 
animals. Consequently, before conducting in-vivo experiments, computational modeling 
can be used as a fast and cost-effective method to predict effects of stimulation using 
various methods. The results could inform and reduce the number of subsequent in-vivo 
experiments, and aid in the development of reliable, individualized, and targeted 
therapeutic treatments. 

While existing software can predict effects of neural stimulation, most models simulate 
neural activity in large populations of neurons lacking realistic biophysical properties, or 
simulate activity in only a few neurons that possess complex, neurophysiological 
characteristics. Since in-vivo neural stimulation induces both local and network-wide 
effects that contribute to its therapeutic outcomes, it is crucial to have a model suited for 
an extensive network of neurons while maintaining realistic properties. The Virtual 
Electrode Recording Tool for EXtracellular Potentials (VERTEX) is a MATLAB-based 
software designed to simulate local field potentials (LFPs) and spike timing in response 
to electrical stimulation in a large population of neurons within a multi-layer slice of 
cortex (Tomsett et al 2015; Thornton et al 2019). VERTEX simulates neuron types, 
compartments, density, and connectivity properties based on empirical research, which 
lends to realistic neuron properties. Additionally, VERTEX generates network dynamics 
using imported spike times or using the adaptive exponential integrate and fire (AdEx) 
model (Brette 2005), which can mimic the firing patterns of many different neuronal cell 
types. Together these features achieve a balance between complexity and practicality 
to give rise to realistic spiking patterns and LFP calculations, making VERTEX uniquely 
suited to efficiently test the effects of electrical stimulation-based approaches in a slice 
of cortex prior to in-vivo experiments. 

However, VERTEX has constraints that hinder its ability to model the wide range of 
approaches used in-vivo. These include a restrictive and cumbersome electrode design 
process, a suboptimal electrical stimulation waveform, a single stimulation modality, and 
few stimulation protocols. To overcome these limitations, we developed extensions to 
VERTEX to broaden its simulation capabilities. We first developed a new script that 
enables electrical stimulation with biphasic waveforms and facilitates rapid creation and 
modification of electrode shape, number, and positioning. Next, we created a model to 
simulate optogenetic stimulation by converting irradiance to input current. This 
represents a significant advancement since optogenetics has become a highly prevalent 
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method to deliver targeted stimulation. Finally, we added the capability to deliver three 
stimulation protocols including paired-pulse stimulation, spatiotemporal patterned 
stimulation, and closed-loop stimulation. We demonstrate our novel extensions using 
VERTEX’s built-in spiking and LFP recordings. These novel features allow users to test 
a vast array of stimulation approaches, providing a highly adaptable LFP simulation tool. 

2. Methods 
For each simulation, we use the 15 neuron-group VERTEX model developed by 
Tomsett et al (2015), which incorporates the biophysical and connectivity patterns of 15 
distinct types of cortical neurons, each characterized by unique features such as 
compartmental structure, soma location, projecting layer, firing rate, number of 
synapses and synapse dynamics. Neuronal spiking is driven by synaptic currents as 
well as stochastic AdEx input currents. The means and standard deviations for the 
AdEx input currents used in Tomsett et al (2015) result in large gamma oscillations that 
can mask other evoked potentials. To reduce the model’s inherent gamma oscillations 
to levels low enough to not obscure stimulus-evoked LFPs, we chose to scale the mean 
and standard deviations of the AdEx input currents by 1.125x and 1.75x. The size of the 
simulated tissue block is 1.5 x 1.5 x 2.6 mm deep with virtual electrodes for LFP 
recording sites spaced in a 3 x 3 x 6 grid to capture activity in each cortical layer. 
VERTEX calculates LFPs by summing the membrane potentials of each compartment, 
weighted by their distance from the virtual electrodes. The resulting networks contain 
approximately 224 thousand units and 569 million connections. Simulations were run 
remotely on the Neuroscience Gateway (Sivagnanam et al 2013) computer cluster or on 
a local PC (AMD 7800X3D CPU with 128GB 
memory) and generally required about 1 
hour run time per 1 second of simulated time 
to complete. A list of added or modified code 
modules are reported in Supplementary 
Table 1. 

2.1.Electric field stimulation: 
parametric electrodes and biphasic 
stimulation 
VERTEX has built in support for electric field 
stimulation with demonstration code for 
monophasic stimulation through a single pair 
of differential electrodes positioned 
horizontally through the model tissue slice. 
The 3D electrode topology is created in a 3D 
modeling application and imported into 
MATLAB. The reliance on an external 
software requiring multiple cumbersome 
steps limits rapid modification and 

 
 
 
Figure 1. Added features for electric field 
stimulation. VERTEX defines a tissue volume where 
a variety of modeled neuron types are placed. We 
introduce several features to increase flexibility and 
versatility when defining electrode and stimulation 
parameters in the tissue volume. Electrode positions, 
lengths, and widths are parametrically defined using 
the MATLAB PDE toolbox. The electrode geometry 
can represent penetrating or surface electrodes in a 
single pair or multiple pair configuration. Biphasic 
stimulation is modeled by inverting the electric field 
halfway through the pulse duration. 
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parameterization of electrodes. To overcome this limitation, we implemented a new 
script for electric field stimulation that removes the dependence on an external 3D 
application. Functions within this script can parametrically create electrode topologies 
directly in MATLAB, allowing easy modification of the electrode shape, the number of 
electrode pairs, and the positioning of the electrodes in any orientation within the tissue 
geometry. We demonstrate the benefit and versatility of this user-friendly feature with 
single and multiple pairs of tapered tip and surface patch electrodes oriented 
perpendicular to the ventral surface of the modeled tissue, resembling electrodes in the 
Utah Array or an Electrocorticography (ECoG) array (Fig 1).  
 
Additionally, in this script we introduce features that significantly expand the range of 
stimulation options. For example, we added the ability to modify stimulation timing and 
pulse parameters during an ongoing simulation, a feature particularly beneficial for 
closed-loop stimulation. Lastly, rather than restricting stimulation to a single pair of 
differential electrodes, our code accommodates multiple pairs of stimulating electrodes 
that deliver biphasic, bipolar stimulation. Biphasic stimulation is performed by inverting 
the electric field halfway through the stimulus duration. While this is constant voltage 
stimulation, the VERTEX tissue model is purely resistive and the current applied can be 
estimated from the tissue conductivity, electrode surface area, and the electric field 
calculated by the Matlab Partial Differential Equation (PDE) Toolbox. These novel 
features broaden the range of electrode and stimulation settings available, facilitating 
comprehensive investigations into effective parameters for modulating neural activity. 

2.2.Modeling optogenetic stimulation 

Optogenetics has become a commonly used technique to rapidly modulate neural 
activity in neurons expressing exogenous light-sensitive ion channels. By applying light 
to the targeted region, the light-sensitive ion-channels open and induce a photocurrent 
in the affected cells. We created a novel script to model optogenetic stimulation using 
VERTEX’s built-in functionality for adding input currents to neuron units. These currents 
can vary with time and may be turned on and off to model photocurrents. Light-sensitive 
units are defined in the script, allowing users to specify which cell types or layers to set 
as light-responsive or expressing the opsin. The light source for optogenetic stimulation 
is typically a laser which projects light of a specific wavelength through an optical fiber. 
The laser’s radiant power (P in mW) and the fiber’s radius (r in mm) control the intensity 
of the stimulation with the initial irradiance (E0) at the tissue surface beneath the optic 
fiber defined by Equation 1. 

 
𝐸! =

𝑃
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(1) 

Irradiance at depth (z) is modeled by fitting both an exponential and geometric decay to 
data (Yizhar et al 2011) for light transmission through unfixed brain tissue where 10% 
and 1% light transmission contours give the percentage of light remaining at depth and 
lateral distance. The depth (z) of these contours is measured for both 473 nm and 594 
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nm light and fit to Equation 2. The ratio (h) of depth to half-width (at half-depth) of the 
1% contours are used to calculate a scaled lateral distance (l) to create a 3-dimensional 
estimate of irradiance at any (x, y, z) coordinate. Parameter fitting values are shown in 
Table 1 and the irradiance estimate (mW/mm2) is shown in Equation 3. When optical 
stimulation is initiated, irradiance values for each light source are calculated for each 
light-sensitive unit at its soma (x, y, z) position. 
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Parameter Blue light (473 nm) Amber light (594 nm) 
𝜏 0.39 mm 0.38 mm 
𝑎 92 8.8 
ℎ 1.14 1.67 

Table 1. Parameters for estimating irradiance at coordinate 
(x, y, z) given in millimeters. 

 

 

 𝐸(𝑥, 𝑦, 𝑧) = 𝐸!	𝑓 ./𝑙" + 𝑧"2 , 𝑙 = ℎ	/𝑥" + 𝑦" (3) 

There are several theoretical models for converting irradiance to photocurrents for 
various opsins. We chose Foutz et al (2011) for modeling Channelrhodopsin-2 (ChR2) 
with 473 nm light, Saran et al (2018) for Chronos with 473 nm light, and Gupta et al 
(2019) for vfChrimson with 594 nm light. Peak photocurrent estimates (in picoamps) for 
irradiance levels Exyz (in mW/mm2) were fit with Equation 4 for ChR2, Equation 5 for 
vfChrimson, and Equation 6 for Chronos.  
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Photocurrent dynamics are written into a VERTEX input model that handles optogenetic 
stimulation. This is a step function with exponential on and off dynamics to simulate the 
rise and fall of an input current to a precalculated value during the application of a light 
pulse. The time-constants used for the on and off mechanics for ChR2 are τon = 1.5 ms, 
τoff = 11.6 ms (Mattis et al 2012), for vfChrimson are τon = 1.0 ms, τoff = 2.7 ms (Gupta 
et al 2019), and for Chronos are τon = 0.65 ms, τoff = 3.6 ms (Saran et al 2018).  
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2.3.Stimulation paradigms  
We created new scripts for three stimulation paradigms: paired-pulse, spatiotemporal 
patterned, and closed-loop stimulation. Each paradigm can use either electrical or 
optogenetic stimulation. Paired-pulse and spatiotemporal patterned stimulation both 
involve delivering stimulation at multiple sites with temporal delays between them. 
These spatial and temporal properties can induce spike-timing-dependent plasticity 
(STDP), a biological phenomenon based on spike timing differences between the 
postsynaptic unit (firing at time t2) and the presynaptic unit (firing at t1) with the spike-
timing difference defined as Δt = t2 – t1. Positive differences strengthen while negative 
differences weaken connectivity between the pre- and postsynaptic unit. STDP is built 
into VERTEX synapse models to allow changes in connection strengths between units. 
In this STDP implementation, each time the pre- or postsynaptic neuron fires, there is 
an update to synapse connectivity, where two exponential functions (per synapse), each 
with unique decay times for the pre- and postsynaptic neuron, dictate the degree of 
synaptic connectivity change. 

Although VERTEX demonstrates a form of paired-pulse stimulation with STDP, it 
currently only supports paired-pulse stimulation using a single pair of electrodes at the 
same site, whereas paired-pulse stimulation is typically administered at separate sites. 
Since this paradigm does not represent the typical protocol used in-vivo, we created a 
novel script for paired-pulse stimulation where stimulation is applied at distinct sites. 
Additionally, we created a new script to deliver spatiotemporal patterned stimulation, 
where stimulation can be applied to a greater number of sites with varying amplitudes 
and pulse delays between sites.  

The third paradigm we support is closed-loop stimulation, where stimulation is delivered 
or altered in response to on-going activity. In biophysical experiments, stimulation can 
be administered in response to behaviors, neural activity such as LFPs or single unit 
activity, and peripheral activity including signals from electromyography. In VERTEX, 
closed-loop stimulation is largely limited to recorded LFPs and spike times. We have 
implemented two forms of closed-loop stimulation, both of which are dependent on LFP 
measurements. The first is cycle-triggered stimulation where a stimulus pulse is 
delivered based on the amplitude and phase of the filtered LFP recorded on a single 
recording electrode. The second closed-loop paradigm is amplitude-adjusted stimulation 
where the amplitude of stimulation is adjusted to keep the magnitude of an LFP channel 
within a certain range. Both methods require transferring partial LFP values between the 
parallel MATLAB processes used to accelerate VERTEX so that each process has a 
complete copy of the LFP at each recording site. 

3. Results 
3.1.Optogenetic stimulation  
To get an estimate of light penetration through the modeled tissue, we generated 
contour plots of irradiance at depth and lateral distance for 473 nm and 594 nm light 
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using a single light source with a radius of 100 µm (Fig 2A). While 594 nm irradiance fall 
off is more gradual compared to 473 nm, both contour plots have a dramatic drop off in 
irradiance in the modeled tissue. The depth of light penetration shown here for 473 nm 
and 594 nm light is consistent with previous in-vivo work (Senova et al 2017). Currents 
induced by a 5ms light pulse with several irradiance values are shown in Fig 2B. 

To demonstrate how our extension modeling optogenetic stimulation can be used to 
compare the effects of different stimulation parameters, we illustrate simulations using 
various opsins, laser settings, and light-sensitive units in Fig 2C and Fig S1. Each 
simulation displays the average spiking and LFP response following a 5ms light pulse, 
averaged across 100 pulses. To calculate tissue maps of spike-rate changes evoked by 
stimulation, unit spike times were divided spatially into 25 µm bins based on soma (x, y, 
z) positions. Baseline spiking rates were calculated for each bin by summing spike 
counts along either the Y axis (tissue side-view) or Z axis (top-down view) for the 50 ms 
time-window preceding stimulus onset times. Spike-rate responses were similarly 
calculated for the 5 ms stimulus duration. Percent increases in spike-rate responses 
over baseline were plotted on log scales to highlight smaller changes. For each 
simulation, these maps are shown from top-down and side-view perspectives, along 
with a stimulus-triggered-average (STA) of the surface LFP (Fig 2C). We quantified the 
stimulus response strength across simulations using 3 measures - percent spiking 
increase, LFP peak to peak, and the LFP root mean square (Fig 2D).  

 
We found that increasing the initial light power or decreasing the light source radius, 
while maintaining the same light power, both resulted in increased spiking and LFP 
response. Notably, the largest differences in stimulus response strength were attributed 

Figure 2. Modeling optical stimulation. A) Blue light (473 nm) and amber light (494 nm) models of light spread through tissue 
are used respectively for ChR2 and vfChrimson opsin models of photocurrent responses to levels of irradiance. Radiant power 
falls off due to both light absorption and geometric fall-off with distance. B) Photocurrent rise and decay are modeled as 
exponential functions and are shown here in response to a 5 ms light pulse for varying irradiance values. C) Stimulus responses 
under a variety of optogenetic parameters including differing light sensitive units, irradiances, fiber radii, and opsins. The top-
down (top row) and side-view (middle row) through the tissue show the percent change in spiking activity on log scales for the 5 
ms stimulus duration compared to the 50 ms prior baseline period. The bottom row demonstrates LFPs at the surface-center 
recording electrode. The left-most column limits light-sensitive units to the units in layer 2/3, whereas other simulations set all 
units as light-sensitive. The first four columns use the ChR2/473 model, while the last column uses the vfChrimson/594 model. 
D) Three measures of stimulus response strength shown in 2C: Percent increase in spiking during the stimulus (top), LFP peak 
to peak (middle), and root mean square (bottom) of the average surface LFP response for 100 ms following the stimulus. 
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to the opsin used, with vfChrimson and Chronos producing much larger responses than 
ChR2. Additionally, in Fig S1 we validated the ability of our model to modulate spiking 
and LFPs using cell type specific stimulation. When comparing vfChrimson activation in 
all units, excitatory units only, and inhibitory units only, we observed that excitatory units 
were primarily driving the maximum LFP response, whereas inhibitory units were 
regulating post-stimulation oscillations. 

3.2.Paired-pulse stimulation with spike-timing-dependent plasticity 
In Fig 3, we demonstrate our paired-pulse stimulation paradigm, combined with several 
of our extensions to electric field stimulation, including biphasic stimulation at multiple 
electrode pairs with a programmed delay. In this simulation we enabled VERTEX’s built 
in STDP feature that requires using a script where defined STDP parameters govern the 
temporal dynamics and degree of connectivity change. Based on work shown in Bi and 
Poo (2001), we set the decay time constants for the exponential curves to 17ms and 
34ms for positive and 
negative Δt, respectively 
such that small values of 
Δt give the largest 
changes and large values 
of Δt give exponentially 
smaller changes (Fig 3A). 
The amplitude for the 
weakening function was 
set at 0.53 times that of 
the curve for the 
strengthening function to 
provide slightly more area 
under the weakening 
curve. This helps prevent 
run-away connection 
strengths from random 
activity since there is no 
homeostasis function. The 
maximum change can be 
modified but is normally 
set between 0.001 and 
0.005 nanosiemens (nS). 
Connection magnitudes 
can be limited and are 
normally restricted to the 
range between 0.001 and 
4.0 nS.  

In Fig 3 we used the 
original AdEx input-current 

Figure 3. Paired-pulse conditioning. A) Schematic of STDP principle. B) Schematic 
of paired-pulse electric field stimulation and placement of stimulating (black outline) 
and recording electrodes (white dots) in the tissue slice. C) Side-view of percent 
increase in spiking activity in log scale during the 10 ms window after the stimulus 
onset. D) Stimulus evoked responses of surface LFP at each site for both the 
preconditioned and post-conditioned network. Increased spiking activity in the 5 ms 
window after test stimulation for each site in both the E) preconditioned and F) post-
conditioned networks. G) Neuron groups (arranged vertically by cortical layer) with only 
the largest mean connection-strength changes shown. Size and color of arrows reflect 
degree of change with blue to yellow reflecting increasing strength changes. “P” = 
pyramidal neuron, “B” = basket interneuron, “NB” = non-basket interneuron, “SS” = 
spiny stellate neuron. Layer abbreviations within parentheses represent the projection 
layer. H) Mean connection strength from Site1 to Site2 increased while that from Site2 
to Site1 decreased. Mean connection strengths involving units outside (“O”) of one or 
both sites remained largely unchanged. I) Side-view of connection strength changes 
showing that the largest changes occur to units within 100 um radius of the site’s (x,y) 
locations in both layer 2/3 and layer 4. 
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scalers since plasticity reduces the network’s inherent oscillations to levels low enough 
to not obscure the stimulus-evoked responses. This also allows for larger stimulus 
responses in deeper layers which results in brief oscillatory activity that dampens out 
within 100 ms. Network connection strengths were initialized from the results of running 
a non-stimulating network for 30 seconds with STDP turned on, allowing the paired-
pulse conditioning to begin with a more stable distribution of connection strengths and 
very low LFP oscillations.  

Paired-pulse conditioning was simulated using electric field stimulation at two sites 
separated by 750 µm in the middle of layer 2/3 (Fig 3B). The electrode tips were 
modeled after a commonly used microelectrode array with 50 µm tip lengths and 35 µm 
base diameters. The bipolar tips were placed 100 microns apart. 100 paired stimulation 
events were delivered where stimulation at the second site was delayed 5 ms from the 
first. 1000 mV biphasic-bipolar stimulation was delivered to each site in brief 0.4 ms 
pulses (0.2 ms each phase). This produced in an estimated constant current stimulation 
of 65 µA at each site since the VERTEX tissue model is purely resistive. 

Stimulus times were used to calculate post-stimulus changes in spiking activity and 
create STAs of resulting LFPs similar to graphs for optical stimulation in Fig 2. To 
capture effects at both sites in Fig 3C, spike-rate responses were calculated for the 0 -
10 ms window after stimulation at the first site. Network connection strengths were 
saved before and after paired-pulse conditioning. We compared the response to a 
single pulse stimulation at Site 1 or Site 2 using the network connection strengths 
before and after paired-pulse conditioning (Fig 3D-F). After conditioning there was an 
increased LFP response at Site 2 in response to Site 1 stimulation, and a decreased 
LFP response at Site 1 in response to Site 2 stimulation (Fig 3D). Some of the LFP 
changes were due to the increased spiking activity (post-conditioning) in layer 4, which 
was largely symmetrical for both Site1 and Site2 (Fig 3F). Figure 3G-I shows connection 
strength changes (post – pre) by unit type, stimulation site, and unit location. Together, 
these results indicate an increase in connection strength from Site1 to Site2, and a 
decrease from Site2 to Site1. 
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3.3.Spatiotemporal patterned stimulation  
 In Fig 4 we illustrate a simulation using our extensions for spatiotemporal patterned and 
optogenetic stimulation. Four optogenetic stimulation sites are placed in each of the four 
surface quadrants of the tissue slice: lower-left, upper-right, lower-right, and upper-left 
(Fig 4A). These sites were stimulated, in that order, by 5 ms light pulses, each 
separated by 15 ms between the start of each light pulse. We used the ChR2/473nm 
model with light sources of 100 µm radius. The initial light power was 7.2 mW for each 
light source and all neuron 
groups were set as 
optogenetically responsive 
(Fig 4B). This train of pulses 
was repeated every 200 ms for 
20 seconds. Stimulus triggered 
spiking activity and LFP 
averages were calculated as 
before. Fig 4A shows the 
stimulation response centered 
at each site with refractory 
responses visible for previous 
stimulation sites. Spiking 
activity after the fourth 
stimulation site is shown from 
the side-view (Fig 4C) and top-
down view for individual layers 
(Fig 4D). Graphs aggregating 
activity within individual layers 
show localized spiking activity 
during the stimulus to layer 2/3 
and 4 with lingering refractory 
responses from the previous 
site in layers 4 and 5. The 
STAs of the LFP show evoked 
potentials for each light pulse 
that do not completely decay 
before the next light pulse is 
delivered (4E). 

 
Figure 4. Spatiotemporal patterned stimulation. A) Top-down view of increased spiking 
activity on log scales in response to four consecutive optical pulses delivered at 15 ms 
intervals to different sites in the tissue slice. B) Placement of each of the light sources 
(colored dots) and recording electrodes (white dots) in the tissue slice. Timing of 
stimulation for each light source shown on bottom. Dark blue bars indicate 5ms light pulse 
durations. C) Side-view of increased spiking activity from the fourth stimulus site. D) Top-
down view for cortical layers 2/3 through 6 of spiking activity aggregated by layer after 
stimulation at the fourth site. E) LFP averages for the center column of recording 
electrodes aligned at the first pulse. 
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3.4.Cycle-triggered closed-loop stimulation 

Figure 5 shows our cycle-triggered closed-loop stimulation using our modifications to 
electric field stimulation at a single pair of differential electrodes in layer 2/3 (Fig 5A). To 
remove baseline signal-shift and reduce high-frequency noise, a 20-30Hz band-pass 
filter was applied to the surface recording electrode located above the stimulating 
electrode. Similar to the paired-pulse conditioning in Fig 3, 1000 mV biphasic-bipolar 
stimulation was delivered in brief 0.4 ms pulses. Stimulation was triggered by a rising 
filtered LFP with a magnitude threshold of 5 µV and a refractory period of 100ms (Fig 
5B). The pre-stimulus oscillation 
appears in the LFP STA with the 
average evoked LFP response (Fig 
5C). The simulation ran for 30 seconds, 
with stimulation applied only between 
5-25 seconds of simulation time. Within 
these 20 seconds, the filtered LFP met 
criteria to trigger stimulation 47 times. 
The location of increased post-stimulus 
spiking-activity is centered on the 
stimulation site with activity spreading 
primarily through layer 2/3 (Fig 5D).  

4. Discussion 
We present novel extensions for VERTEX that enhance the software's ability to model a 
diverse range of in-vivo stimulation approaches. First, we introduce a script that adds 
several new features for electric field stimulation, including the ability to parametrically 
create 3D electrodes using built-in MATLAB functions. This eliminates the need for 
external 3D modeling software and allows users to create and position different 
electrode shapes, such as patches on the cortical surface or tapered electrodes 
penetrating the tissue. Additionally, we implemented features that enable biphasic 
stimulation with complex temporal patterns. These added functionalities enable users to 
easily test various electrode types and stimulation settings to identify the approaches 
that produce results most similar to their targeted outcomes.   

Another key feature we implemented is the ability to model optogenetic stimulation. 
Over the past twenty years, optogenetics has become a widely adopted neuroscience 
technique used to stimulate neural activity with spatial and temporal precision 
(Deisseroth 2015). While optogenetics is primarily used in preclinical research, 
experimentalists are beginning to adapt optogenetics for clinical trials (Gao et al 2023). 
Our extension offers extensive parametrization, developed specifically to mimic the 
technical choices available to experimentalists. For example, we model optogenetic 
stimulation for three popular opsins - Channelrhodopsin2, vfChrimson, and Chronos - 
each having their own advantages and limitations. For instance, longer wavelengths of 
light, such as 594 nm used for vfChrimson activation, can penetrate the brain deeper 

 
Figure 5. Closed-loop stimulation. A) Placement of stimulating 
(back outline) and recording electrodes (white dots) in the tissue 
slice. B) Schematic of stimulation triggered by rising LFP. C) STA 
of the unfiltered LFP. D) Side-view of the change in spiking activity 
(0-10 ms post-stimulus) in log scale after stimulation. 
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than 473 nm used for ChR2 activation. Thus, depending on the desired depth of 
stimulation, kinetics of each opsin, and available resources, users can select the opsin 
that best meets their needs. Another method commonly employed in-vivo is to select an 
opsin with a promoter that targets specific cell types. We support this technical 
approach by allowing specification of which unit groups are light-responsive, thereby 
enabling stimulation of specific cell types or layers. 

Finally, we developed open and closed-loop stimulation protocols that enable users to 
model stimulation with versatile temporal and spatial properties. Each protocol can be 
used with electric field stimulation or optogenetic stimulation. Additionally, though we 
only demonstrate STDP with paired-pulse stimulation, STDP can be enabled for each 
protocol. Simulations with STPD take much longer to run due to the extra overhead and 
calculations (e.g. paired-pulse stimulation with STDP takes 3 times longer to run than 
paired-pulse stimulation without STDP enabled), but they can provide information on 
how connection strengths could change under specific stimulation interventions. For 
instance, compared to pre-conditioning, after paired-pulse conditioning, we found that 
stimulation delivered at Site1 resulted in larger LFP responses at Site2 (Fig 3). These 
results are congruent with in-vivo work showing that paired-pulse stimulation can 
strengthen connectivity between stimulation sites (Yazdan-Shahmorad et al 2018; 
Seeman et al 2017). Similar to paired-pulse conditioning, spatiotemporal patterned 
stimulation can be used to apply stimulation across many sites with differing delays and 
amplitudes between sites. This type of patterned stimulation might be particularly 
advantageous for treating neuropathologies, such as stroke and Alzheimer’s, that result 
in aberrant network activity across multiple nodes. (Asp et al 2023; Ip et al 2021; 
Khateeb et al 2019; Khateeb et al 2022; Sato et al 2022; Wang et al 2013; Zhou et al 
2022; Zhou et al 2023). 

While paired-pulse and spatiotemporal stimulation are open-loop approaches, it is 
thought that a significant factor contributing to the inconsistent effects of neural 
stimulation is the variable brain states in which the stimulation is delivered (Bloch et al 
2019; Bloch et al 2022; Zrenner and Ziemann 2024). Advancements in technology for 
rapidly processing ongoing neural activity have made it possible to deliver closed-loop 
stimulation during specific neural states. Providing support for cycle-triggered 
stimulation was motivated by several studies which found that delivering stimulation 
during a specific LFP phase resulted in larger stimulation evoked responses (Zanos et 
al 2018; Zrenner and Ziemann 2024; Zrenner et al 2018, Wischnewski et al 2022).  

We chose to implement these features within the existing VERTEX software because 
unlike many other computational models that simulate spiking activity, LFPs, and 
synaptic plasticity in neurons, VERTEX uniquely does so in a large population of 
neurons using realistic biophysical properties. LFPy and The NEURON simulator are 
python-based models that predict spiking activity in highly realistic neuron models with 
more compartments and complex branching than VERTEX (Hines and Carnevale 1997; 
Lindeń et al 2010). However, both are designed to simulate activity in a single neuron or 
a very small collection of neurons. In contrast, The Brian simulator uses point neurons 
but can simulate activity in a large population of neurons and has support for synaptic 
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plasticity including STDP (Goodman and Brette 2009). Similarly, the integrate-and-fire 
model by Shupe and Fetz (2021) simulates point neuron without physical properties in 
several hundred neurons. It also incorporates STDP and various open- and closed-loop 
stimulation protocols. Despite advantageous features in other models, VERTEX’s use of 
realistic neuron morphologies and connectivity, where dendritic and synaptic activity 
contribute to LFP, generates more realistic LFPs. This is particularly important as it 
allows users to explore the relationship between spikes and LFPs, an area with limited 
in-vivo research (Yazdan-Shahmorad et al 2011; Yazdan-Shahmorad et al 2013). By 
deepening our understanding of the correlations between spiking and LFPs, 
experimentalists could make greater use of LFP signals, which are obtained through 
less invasive methods.  

5. Conclusions 
In sum, our extensions to VERTEX provide a highly adaptable, comprehensive, and 
realistic platform for users to test and predict the effects of diverse neural stimulation 
methods on spiking activity and local field potentials. We anticipate that these 
extensions will be highly valuable in the fields of systems neuroscience and therapeutic 
neural interfaces. These new features enable the exploration of numerous important 
questions, such as comparing the effects of optogenetic stimulation to electrical 
stimulation. At an individual level, for experimentalists, we hope these tools will serve as 
a preliminary means to predict local and network-level effects of modern stimulation 
methods before conducting in-vivo experiments. Doing so will reduce the number of 
extraneous hypotheses tested in-vivo, thereby saving costs, time, and reducing the use 
of animals. 

While our novel extensions provide comprehensive features to VERTEX, there is 
potential for further expansion and improvement of these simulations. In particular, our 
optogenetic stimulation model is based on several theoretical frameworks. More in-vivo 
research could refine these models to more accurately represent light spread through 
brain tissue, better account for light source parameters such as the optical fiber’s 
numerical aperture, and improve photocurrent dynamics for more realistic onset 
mechanics and longer duration light pulses to accommodate both peak and plateau 
currents. Additionally, incorporating modeling of optogenetic inhibition could be valuable 
for investigating treatments for neurological disorders where dampening neural activity 
is beneficial. 
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