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Abstract

Background: The root lesion nematode Pratylenchus penetrans is a migratory plant-parasitic nematode responsible
for economically important losses in a wide number of crops. Despite the importance of P. penetrans, the molecular
mechanisms employed by this nematode to promote virulence remain largely unknown.

Results: Here we generated a new and comprehensive esophageal glands-specific transcriptome library for P.
penetrans. In-depth analysis of this transcriptome enabled a robust identification of a catalogue of 30 new
candidate effector genes, which were experimentally validated in the esophageal glands by in situ hybridization.
We further validated the expression of a multifaceted network of candidate effectors during the interaction with
different plants. To advance our understanding of the “effectorome” of P. penetrans, we adopted a phylogenetic
approach and compared the expanded effector repertoire of P. penetrans to the genome/transcriptome of other
nematode species with similar or contrasting parasitism strategies. Our data allowed us to infer plausible
evolutionary histories that shaped the effector repertoire of P. penetrans, as well as other close and distant plant-
parasitic nematodes. Two remarkable trends were apparent: 1) large scale effector birth in the Pratylenchidae in
general and P. penetrans in particular, and 2) large scale effector death in sedentary (endo) plant-parasitic
nematodes.

Conclusions: Our study doubles the number of validated Pratylenchus penetrans effectors reported in the literature.
The dramatic effector gene gain in P. penetrans could be related to the remarkable ability of this nematode to
parasitize a large number of plants. Our data provide valuable insights into nematode parasitism and contribute
towards basic understating of the adaptation of P. penetrans and other root lesion nematodes to specific host
plants.
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Background
The genus Pratylenchus (Pratylenchidae) comprises
more than 100 valid species, with some of them being
highly important due to the damage they cause in
economically important crops [1, 2]. Members of the
Pratylenchus genus are known as root lesion nematodes
(RLNs) and belong to the third most important group of
plant-parasitic nematodes (PPNs) [3]. One of the
common features of these migratory nematodes is their
dynamic behavior within the host roots, i.e. nematodes
do not become sedentary and are able to migrate in and
out of the roots, causing extensive damage as they do so.
In the absence of a host crop, most of these polyphagous
nematodes are able to survive on weeds or adapt their
survival mechanisms (e.g. anhydrobiosis), which make
them difficult to control [4].
Pratylenchus penetrans is one of the most successful

and economically devastating RLN species with a wide
range distribution, associated with more than 400 hosts
worldwide [4]. The infection process of P. penetrans in
different plants has been comprehensively investigated
(e.g. [5, 6]). Like other RLNs, it can enter the plant along
the entire length of the root. Once inside of the roots,
nematodes migrate and feed almost exclusively from the
cortical cells, where they cause mechanical damage,
browning, and necrosis of the root tissue. Infection of
the roots by P. penetrans often results in the release of
phenolic compounds, oxidation of which has been
associated with the browning of the root tissues [4].
Complex networks of defense genes and secondary
metabolites have been identified in alfalfa as part of host
responses to P. penetrans infection [7]. Nevertheless, the
molecular mechanisms that RLNs employ to promote
virulence remain largely unknown.
An important feature of all PPNs is the presence of a

repertoire of secreted proteins (known as effectors),
which are critical components determining the outcome
of the plant-nematode interactions. The majority of
these effectors are synthesized in the esophageal glands
of PPNs (one dorsal and two sub-ventral glands) and are
ultimately secreted through the nematode stylet into
plant tissues [8]. During infection, PPNs can deploy
dozens of different effectors that are capable of manipu-
lating and suppressing key molecular pathways of the
plant in order to complete their life cycle. Although a
growing number of nematode effectors have been
analyzed [9], different parasitism strategies, host range,
variability, and composition of the effector repertoire
complicate their identification and characterization.
Over the past decade, a rapid advance of genomic and

transcriptomic sequencing approaches has greatly accel-
erated the identification of nematode effectors. Special-
ized techniques for RNA extraction from single cells
have been adapted for the esophageal glands of PPNs,

which resulted in generation of gland-specific libraries
for different nematodes and identification of a significant
number of candidate effector genes [10].
The explanation for the ability of P. penetrans to

parasitize a wide range of hosts has yet to be deter-
mined, but it may, at least in part, lie in its effector rep-
ertoire. The annotation of PPN effector proteins often
relies on sequence similarity to known effectors, or
prediction via promoter motif elements (e.g., [11, 12]).
Sequence data from both sedentary and migratory plant-
parasitic nematodes have provided insights into the con-
servation of some effectors, which presumably reveals
basic function(s) required for nematode parasitism [9].
Contrary to sedentary PPNs, RLNs do not induce com-
plex feeding sites like syncytia or giant-cells and their
effector repertoires are likely to reflect this difference. In
our previous work, we have generated an extensive cata-
logue of candidate secreted proteins for P. penetrans
[13]. A significant proportion of those predicted proteins
have no homologues, and their functions are unknown,
indicating a distinct complement of the P. penetrans
“effectorome”. More recently, we determined the spatial
expression of 23 candidate effectors within the esopha-
geal glands of P. penetrans by in situ hybridization assays
[14, 15]. These proteins comprised common signatures
of PPN effectors with a diversity of known functions
(e.g. cell wall-degrading enzymes, CWDEs). In addition,
a set of pioneer genes specific to P. penetrans, that
possesses unique features has been identified [14]. A
high proportion of the predicted secreted proteins of P.
penetrans showed no similarities with proteins deposited
in public datasets, which raises the possibility that add-
itional effectors for this species remained unexplored.
Here, we generated a new and more comprehensive

esophageal glands-specific transcriptome library of P.
penetrans. An in-depth analysis of this transcriptome led
to the identification of new candidate effector genes for
this species, which are specifically expressed in the
esophageal glands. Many of these novel genes are phylo-
genetically restricted to P. penetrans or the Pratylenchus
genus.

Results
A more complete roster of candidate effector genes of
Pratylenchus penetrans
The current library generated from the esophageal
glands of P. penetrans resulted in ~ 150 million raw
reads. The raw reads were cleaned and approximately 99
million high-quality reads were mapped against the 23,
715 transcripts previously generated from the same P.
penetrans isolate [13], and against the genomic sequence
of the recently discovered root lesion nematode virus 1,
which was found to be associated with the same nema-
tode isolate [16]. As it is common in similar datasets
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[12], a large proportion of the reads (~ 90 million)
mapped to the nematode 18S and 28S ribosomal genes.
Surprisingly, approximately two million reads mapped to
the genome of root lesion nematode virus 1, thus con-
firming our earlier observations on the virus localization
adjacent to the nematode esophageal glands [16]. The
remaining 6,380,993 reads mapped to 11,514 nematode
transcripts, with coverage ranging from 1 to 239,619
reads. A tenfold increase in the transcripts number
observed in the present dataset as compared to the
previous gland cell sequencing attempts of P. penetrans
([10]; n = 1098 versus n = 11,514), was largely due to the
improved extraction procedures of a technically difficult
experiment and higher sequencing depth.
Some of the key features for the identification of can-

didate effectors, which are expected to be secreted by
the classical ER-Golgi secretory pathway, are the pres-
ence of a signal peptide and absence of a transmembrane
domain. Of the 11,514 transcripts with at least one read
in the gland cell library, 864 (7.5%) encode putatively se-
creted proteins. All transcripts were assigned to one of
twelve bins (increasing in a Log2 series) based on how
highly they were represented in the gland cell library
(Fig. 1). As representation in the gland cell library in-
creased, two general trends were observed: 1) the total
number of transcripts decreased; and 2) the relative
proportion of transcripts that encode proteins with a
signal peptide increased. The proportion of transcripts
encoding proteins with a predicted signal peptide was
significantly enriched (hypergeometric test, p-value be-
tween 0.001 and 1e− 20) in all bins above FPKM > 8
(Fragments Per Kilobase of Transcript per Million
mapped reads), with the exception of the most highly
represented bin due to a low n (FPKM > 1024, p > 0.1).
In some of the most highly represented bins, 80–100%
of transcripts encode putatively secreted proteins (Fig.
1). Assuming representation in the library is a function
of expression in the gland cells, these observations
support the important secretory function of the nema-
tode esophageal glands. Since transcripts with low
coverage in the gland cell library could not be distin-
guished from those derived from non-specific se-
quenced RNA originated from tissues potentially
adjacent to gland cells (due to a technically challenging
gland cell extraction procedure), a highly stringent
cut-off value was used as a conservative measure of
bona fide gland cell expression to identify transcripts
to be further studied in this work. We used the statisti-
cally significant enrichment of secretory proteins (p <
0.001) as a proxy to establish the minimum coverage
bin for further analyses. A total of 230 transcripts from
the highly enriched bins (FPKM > 8) encode putatively
secreted proteins with no transmembrane domain
(Additional file 1: Table S1).

Mining for new candidate effector genes
To evaluate the validity of this strategy, we first queried
for the presence of genes that were previously confirmed
in the esophageal glands of P. penetrans. Remarkably,
91% (21/23) of the genes validated previously were in
this set of 230 transcripts with FPKM > 8 in the gland-
cell library (Fig. 2a and Additional file 1: Table S1).
These included transcripts encoding proteins with
known annotation (e.g. CWDEs), as well as seven previ-
ously identified “pioneer effectors” [14]. Most of the 21
previously validated genes ranked among the top of this
list, when ranked by representation in the gland cell
library (Additional file 1: Table S1). Two previously vali-
dated gland cell expressed genes were absent from this
set of 230 transcripts: a fatty acid- and retinoid-binding
protein (FPKM= 1.21) and a pectin methylesterase
(FPKM = 1.50) (Additional file 2: Table S2).
A detailed examination of the remaining 209 transcripts

revealed an extensive overlap with genes previously re-
ported to be involved in parasitism of other PPNs (Fig. 2b
and Additional file 1: Table S1). For instance, transcripts
encoding various proteases [17], transthyretin-like pro-
teins [12, 18], protein disulfide isomerases [19], protease
inhibitors [14], an acid phosphatase [20], and a saposin
precursor [21] were identified. In addition, some tran-
scripts were similar to putative effectors recently identified
for the cyst nematode Heterodera avenae (BLAST e-value
< 10− 5, [22]). It is noteworthy that the majority (133/230,
57%) of the 230 transcripts encode novel proteins lacking
any functional annotations or similar sequences in the NR
database (BLAST e-value < 10− 5).
Given that other candidate effectors could be

present below the established cut-off (FPKM < 8), we
assessed the distribution of additional known effector
genes among those transcripts encoding predicted se-
creted proteins (Additional file 2: Table S2). This led
to the identification of other relevant candidate effec-
tors (1 < FPKM < 8), such as transcripts encoding an
esophageal gland protein of the root-knot nematode
(FPKM = 7.92), a chorismate mutase (FPKM = 6.7),
among other candidate effectors. Taken together,
these results suggested that a convincing number of
previously identified effectors were highly abundant in
the gland-cell library and above the stringent thresh-
old established herein.

Identification of new candidate effector genes for
Pratylenchus penetrans
From the list of 230 transcripts, 68 candidates were
selected for an in-depth analysis based on the mining re-
sults (Additional file 1: Table S1). The selected tran-
scripts included those encoding 52 novel proteins (i.e.,
those with no annotation) and 16 genes with predicted
functional annotation. Out of the 68 candidates tested,
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30 transcripts were specifically localized in the nematode
esophageal glands, as demonstrated by in situ
hybridization assays with the corresponding anti-sense
probes (Fig. 3). Hybridization with control probes of
sense orientation revealed no signal (Additional file 3:
Fig. S1). No signal (not to be confused with a conflicting
signal) was detected in the nematode sections for the
remaining genes, which suggests that additional candi-
date effectors could be added to this list following probe
optimization.
To determine whether transcripts above the FPKM

threshold that encode proteins without a predicted
signal peptide were also specific to the esophageal
glands, we performed in situ hybridization for the fol-
lowing four transcripts: a transcript encoding an ShK
domain-like protein (FPKM = 213.3), a translationally-
controlled tumor protein (TCTP, FPKM = 92.4), one

novel protein (FPKM = 50.4) and a 14–3-3 protein
(FPKM = 25.3). A positive labeling localized in the
esophageal glands area was found for transcripts encod-
ing the ShK domain-containing protein (Fig. 4a). Al-
though the signal associated with transcripts encoding
the 14–3-3 protein (Fig. 4b) was detectable in the glands,
it was also observed along the intestine region of some
nematodes (Fig. 4c). No signal was observed for the two
remaining genes, which was also true for all control
probes of sense orientation (Additional file 4: Fig. S2).
Following these results, we also validated the pres-

ence of the CAA [A|G|T|C] TG [T|G] C motif previ-
ously identified in the promoter region of some P.
penetrans effectors [14]. This motif was found in the
promoter region of 12 genes (Additional file 5: Table
S3), representing 40% of the total number of new
candidate effectors.

Fig. 1 Schematic representation of all gland-cell transcripts. White bars were assigned to one of twelve bins (increasing in a Log2 series) based
on their abundance using the fragment per kilobase of transcript per million mapped reads (FPKM) values in the gland cell library. The proportion
of transcripts encoding proteins with a predicted signal peptide (red bars) was significantly enriched (p-value between 0.001 and 1e− 20, yellow
bars) in all bins above FPKM > 8, with the exception of the most highly represented bin due to a low number of transcripts (FPKM
> 1024, p > 0.1)
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Presence of orthologues in other plant-parasitic nematodes
A BLAST search conducted with all candidate effectors
localized in the gland cells identified here against the
draft genome assembly of P. penetrans of the same iso-
late (Vieira and Nemchinov, unpublished), confirmed
their nematode origin (0 = e-value < 5.14E-114; Add-
itional file 6: Table S4). Overall, the new candidates were
predicted to encode proteins ranging in size from 76 to
806 amino acids (Table 1). All protein sequences were
analyzed for the presence of conserved domains using
Pfam database searches. Only four candidate effectors
were predicted to contain known protein domains: a

papain family cysteine protease (PF00112), a pepsin
inhibitor-3-like repeated domain (PF06394.1), an astacin
(PF01400.21), and a domain of unknown function
DUF148 (PF02520.14). For all the remaining candidates
no other known functional domains were found. Previ-
ously, we have found that several pioneer effectors of P.
penetrans contained a high number of proline residues.
As most of the effectors found here were also novel, we
quantified the levels of proline, cysteine and glycine resi-
dues. Twelve of the new candidate effectors were rich in
proline, while others presented a high content of glycine
residues (> 10% of the full protein sequence; Table 1).

Fig. 2 Characterization of the most abundant transcripts encoding putative secreted proteins collected from the esophageal gland library of
Pratylenchus penetrans. a Venn diagram showing the number of experimentally validated candidate effectors within the top 230 most abundant
transcripts. b Most abundant Pfam protein domains represented within the list of 230 transcripts encoding putative secreted proteins (e-value <1e− 5)
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The identification of a more complete roster of candi-
date effectors in P. penetrans, coupled with available
genome and transcriptome sequences for many phylo-
genetically well-positioned species, provides an oppor-
tunity to investigate the evolutionary history of the
effector repertoire. We reconstructed a robust multi-
gene phylogenetic tree, based on 86 CEGMA (Core
Eukaryotic Genes Mapping Approach) genes highly con-
served in the following species: root lesion nematodes
Pratylenchus coffeae [23–25], P. neglectus, and P. thornei

(PRJNA512537 [26];), and the burrowing nematode
Radopholus similis [27]; root-knot nematodes Meloido-
gyne incognita [28] and M. hapla [29]; cyst nematodes
Globodera pallida [30], G. rostochiensis [11], and Hetero-
dera glycines [31]; the false root-knot nematode Nacob-
bus aberrans [32], the reniform nematode Rotylenchulus
reniformis [33], the migratory potato rot nematode Dity-
lenchus destructor [34]; the pinewood nematode Bursa-
phelenchus xylophilus [35]; and the free-living nematode
Caenorhabditis elegans (http://parasite.wormbase.org).

Fig. 3 Detection of gene transcripts encoding putative secreted proteins by in situ hybridization. Transcripts encoding thirty different genes were
localized in the nematode esophageal glands of Pratylenchus penetrans using the corresponding anti-sense DIG-labeled probes. Due to the high
variability of the esophageal gland size among different specimens and nematode stages, both dorsal and subventral glands were labelled as
esophageal glands. Details regarding each gene annotation and description are presented in the same order as sorted in Table 1. g: esophageal
glands; m: median bulb; s: stylet. Bars = 20 μm
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We then searched for the presence of putative homologs
of the entire P. penetrans putative effector repertoire val-
idated by in situ hybridization (n = 53) in all these spe-
cies using BLAST (e-values < 1 × 10− 5 and coverage >
50, Fig. 5).
Two noteworthy trends were apparent: 1) large scale

effector birth in the Pratylenchidae in general and P.
penetrans in particular, and 2) large scale effector death
in root-knot nematodes (in some cases convergent loss
with cyst nematodes). As evidence of the former, and
despite the inclusion of three other Pratylenchus species
in the analysis and the application of a relatively relaxed
similarity threshold, 41% of the putative effectors (and
65% of the pioneer effectors) were unique to P. pene-
trans (c.f. 0.22% of all transcripts and 0.29% of all pion-
eer transcripts). The most parsimonious explanation for
this observation is a dramatic de novo effector gene birth
(i.e. not by neofunctionalization) since the divergence
from the last common ancestor in the phylogeny. Only
three putative effectors were common to both P. pene-
trans and its three most closely related Pratylenchidae
species included in the analysis (P. coffeae, P. neglectus
and P. thornei). Five putative effectors were common to
three of the four Pratylenchus species, possibly indicative
of disparate gene loss in the Pratylenchidae and in root-
knot nematodes (given the monophyletic relationship
with Pratylenchidae). Notably, two pioneer effectors
were generally common to root lesion nematodes, the
false root-knot nematode, the burrowing nematode, and
the reniform nematode, but absent in sedentary endo-
parasitic nematodes, such as root-knot and cyst

nematodes. The simplest possible explanation could be
an ancient origin of the gene, in the last common ances-
tor of these species and subsequent convergent loss in
sedentary endoparasitic root-knot and cyst nematodes.
A final pioneer gene appears to have a similarly ancient
origin with disparate loss. Several other putative effec-
tors have homologues distributed across the tree, many
of which have known annotations, and together likely
represent evidence for neofunctionalization (when not
putatively originated from horizontal gene transference
events as, for example, different families of CWDEs).

Expression of selected genes during nematode-plant
interaction
To validate the results of in silico analysis, we examined
the expression of 15 genes in soybean hairy roots at 1, 3,
7 and 12 days after nematode inoculation (DAI). All of
the selected genes could be detected within the
nematode-infected roots and their expression varied
(Fig. 6a) in accordance with the patterns observed during
in silico analysis. To get a broader insight into the ex-
pression of all candidate effectors validated so far in P.
penetrans, we took advantage of the transcriptome data
previously generated from different plants, i.e., two dif-
ferent cultivars of alfalfa and soybean, infected with the
same isolate (Fig. 6b). Heat maps that were used to
visualize the expression profile confirmed the transcrip-
tion of a large set of effectors during nematode interac-
tions with the roots. A core set of effectors was
prominently induced (FPKM > 100) during infection
independently of the host genotype (e.g., a catalase, an
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Fig. 4 Detection of gene transcripts encoding putative proteins without signal peptide by in situ hybridization. (a) ShK domain-like protein, and
(b-c) 14–3-3 protein. g: esophageal glands; i: intestine region; m: median bulb; s: stylet. Bars = 20 μm
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Table 1 Characterization of candidate gene effector genes specifically localized in the esophageal glands of Pratylenchus penetrans.
The list is sorted in agreement to their respective fragment per kilobase of transcript per million mapped reads (FPKM) values
presented in Additional file 1: Table S1

Transcript
code

Interpro
Acession

InterPro
Name

Pfam Protein
(aa)

Domain
position

Domain
bit score

E-value % Cysteine
content

% Glycine
content

% Proline
content

Ppen13114_
c0_seq2

– – – 87 – – – 0.1 16.1 29.9

Ppen8917_
c0_seq1

– – – 147 – – – 0 4.1 10.6

Ppen11800_
c0_seq1

– – – 86 – – – 1.2 10.5 2.3

Ppen9432_
c0_seq1

– – – 155 – – – 3.9 4.5 18.7

Ppen11421_
c0_seq1

– – – 509 – – – 0.2 5.5 4.7

Ppen13553_
c0_seq1

– – – 116 – – – 0.9 23 5.2

Ppen17089_
c0_seq1

– – – 233 – – – 2.6 3.9 2.1

Ppen8388_
c0_seq1

– – – 94 – – – 1.1 19.1 38.3

Ppen12616_
c0_seq1

– – – 76 – – – 11.8 9.2 2.6

Ppen15969_
c0_seq2

– – – 438 – – – 0.7 6.8 3

Ppen13037_
c0_seq1

– – – 127 – – – 0 5.5 4.7

Ppen20090_
c0_seq1

– – – 128 – – – 0 21.1 10.2

Ppen8150_
c0_seq1

– – – 270 – – – 0 9.3 6.3

Ppen11603_
c0_seq1

– – – 632 – – – 0.2 10.1 4.7

Ppen3597_
c0_seq1

IPR000668 Papain family
cysteine protease

PF00112 375 116–370 153.4 8.60E-45 3.5 9.3 3.2

Ppen16202_
c0_seq1

– – – 533 – – – 0 19.3 22.1

Ppen18231_
c0_seq1

– – – 388 – – – 2.3 6.2 5.4

Ppen10194_
c0_seq1

– – – 806 – – – 0.05 5.5 2.9

Ppen19584_
c0_seq1

– – – 113 – – – 0 23.9 15.9

Ppen14923_
c0_seq1

IPR006377 Domain of unknwon
function DUF148

PF02520.14 262 48–149 50 2.50E-13 0.1 16.8 5.3

Ppen13972_
c0_seq1

– – – 141 – – – 1.4 7.1 2.8

Ppen16480_
c0_seq1

– – – 727 – – – 0.06 3.2 10.5

Ppen28021_
c0_seq1

– – – 121 – – – 2.5 11.6 16.5

Ppen15256_
c0_seq1

IPR010480 Pepsin inhibitor-3-like
repeated domain

PF06394.10 248 25–99 |
120–193

58.6 |
78.7

4.6E-16 |
2.5E-22

0.2 6.9 5.2

Ppen16504_
c0_seq1

IPR001506 Astacin (Peptidase
family M12A)

PF01400.21 564 189–383 156.8 4.20E-46 3 7.4 4.8
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expansin-like gene, an endoglucanase, and several pion-
eer genes). These results suggested that a complex
network of effectors is actively transcribed in the course
of infection.

Discussion
In this work, we conducted a comprehensive screening
of potential effector proteins of the agriculturally im-
portant nematode species P. penetrans. This was accom-
plished using a tissue-specific transcriptome sequencing
approach to identify transcripts abundantly expressed in
the esophageal gland cells and encoding proteins likely
secreted during nematode parasitism. A substantial
number of reads were generated and an extensive cata-
logue of transcripts specific to the gland cells compiled.
Comparative analyses of the gland cell transcriptome
confirmed most of the previously described cases of
gland-cell expression and, most importantly, drastically
expanded the size of the roster of gland-cell expressed
genes to double its previous value. Importantly, this is
still likely an underestimate for P. penetrans due to the
stringent cut-off used: other candidate effectors with
lower levels of expression and established roles in para-
sitism were also present in this library.
Of the new candidates identified, only four genes had a

predicted functional domain or known annotation.
Among them, transcripts encoding a second member of
the SXP/RAL-2 family were validated to be gland-specific.
Members of this gene family are characterized by the pres-
ence of the DUF148 protein domain and can be found
across different clades of nematodes [36]. In PPNs, SXP/
RAL-2 transcripts showed distinct localization in the sub-
ventral esophageal glands of the root-knot nematode M.
incognita [37] or in the epidermis and amphidial sheet
cells of the cyst nematode G. rostochiensis [38]. The bio-
logical functions of the different members of this family
are still lacking. However, their high abundance in the
glands and active transcription during plant infection

provides additional insight regarding their significance
during nematode parasitism. In addition, two proteases
and one protease inhibitor-like protein were validated spe-
cifically in the glands: M12 astacin and a papain cysteine
protease and pepsin inhibitor-3-like domain-containing
protein, respectively. To date, several studies have evi-
denced the role of different classes of proteases in other
plant-pathogenic interactions [39]. In M. incognita, ex-
pression of cysteine and aspartyl proteases, potentially in-
volved in softening of plant cell walls during migration,
pre-digestion of nutrients or inactivation of plant defense
proteins, was confirmed in the esophageal glands [40, 41].
In animal-parasitic nematodes, different classes of prote-
ases and protease inhibitors have been identified among
the main components of excretory/secretory products of
different species [42]. For example, M12 astacins, which
are involved in skin penetration and migration [43], are
widely distributed in nematodes belonging to the clade IV.
The secretion of these proteases has been linked to diverse
functions, including host tissue penetration, modification
of the host environment, destruction of plant defense pro-
teins and digestion [43]. Protease inhibitors on the other
hand may be involved in the protection against degrad-
ation by host proteases or manipulation of the host re-
sponses. The identification of new gland-specific proteases
and protease inhibitors in P. penetrans, and other PPNs,
supports the idea that these proteins may have an active
role during plant parasitism.
The lack of recognizable Pfam domains is a hallmark

of PPN effectors. The fact that a large proportion of
transcripts found in this work belongs to novel genes (>
80%) highlights the uniqueness of P. penetrans. To ad-
vance our understanding of these pioneer effectors of P.
penetrans, we adopted a phylogenetic approach and
compared the expanded effector repertoire of P. pene-
trans to the genome/transcriptome of other nematode
species with similar or contrasting parasitism strategies.
With the caveat that the absence of evidence is not

Table 1 Characterization of candidate gene effector genes specifically localized in the esophageal glands of Pratylenchus penetrans.
The list is sorted in agreement to their respective fragment per kilobase of transcript per million mapped reads (FPKM) values
presented in Additional file 1: Table S1 (Continued)

Transcript
code

Interpro
Acession

InterPro
Name

Pfam Protein
(aa)

Domain
position

Domain
bit score

E-value % Cysteine
content

% Glycine
content

% Proline
content

Ppen11417_
c0_seq1

– – – 145 – – – 4.8 3.4 1.4

Ppen10830_
c0_seq1

– – – 173 – – – 6.4 5.2 9.8

Ppen18503_
c0_seq1

– – – 128 – – – 1.6 10.9 14.1

Ppen11174_
c0_seq2

– – – 112 – – – 0.9 17.9 3.6

Ppen15571_
c0_seq2

– – – 405 – – – 0.01 5.7 3.2
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always evidence of absence, the consistency of the pat-
terns of presence and absence allowed us to inferred
plausible evolutionary histories that shaped the effector
repertoires of not just P. penetrans, but also other

species in the phylogeny. For example, the dominant
majority of pioneer effectors were restricted to P. pene-
trans, thus, indicating substantial de novo gene gain (i.e.,
not neofunctionalization of the existing genetic pool).

Fig. 5 Comparative analyses of the full set of candidate effector genes of Pratylenchus penetrans suggest a large-scale effector birth for this
species. Top panel corresponds to a schematic phylogeny of the phylum Nematoda based on 86 highly conserved CEGMA genes among plant-
parasitic nematodes with different parasitism strategies and the free-living nematode Caenorhabditis elegans (Ce). Shaded squares in the lower
panel indicate significant blast hits of each nematode species against the set of effectors identified for P. penetrans. The new candidate effectors
identified in this study are represented in bold (n = 13) while the remaining 17 genes are represented within the set of 22 effectors found
specifically for P. penetrans (marked with an asterisk). n, represents the putative number of gene births in each nematode speciation cluster. Pp:
Pratylenchus penetrans; Pc: Pratylenchus coffeae; Pn: Pratylenchus neglectus; Pt: Pratylenchus thornei; Mi: Meloidogyne incognita; Mh: Meloidogyne
hapla; Na: Nacobbus aberrans; Rs: Radopholus similis; Rr: Rotylenchulus reniformis; Hg: Heterodera glycines; Gr: Globodera rostochiensis; Gp: Globodera
pallida; Dd: Ditylenchus destructor; Bx: Bursaphelenchus xylophilus; Ce: Caenorhabditis elegans. RKN: root-knot nematodes; CN: cyst nematodes
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Whether this dramatic gene gain is linked to the broad
host range of this species remains to be determined. At
the opposite end of the spectrum, many non-pioneer ef-
fectors (i.e. those with recognizable domains) have ho-
mologues across the phylogeny, in some cases even in
non-parasitic species. In these cases, it is likely that neo-
functionalization has occurred to give rise to new ef-
fector genes in P. penetrans. However, with the currently
available information does not yet allow these events to
be dated. The instances between gene gain and func-
tional diversification are similarly informative. Given the
monophyly of root-knot nematodes (Meloidogynidae)

with Pratylenchidae, effector genes that are generally
conserved across the Pratylenchidae but absent in root-
knot nematodes, can be indicative of secondary loss.
These cases (five discovered in this study) are part of a
larger trend of effector gene loss in root-knot nema-
todes, including those originated before the split from
cyst nematodes (Heteroderidae). One particularly inter-
esting example (Ppen16480_c0_seq1) appears to be a pi-
oneer gene that is present only in species with migratory
lifestyles (root lesion, burrowing and the false root-knot
nematodes). Given its wide distribution among these
species, the most parsimonious explanation could be an

Fig. 6 Expression profile of Pratylenchus penetrans candidate effector genes in planta. a Semi-quantitative reverse transcription PCR validating the
expression levels of 15 gland-cell localized nematode genes on soybean hairy roots at 1, 3, 7 and 12 days after nematode infection. As a positive
control, all cDNA libraries were amplified with primers derived from the 18S gene of P. penetrans or the Ubiquitin-3 (UBQ-3) gene of Glycines max.
C corresponds to non-infected hairy roots. b Heat maps representing the expression profile of the full set of 53 candidate effectors identified so
far for P. penetrans using the fragment per kilobase of transcript per million mapped reads (FPKM) values of the current gland-cell library (Glands),
and public messenger RNA-sequencing datasets originating from total RNA extracted from soybean (BioProject ID PRJNA304159 [7]) and alfalfa
plants (cultivars Baker and MNGNR-16; BioProject ID PRJNA547347 [13]) infected with the same P. penetrans isolate at 7 DAI. The new candidate
effectors identified in this study are represented in bold
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ancient origin and convergent loss in sedentary endopar-
asites. Although some effector candidates, for instance
those similar to the arabinogalactan (GH53), have com-
parable distributions in other PPNs, the same conclu-
sions can unlikely be drawn because their spread could
be equally well explained by multiple horizontal transfer
events.
The stringent cut-off criteria used in this work while

enriching for likely secreted candidate effectors, could
also provide a hint on transcripts specific to the gland
cell machinery (e.g. chaperones responsible for pack-
aging effector proteins). Therefore, transcripts encoding
proteins without a canonical signal peptide should not
be ignored. Moreover, there is evidence that some effec-
tors lacking a conventional signal peptide, for instance:
Mi-14-3-3 [44], Mi-GST-1 [45] and MiPFN3 [46], play
important roles in parasitism of the root-knot nematode
M. incognita. The cyst nematode effector HsIPT, which
also lacks a signal peptide, is involved in the activation
of the host cell cycle of the syncytium cells [47].
Transcripts encoding proteins without a canonical signal
peptide, such as ShK domain-like proteins, were found
in this work to be highly abundant and localized specif-
ically in the nematode esophageal glands. ShK-domain
containing proteins secreted by animal-parasitic nema-
todes have a role in immuno-modulatory activity [48].
Although the mechanisms of protein secretion into the
plant cell in the absence of a genuine signal peptide are
still unknown, it cannot be ruled out, at least for P. pene-
trans, that some of these proteins may be part of the
molecular machinery of the esophageal glands rather
than effectors per se. However, effector proteins of PPNs
are often identified in the secretory granules within the
esophageal glands [49, 50]. It remains unknown if the
contents of such vesicles can be directly released into
the host cells as a complex network of proteins. Valid-
ation of secretion of such types of proteins by nematodes
into the host using, for example, effector-specific anti-
bodies [41, 51, 52], will provide crucial information re-
garding their molecular involvement with the host.
Since P. penetrans is one of the most successful spe-

cies in the genus and is able to infect a large number of
plants, high diversity of its effectors may potentially cre-
ate a strong molecular basis for this broad host range.
One of the common features of host infection by RLNs
is the massive damage induced in the root cortex as a
consequence of migration and feeding activity by these
nematodes. Despite a severe impact on root tissues,
plants seem to be unable to mount strong defenses (e.g.,
cell death) to block the progression of nematodes [7].
The diversity of effectors highly abundant in the glands
is likely to be related to the wide range of molecular
functions that are required for penetration and invasion
of host roots, detoxification, suppression of host

defenses and many other unidentified functions. The
RNA-seq libraries previously generated from nematode-
infected roots served to support differential gene expres-
sion of all candidate effectors validated so far for P.
penetrans. Plant signals may be required to trigger spe-
cific nematode responses, including secretion of effector
proteins. For example, regulation of different CWDE
genes of P. coffeae is host-specific [25]. Host-dependent
response could also explain differential expression pro-
files observed for the set of P. penetrans effectors. Never-
theless, there is a possibility that these differences may
result from the limited number of nematode reads re-
covered from nematode-infected roots. Since P. pene-
trans is a polyphagous species, comparative analyses of
gland transcriptomes originated from nematodes parasit-
izing on different host plants could support the dynam-
ics of effector expression relative to the host-specific
responses. It may be that to define a truly comprehen-
sive repertoire of effectors for a polyphagous nematode
species, like P. penetrans, would require gland cell se-
quencing of nematodes collected from a variety of hosts.

Conclusions
Altogether, our data demonstrate that P. penetrans de-
ploys a novel repertoire of effectors during its interaction
with the host. Notable, 26 out of the 30 (86%) new can-
didate effectors identified in this study represent genes
without known domains, which demonstrates the lack of
knowledge about this group of nematodes and warrants
further investigation. Future efforts should focus on the
identification and characterization of the host targets of
these effectors to determine their biological roles and
provide crucial information for application of genetic
engineering strategies for the control of PPNs. Further-
more, the results reported in this study may also con-
tribute towards basic understanding of the adaptation of
P. penetrans, and other RLNs, to specific host plants.

Methods
Nematode isolate
Pratylenchus penetrans isolate (NL 10p RH) collected in
Beltsville (Maryland, U.S.) was maintained under sterile
conditions in soybean hairy roots (Glycine max) growing
on agar plates with Murashige and Skoog (MS) medium.
Nematodes were transferred every 2 months to new
soybean hairy roots and kept in the dark at 25 °C.

Gland-cell cDNA library of Pratylenchus penetrans
Mixed nematode life stages were collected using the
Baermann funnel technique from hairy roots in vitro
stocks and washed in PBS buffer. Pratylenchus penetrans
gland cells were collected from a pool of 100 mixed dor-
sal and subventral gland cells as previously described
[10]. Gland cells RNA was extracted using the Arcturus
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PicoPure RNA isolation kit (Arcturus Bioscience). Total
RNA (≤ 1 ng) was used directly as input for the SMAR
Ter Stranded Total RNA-Seq kit - Pico Input Mamma-
lian (Clontech). The P. penetrans RNA-seq library was
then submitted for sequencing to Admera Health (South
Plainsfield, NJ) and sequenced by Illumina NextSeq 500.
The paired-end library totaled 147,906,800 raw reads
and the quality of the library was assessed with the pro-
gram FASTQC (https://www.bioinformatics.babraham.
ac.uk/projects/fastqc/). The vast majority of the reads
were greater than 144 bp in length. The GC content av-
eraged 47%. The median quality value ranged from 32 to
40 over the length of the entire read with an overall per
average sequence quality of 40. The reads were also free
of adapter content.

Gene expression analyses
Illumina RNA-seq reads of the esophageal gland cells
were initially trimmed and mapped to the 23,715 tran-
scripts generated for the same P. penetrans isolate [13]
using CLC Genomics v. 8 with default parameters. Gene
expression patterns were deduced from the aligned reads
and determined as Fragments Per Kilobase of Transcript
per Million mapped reads (FPKM) values. The expres-
sion data were partitioned into expression bins and
enrichment in secreted proteins for each expression bins
was assessed using a hypergeometric test with the phyp-
function available in R (v3.5.2). The FDR (False
Discovery Rate) was calculated according to [53] with
the p-adjust function available in R. The expression bins
were considered as significantly enriched in secreted
protein when FDR < 0.001.
BLASTp searches were carried out against the NR

database at NCBI (e-value cutoff of 1e− 5 and bitscore >
50). Interpro were performed for the predicted proteins
of the set of 230 transcripts using BLAST2GO [54] with
default parameters. PFAM domain searches were per-
formed using the Pfam dataset Pfam-A v32 obtained at
https://pfam.xfam.org [55] and run through CLC Main
Workbench v.7. SIGNALP v. 4.0 was used to confirm
the presence/absence of protein signal peptide in the
genome of the predicted proteins [56], and transmem-
brane domains were predicted using TMHMM server
version 2.0 (http://www.cbs.dtu.dk/services/TMHMM/).
Cysteine, glycine and proline contents were calculated
for each predicted mature protein with CLC Main
Workbench v.7.

In situ hybridization assays
Total RNA was extracted from a pool of mixed stages of
P. penetrans using the RNeasy Plant Mini kit (QIAGEN)
according to the manufacturer’s instructions. RNA was
treated with RNase-free DNase (QIAGEN) before
reverse transcription. The quantity and quality of the

extracted RNA was assessed by a ND-1000 NanoDrop
spectrophotometer (Thermo Scientific) and cDNA was
synthesized using the iScript first-strand synthesis kit
(Bio-Rad) following the manufacturer’s instructions.
Whole mount in situ hybridizations were performed in
all stages of P. penetrans following the protocol of [57].
Specific primers were designed to amplify a range of
gene products (104 to 305 bp) using the cDNA library
produced from the mix pool of P. penetrans stages
(Additional file 7: Table S5). The resulting PCR products
were then used as a template for generation of sense and
antisense DIG-labeled probes using a DIG-nucleotide
labeling kit (Roche). Hybridized probes within the nema-
tode tissues were detected using an anti-DIG antibody
conjugated to alkaline phosphatase and its substrate.
Nematode segments were observed using a Nikon
Eclipse 5i light microscope.

Promoter analyses
To identify the non-coding promoter motif previously
determined for several effector of P. penetrans [14], ap-
proximately 600 nucleotides of the 5′ sequence from the
start codon were manually extracted based on BLASTn
coordinates against the draft genome of the same nema-
tode isolate (Vieira and Nemchinov, unpublished). These
promoter regions were screened for the presence of the
motif consensus CAA [A|G|T|C] TG [T|G]C.

BLAST hit analyses against other nematode genomes/
transcriptomes
Focusing on a subset of candidate effectors with verified
esophageal gland-cell expression in P. penetrans, add-
itional in silico analyses were performed. Open reading
frames were used to perform BLASTn searches (e-value
>1e− 10) against the draft genome of the same P. pene-
trans isolate (Vieira and Nemchinov, unpublished). The
top hit sequences were manually examined and each
transcript sequence was aligned to the respective
genomic scaffold using MUSCLE [58]. Genomic and
transcript sequences were submitted to FGENESH
(www.softberry.com) for gene and protein prediction
using Caenorhabditis elegans as model [59].
Transcripts highly represented in the gland cell library

were additionally compared using BLASTx and tBLASTx
(e-value cutoff of 1e− 5 and bitscore > 50) to a set of
transcriptomes and genomes of PPNs publicly available
at NCBI and Wormbase (http://parasite.wormbase.org).
This set comprised sequenced genomes of PPNs from
different clades [60]: 1) Clade 12B: sedentary species
such as root-knot nematodes Meloidogyne incognita [28]
and M. hapla [29]; cyst nematodes Globodera pallida
[30], G. rostochiensis [11], and Heterodera glycines [31];
the false root-knot nematode Nacobbus aberrans [32],
the reniform nematode Rotylenchulus reniformis [33],
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and the draft genome of the burrowing nematode Rado-
pholus similis [27]; 2) Clade 12A: the migratory potato
rot nematode Ditylenchus destructor [34]; 3) Clade 10:
the pinewood nematode Bursaphelenchus xylophilus
[35]; and 4) Clade 9A: the free-living nematode C.
elegans (http://parasite.wormbase.org). Local tBLASTn
searches were performed against the transcriptomes of
additional Pratylenchidae species (Clade 12B), such as P.
coffeae [23–25], P. neglectus and P. thornei. For the last
two species de novo assemblies were generated using the
corresponding raw reads deposited at NCBI Sequence
Read Archive (SRA) BioProject PRJNA512537 [26].
Eighty-six CEGMA genes conserved in the genome and
or transcriptome resources of all 15 nematodes species
described above were used for phylogenetic reconstruc-
tion (Additional file 7: Table S6). Protein sequences of
individual CEGMA genes were aligned and refined using
MUSCLE [58]. Alignments were concatenated and
model selection for each partition was carried out using
the IQtree server. A concatenated multi-gene phylogeny
was generated using the ultra-fast mode and 1000 boot-
straps [61].

Differential expression of Pratylenchus penetrans
candidate effectors in planta
Semi-quantitative RT-PCR analyses were performed
using total RNA extracted from nematode-infected
soybean hairy roots at different time points following
the same methodology as described by [15]. The same
set of primers selected for in situ hybridization were
used for nematode transcript amplification, while the
following genes were used as references: Ubiquitin-3
(Ubi3) for soybean hairy roots and 18S for P. pene-
trans (Additional file 7: Table S5). The abundance of
the full set of candidate effectors were estimated as
FPKM values and presented as heatmaps using previ-
ously generated transcriptome data for P. penetrans-
infected plants, i.e. soybean (SRA BioProject
PRJNA304159 [13]) and two alfalfa (Medicago sativa
L.) cultivars (Baker and MNGNR-16, SRA BioProject
PRJNA547347 [7]).
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