Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Poly[[\{ μ_{3}-2-[4-(2-hydroxyethyl)piperazin-1-yllethanesulfonato\}silver(I)] trihydrate]

Stephanie M. Bilinovich, Matthew J. Panzner, Wiley J. Youngs and Thomas C. Leeper*

University of Akron, Department of Chemistry, Akron, OH 44325-3601, USA
Correspondence e-mail: tleeper@uakron.edu

Received 15 June 2011; accepted 25 July 2011
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; R factor $=0.036 ; w R$ factor $=0.090$; data-to-parameter ratio $=15.5$.

Ethanesulfonic acid-based buffers like 2-[4-(2-hydroxyethyl)-piperazin-1-yl]ethanesulfonic acid (HEPES) are commonly used in biological experiments because of their ability to act as non-coordinating ligands towards metal ions. However, recent work has shown that some of these buffers may in fact coordinate metal ions. The title complex, $\left\{\left[\mathrm{Ag}\left(\mathrm{C}_{8} \mathrm{H}_{17^{-}}\right.\right.\right.$ $\left.\left.\left.\mathrm{N}_{2} \mathrm{O}_{4} \mathrm{~S}\right)\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, is a metal-organic framework formed from HEPES and a silver(I) ion. In this polymeric complex, each Ag atom is primarily coordinated by two N atoms in a distorted linear geometry. Weaker secondary bonding interactions from the hydroxy and sulfate O atoms of HEPES complete a distorted seesaw geometry. The crystal structure is stabilized by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding interactions.

Related literature

For other compounds with silver bound to ethanesulfonic acid derivatives that are used as buffers, see: Jiang, Liu et al. (2008), where HEPES is used, and Jiang, Ma et al. (2008), where MES is used. For background on metal coordination to buffer compounds like HEPES, see: Soares \& Conde (2000); Sokolowska \& Bal (2005). For copper complexes of HEPES interfering with protein assays, see: Gregory \& Sajdera (1970); Lleu \& Rebel (1991); Kaushal \& Barnes (1986). For general information on HEPES and related buffers, see: Good et al. (1966).

Experimental

Crystal data

$\left[\mathrm{Ag}\left(\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}\right)\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$	$V=1466.4(4) \AA^{3}$
$M_{r}=399.21$	$Z=4$
Monoclinic, $P 2_{1} / n$	$\mathrm{Mo} K \alpha$ radiation
$a=11.2811(19) \AA$	$\mu=1.55 \mathrm{~mm}^{-1}$
$b=10.0973(17) \AA$	$T=100 \mathrm{~K}$
$c=12.875(2) \AA$	$0.25 \times 0.10 \times 0.07 \mathrm{~mm}$

$\beta=90.910(3)^{\circ}$
$0.25 \times 0.10 \times 0.07 \mathrm{~mm}$

Data collection

Bruker APEXI CCD diffractometer Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$T_{\text {min }}=0.699, T_{\text {max }}=0.900$

11308 measured reflections 2946 independent reflections 2446 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.050$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036 \quad \mathrm{H}$ atoms treated by a mixture of
$w R\left(F^{2}\right)=0.090 \quad$ independent and constrained
$S=1.09$
refinement
2946 reflections $\Delta \rho_{\max }=1.58 \mathrm{e} \mathrm{A}^{-3}$
190 parameters $\Delta \rho_{\min }=-0.73$ e \AA^{-3}
9 restraints

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right)$.

$\mathrm{Ag} 1-\mathrm{N} 1$	$2.266(3)$	$\mathrm{Ag} 1-\mathrm{O} 2^{\mathrm{i}}$	$2.666(2)$
$\mathrm{Ag} 1-\mathrm{N} 2$	$2.280(3)$	$\mathrm{Ag} 1-\mathrm{O} 4$	$2.581(2)$
$\mathrm{N} 1-\mathrm{Ag} 1-\mathrm{N} 2$	$167.73(11)$	$\mathrm{N} 2^{\mathrm{ii}}-\mathrm{Ag} 1-\mathrm{O} 2^{\mathrm{i}}$	$94.22(9)$
$\mathrm{N} 1-\mathrm{Ag} 1-\mathrm{O} 2^{\mathrm{i}}$	$92.58(8)$	$\mathrm{N} 2-\mathrm{Ag} 1-\mathrm{O} 4$	$75.16(9)$
$\mathrm{N} 1-\mathrm{Ag} 1-\mathrm{O} 4$	$115.41(8)$	$\mathrm{O}^{\mathrm{i}}-\mathrm{Ag} 1-\mathrm{O} 4^{\mathrm{ii}}$	$87.18(7)$

Symmetry codes: (i) $-x+1,-y,-z+1$; (ii) $-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{1}{2}$.

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 7-\mathrm{H} 7 \mathrm{C} \cdots \mathrm{O} 5^{\text {iii }}$	0.85 (2)	1.96 (2)	2.777 (4)	161 (4)
$\mathrm{O} 6-\mathrm{H} 6 A \cdots \mathrm{O} 3^{\text {iv }}$	0.84 (2)	1.88 (2)	2.706 (4)	166 (4)
O6-H6C $\cdots \mathrm{O}^{\text {v }}$	0.86 (2)	2.02 (2)	2.868 (4)	169 (4)
$\mathrm{O} 5-\mathrm{H} 5 \mathrm{C} \cdots \mathrm{O}^{\text {vi }}$	0.85 (2)	2.01 (2)	2.834 (4)	163 (5)
$\mathrm{O} 5-\mathrm{H} 5 \mathrm{D} \cdots \mathrm{O}^{\text {vii }}$	0.86 (2)	2.02 (2)	2.864 (4)	171 (4)
$\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{O} 6^{\text {vii }}$	0.84	1.89	2.726 (4)	178

metal-organic compounds

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

We thank the National Science Foundation (USA) for support for the X-ray facilities at The Univeristy of Akron under the grant CHE-0116041.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: MW2014).

References

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Good, N. E., Winget, G. D., Winter, W., Connolly, T. N., Izawa, S. \& Singh, R. M. M. (1966). Biochemistry. 5, 467-477.

Gregory, J. D. \& Sajdera, S. W. (1970). Science, 169, 97-98.
Jiang, H., Liu, Y., Ma, J., Zhang, W. \& Yang, J. (2008). Polyhedron, 27, $2595-$ 2602.

Jiang, H., Ma, J., Zhang, W., Liu, Y., Yang, J., Ping, G. \& Su, Z. (2008). Eur. J. Inorg. Chem. pp. 745-755.
Kaushal, V. \& Barnes, L. D. (1986). Anal. Biochem. 157, 291-294.
Lleu, P. L. \& Rebel, G. (1991). Anal. Biochem. 192, 215-218.
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Soares, H. M. V. M. \& Conde, P. C. F. L. (2000). Anal. Chim. Acta, 421, $103-$ 111.

Sokolowska, M. \& Bal, W. (2005). J. Inorg. Biochem. 99, 1653-1660.

supplementary materials

Acta Cryst. (2011). E67, m1178-m1179 [doi:10.1107/S160053681103008X]

Poly[[\{ μ_{3}-2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonato $\}$ silver(I)] trihydrate]

S. M. Bilinovich, M. J. Panzner, W. J. Youngs and T. C. Leeper

Comment

HEPES is one of twelve buffers introduced by Good and coworkers as ideal for biological studies based on their physiologically relevant buffering capacities. It was also initially stated that HEPES would not form complexes with metals (Good et al. 1966). However, several studies show that HEPES can form complexes with copper that account for interferences in protein quantification assays like Lowry and BCA (Gregory \& Sajdera, 1970; Lleu \& Rebel, 1991; Kaushal \& Barnes, 1986). In addition, recent electrochemical and spectroscopic studies have shown that HEPES can act as a weak chelator with lead(II) and copper(II) (Soares \& Conde, 2000; Sokolowska \& Bal, 2005). Due to the recent interest in studying the role that silver(I)-containing compounds play as medicinal agents, the identification of buffers that prevent precipitation or complex formation with silver(I) ion are needed. Based on their established properties it was surmised that one of Good's non-coordinating buffers would be ideal for such investigations. However, as is evident from the title compound, HEPES does in fact form a stable complex with silver(I) ion making it a poor choice for use with systems containing silver ions. In the title compound, the $\mathrm{Ag}(\mathrm{I})$ ion is coordinated by one nitrogen atom and one hydroxyl oxygen atom of a HEPES molecule, one nitrogen atom of a second HEPES molecule, and one sulfate oxygen atom from a third HEPES molecule affording a distorted see-saw geometry about the metal center. Precedence for similar weak $\mathrm{Ag} \cdots \mathrm{O}$ interactions as well as the distorted see-saw geometry can be found in the literature and by a search of the Cambridge Crystallographic Database (Jiang, Liu et al. 2008). As is indicated by the bond distances, the nitrogen atoms form covalent bonds with the $\mathrm{Ag}(\mathrm{I})$ atom (2.266 (3) and $2.280(3) \AA$) in a near linear fashion ($\left.\mathrm{N}-\mathrm{Ag}-\mathrm{N}=167.73(11)^{\circ}\right)$. The interactions of the hydroxyl and sulfate oxygen atoms with the $\mathrm{Ag}(\mathrm{I})$ ion are weaker $\left(\mathrm{HO} \cdots \mathrm{Ag}=2.581(2)\right.$ and $\left.\mathrm{O}_{2} \mathrm{SO} \cdots \mathrm{Ag}=2.666(2) \AA\right)$ but well within the sum of the Van der Waals radii for silver and oxygen ($3.24 \AA$). The interaction of HEPES with $\mathrm{Ag}(\mathrm{I})$ affords a layered two-dimensional network perpendicular to the c axis, and these layers are further associated into a three-dimensional network through hydrogen bonding with the water molecules, directly via water O6, of the structure (Figure 2).

Experimental

A 250 ml 1 M stock solution of HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) buffer was prepared by dissolving 59.57 grams of HEPES in 200 ml of water and adjusting the pH to 7 with 5 M NaOH before adjusting the volume to 250 ml . A 250 ml stock solution of $1 M$ silver nitrate was prepared by dissolving 41.96 grams in 250 ml of water. To form the compound, 90 ml of the $1 M$ silver nitrate stock solution was added to 10 ml of the $1 M$ HEPES buffer stock solution to yield final concentrations of 0.9 M silver nitrate and 0.1 M HEPES in the solution. After one hour the experiment had gone to completion and long gray needle-like crystals were observed.

Refinement

Methylene H atoms were calculated with a $\mathrm{C}-\mathrm{H}$ distances of $0.99 \AA$ and constrained to ride on the parent atom with $U_{\text {iso }}(\mathrm{H})$ $=1.2 U_{\mathrm{eq}}(\mathrm{C})$. The hydroxyl H atom of the HEPES molecule and the H atoms of the solvent water molecules were found in

supplementary materials

the difference Fourier map. The first was included as a riding contribution with an $\mathrm{O}-\mathrm{H}$ distance of $0.84 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.5 U_{\text {eq }}(\mathrm{O})$ while the others were refined with fixed displacement parameters $\left(U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})\right)$.

Figures

Fig. 1. Thermal ellipsoid plot depicting the bonding interaction of three HEPES molecules with one silver(I) atom affording a see-saw geometry. Hydrogen atoms and additional symmetry related molecules removed for clarity. Displacement ellipsoids shown at the 50% probability level.

Fig. 2. Packing view down the b axis of the title compound depicting the three-dimensional network created by the specific hydrogen bonding interaction of water molecule O6 with layers of $\mathrm{Ag}(\mathrm{I})$-HEPES.

Poly[[\{ μ_{3}-2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonato\}silver(I)] trihydrate]

Crystal data

$\left[\mathrm{Ag}\left(\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}\right)\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=399.21$
Monoclinic, $P 2_{1} / n$
Hall symbol: -P 2yn
$a=11.2811$ (19) \AA
$b=10.0973$ (17) \AA
$c=12.875(2) \AA$
$\beta=90.910(3)^{\circ}$
$V=1466.4(4) \AA^{3}$
$Z=4$
$F(000)=816$
$D_{\mathrm{x}}=1.808 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1601 reflections
$\theta=2.7-21.3^{\circ}$
$\mu=1.55 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Column, colorless
$0.25 \times 0.10 \times 0.07 \mathrm{~mm}$

Data collection

Bruker APEXI CCD
diffractometer
Radiation source: fine-focus sealed tube
2946 independent reflections
2446 reflections with $I>2 \sigma(I)$
graphite
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker 2001)
$T_{\text {min }}=0.699, T_{\text {max }}=0.900$
11308 measured reflections

$$
\begin{aligned}
& R_{\text {int }}=0.050 \\
& \theta_{\max }=26.3^{\circ}, \theta_{\min }=2.4^{\circ} \\
& h=-14 \rightarrow 14 \\
& k=-12 \rightarrow 11 \\
& l=-16 \rightarrow 16
\end{aligned}
$$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.090$
$S=1.09$

2946 reflections
190 parameters
9 restraints

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0356 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=1.58 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.73 \mathrm{e} \AA^{-3}$

Special details

Experimental. Two A level alerts are generated by cif check: Angle Calc 87.45 (5), Rep 94.22 (9), Dev.. 135.40 Sigma N2-AG1-O2 Angle Calc 89.17 (5), Rep 87.18 (7), Dev..135.40 Sigma O2-AG1-O4 Both of the reported angles were verified during refinement with SHELXL-97 and can be confirmed by analyzing the resulting cif with Mercury.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger. Distance and angle restraints were applied to the hydrogen atoms associated with the three solvent water molecules found from the difference Fourier map.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Ag1	$0.38547(2)$	$0.14705(2)$	$0.29401(2)$	$0.01471(11)$
S1	$0.68653(8)$	$-0.16901(8)$	$0.41427(7)$	$0.0135(2)$
O1	$0.6794(2)$	$-0.3109(2)$	$0.39089(19)$	$0.0177(6)$
O2	$0.7190(2)$	$-0.1418(2)$	$0.52171(19)$	$0.0189(6)$
O3	$0.7607(2)$	$-0.1011(3)$	$0.3391(2)$	$0.0196(6)$
O4	$0.5744(2)$	$0.2274(2)$	$0.39058(19)$	$0.0175(6)$
H4	0.6437	0.2101	0.3717	0.026^{*}

O5	$0.8863(3)$	$0.3405(3)$	$0.4864(2)$	$0.0317(7)$
H5C	$0.883(5)$	$0.412(3)$	$0.452(3)$	0.048^{*}
H5D	$0.862(4)$	$0.281(3)$	$0.444(3)$	0.048^{*}
O6	$0.7024(3)$	$0.6635(2)$	$0.1703(2)$	$0.0211(6)$
H6A	$0.707(4)$	$0.582(2)$	$0.158(3)$	0.032^{*}
H6C	$0.704(4)$	$0.666(4)$	$0.2369(15)$	0.032^{*}
O7	$0.0771(3)$	$0.4128(3)$	$0.6131(2)$	$0.0321(7)$
H7C	$0.027(3)$	$0.374(4)$	$0.574(3)$	0.048^{*}
H7D	$0.143(2)$	$0.375(4)$	$0.617(4)$	0.048^{*}
N1	$0.3695(2)$	$-0.0753(3)$	$0.2742(2)$	$0.0123(6)$
N2	$0.3799(3)$	$0.3721(3)$	$0.2809(2)$	$0.0142(7)$
C1	$0.2842(3)$	$-0.1321(3)$	$0.3490(3)$	$0.0139(7)$
H1B	0.3071	-0.1046	0.4203	0.017^{*}
H1A	0.2879	-0.2300	0.3458	0.017^{*}
C2	$0.3296(3)$	$-0.1120(4)$	$0.1675(3)$	$0.0148(8)$
H2B	0.3345	-0.2093	0.1593	0.018^{*}
H2A	0.3832	-0.0711	0.1166	0.018^{*}
C3	$0.2954(3)$	$0.4323(3)$	$0.3552(3)$	$0.0153(8)$
H3B	0.2998	0.5300	0.3503	0.018^{*}
H3A	0.3182	0.4064	0.4269	0.018^{*}
C4	$0.3408(3)$	$0.4125(3)$	$0.1743(3)$	$0.0140(7)$
H4A	0.3948	0.3735	0.1228	0.017^{*}
H4B	0.3454	0.5101	0.1681	0.017^{*}
C5	$0.4886(3)$	$-0.1349(3)$	$0.2912(3)$	$0.0124(7)$
H5B	0.5429	-0.1006	0.2379	0.015^{*}
H5A	0.4826	-0.2321	0.2820	0.015^{*}
C6	$0.5408(3)$	$-0.1060(4)$	$0.3980(3)$	$0.0144(8)$
H6D	0.4893	-0.1455	0.4512	0.017^{*}
H6B	0.5421	-0.0090	0.4091	0.017^{*}
C7	$0.5006(3)$	$0.4236(3)$	$0.3009(3)$	$0.0164(8)$
H7B	0.4966	0.5212	0.3076	0.020^{*}
H7A	0.5504	0.4031	0.2404	0.020^{*}
C8	$0.5599(3)$	$0.3672(3)$	$0.3982(3)$	$0.0187(8)$
H8B	0.6384	0.4094	0.4086	0.022^{*}
H8A	0.3881	0.4593	0.022^{*}	

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ag1	$0.01836(18)$	$0.00864(16)$	$0.01706(17)$	$-0.00008(10)$	$-0.00190(12)$	$-0.00012(11)$
S1	$0.0165(5)$	$0.0111(4)$	$0.0130(4)$	$0.0014(3)$	$-0.0011(4)$	$0.0000(3)$
O1	$0.0216(14)$	$0.0125(12)$	$0.0190(14)$	$0.0033(10)$	$-0.0010(12)$	$-0.0018(11)$
O2	$0.0219(15)$	$0.0213(14)$	$0.0133(13)$	$0.0004(11)$	$-0.0053(11)$	$-0.0043(11)$
O3	$0.0214(15)$	$0.0181(13)$	$0.0194(14)$	$-0.0005(11)$	$0.0043(12)$	$0.0007(11)$
O4	$0.0177(13)$	$0.0118(13)$	$0.0228(14)$	$0.0004(10)$	$-0.0014(11)$	$0.0000(11)$
O5	$0.0340(18)$	$0.0341(18)$	$0.0270(17)$	$-0.0089(14)$	$-0.0016(15)$	$-0.0027(13)$
O6	$0.0262(16)$	$0.0168(14)$	$0.0203(14)$	$0.0012(11)$	$0.0016(13)$	$-0.0001(12)$
O7	$0.0300(18)$	$0.0325(18)$	$0.0334(18)$	$0.0154(14)$	$-0.0098(14)$	$-0.0091(14)$

sup-4

supplementary materials

N1	$0.0110(16)$	$0.0115(15)$	$0.0142(16)$	$-0.0011(11)$	$0.0006(12)$	$0.0015(12)$
N2	$0.0151(17)$	$0.0123(15)$	$0.0151(16)$	$-0.0013(11)$	$0.0008(13)$	$0.0031(12)$
C1	$0.0163(19)$	$0.0119(18)$	$0.0134(18)$	$-0.0016(14)$	$0.0006(15)$	$-0.0001(14)$
C2	$0.019(2)$	$0.0154(18)$	$0.0097(17)$	$-0.0001(14)$	$0.0015(15)$	$-0.0012(14)$
C3	$0.0180(19)$	$0.0124(18)$	$0.0154(19)$	$0.0057(14)$	$0.0003(15)$	$-0.0006(15)$
C4	$0.0175(19)$	$0.0110(18)$	$0.0135(18)$	$0.0013(14)$	$0.0036(15)$	$0.0020(14)$
C5	$0.0164(19)$	$0.0091(17)$	$0.0117(17)$	$0.0020(13)$	$0.0000(15)$	$0.0015(14)$
C6	$0.0147(19)$	$0.0160(18)$	$0.0125(18)$	$0.0021(14)$	$-0.0026(15)$	$-0.0012(15)$
C7	$0.0143(19)$	$0.0111(18)$	$0.024(2)$	$-0.0033(14)$	$0.0002(16)$	$0.0017(16)$
C8	$0.019(2)$	$0.0133(19)$	$0.024(2)$	$-0.0012(14)$	$-0.0048(17)$	$-0.0046(16)$

Geometric parameters ($\AA,{ }^{\circ}$)

Ag1-N1	2.266 (3)
Ag1-N2	2.280 (3)
$\mathrm{Ag} 1-\mathrm{O} 2{ }^{\text {i }}$	2.666 (2)
Ag1-O4	2.581 (2)
S1-O2	1.452 (3)
S1-O3	1.461 (3)
S1-O1	1.466 (3)
S1-C6	1.772 (4)
O4-C8	1.425 (4)
O4-H4	0.8400
O5-H5C	0.851 (19)
O5-H5D	0.855 (18)
O6-H6A	0.839 (18)
O6-H6C	0.858 (18)
O7-H7C	0.848 (19)
O7-H7D	0.838 (19)
N1-C5	1.485 (4)
N1-C2	1.486 (4)
N1-C1	1.486 (4)
N2-C7	1.477 (4)
N2-C3	1.490 (4)
N2-C4	1.492 (4)
$\mathrm{N} 1-\mathrm{Ag} 1-\mathrm{N} 2$	167.73 (11)
$\mathrm{N} 1-\mathrm{Ag} 1-\mathrm{O} 2{ }^{\text {i }}$	92.58 (8)
N1—Ag1-O4	115.41 (8)
$\mathrm{N} 2{ }^{\text {iii }}-\mathrm{Ag} 1-\mathrm{O} 2{ }^{\text {i }}$	94.22 (9)
N 2 - Ag 1 - O 4	75.16 (9)
$\mathrm{O} 2-\mathrm{Ag} 1-\mathrm{O} 4^{\text {iii }}$	87.18 (7)
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{O} 3$	113.85 (16)
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{O} 1$	113.13 (14)
$\mathrm{O} 3-\mathrm{S} 1-\mathrm{O} 1$	110.65 (15)
O2-S1-C6	105.35 (16)
O3-S1-C6	107.02 (16)

$\mathrm{C} 1-\mathrm{C} 4{ }^{\text {ii }}$	1.506 (5)
C1-H1B	0.9900
C1-H1A	0.9900
$\mathrm{C} 2-\mathrm{C} 3{ }^{\text {ii }}$	1.503 (5)
C2-H2B	0.9900
C2-H2A	0.9900
C3-C2 $2^{\text {iii }}$	1.503 (5)
C3-H3B	0.9900
C3-H3A	0.9900
$\mathrm{C} 4-\mathrm{C} 1^{\text {iii }}$	1.506 (5)
C4-H4A	0.9900
C4-H4B	0.9900
C5-C6	1.515 (5)
C5-H5B	0.9900
C5-H5A	0.9900
C6-H6D	0.9900
C6-H6B	0.9900
C7-C8	1.521 (5)
C7-H7B	0.9900
C7-H7A	0.9900
C8-H8B	0.9900
C8-H8A	0.9900
$\mathrm{C} 3{ }^{\text {iii }}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.2
$\mathrm{H} 2 \mathrm{~B}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	107.9
$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 2{ }^{\text {iii }}$	111.2 (3)
N2-C3-H3B	109.4
$\mathrm{C} 2{ }^{\text {iiii }}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.4
N2-C3-H3A	109.4
C2 ${ }^{\text {iiii }}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.4
H3B-C3-H3A	108.0
$\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 1^{\text {iii }}$	111.3 (3)
N2-C4-H4A	109.4
C1 ${ }^{\text {iiii }}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	109.4

O1-S1-C6	106.21 (16)	N2-C4-H4B	109.4
C8-O4-H4	109.5	$\mathrm{C} 1{ }^{\text {iii }}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	109.4
H5C-O5-H5D	105 (4)	H4A-C4-H4B	108.0
H6A-O6-H6C	103 (3)	N1-C5-C6	113.1 (3)
H7C-O7-H7D	113 (4)	N1-C5-H5B	109.0
C5-N1-C2	107.1 (3)	C6-C5-H5B	109.0
C5-N1-C1	109.9 (3)	N1-C5-H5A	109.0
C2-N1-C1	108.2 (3)	C6-C5-H5A	109.0
C5-N1-Ag1	108.4 (2)	H5B-C5-H5A	107.8
C2-N1-Ag1	111.9 (2)	C5-C6-S1	112.6 (2)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Ag} 1$	111.2 (2)	C5-C6-H6D	109.1
C7-N2-C3	110.0 (3)	S1-C6-H6D	109.1
C7-N2-C4	108.8 (3)	C5-C6-H6B	109.1
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 4$	107.2 (3)	S1-C6-H6B	109.1
C7-N2-Ag1	108.3 (2)	H6D-C6-H6B	107.8
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{Ag} 1$	112.1 (2)	N2-C7-C8	113.8 (3)
$\mathrm{C} 4-\mathrm{N} 2-\mathrm{Ag} 1$	110.4 (2)	N2-C7-H7B	108.8
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 4{ }^{\text {ii }}$	111.7 (3)	C8-C7-H7B	108.8
N1-C1-H1B	109.3	N2-C7-H7A	108.8
C4ii ${ }^{\text {ii }} \mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.3	C8-C7-H7A	108.8
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.3	H7B-C7-H7A	107.7
$\mathrm{C} 4{ }^{\text {ii }}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.3	O4-C8-C7	111.4 (3)
H1B-C1-H1A	108.0	O4-C8-H8B	109.4
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3{ }^{\text {ii }}$	112.0 (3)	C7-C8-H8B	109.4
N1-C2-H2B	109.2	O4-C8-H8A	109.4
C3ii ${ }^{\text {ii }} \mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.2	C7-C8-H8A	109.4
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.2	H8B-C8-H8A	108.0
$\mathrm{N} 2-\mathrm{Ag} 1-\mathrm{N} 1-\mathrm{C} 5$	130.6 (5)	C7-N2-C4-C1 $1^{\text {iii }}$	-177.5 (3)
$\mathrm{N} 2-\mathrm{Ag} 1-\mathrm{N} 1-\mathrm{C} 2$	12.7 (6)	C3-N2-C4-C1iii	-58.5 (4)
$\mathrm{N} 2-\mathrm{Ag} 1-\mathrm{N} 1-\mathrm{C} 1$	-108.5 (5)	$\mathrm{Ag} 1-\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 1^{\text {iii }}$	63.8 (3)
N1-Ag1-N2-C7	-131.4 (5)	C2-N1-C5-C6	-179.8 (3)
$\mathrm{N} 1-\mathrm{Ag} 1-\mathrm{N} 2-\mathrm{C} 3$	107.1 (5)	C1-N1-C5-C6	-62.4 (4)
N1-Ag1-N2-C4	-12.4 (6)	$\mathrm{Ag} 1-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 6$	59.3 (3)
C5-N1-C1-C4 $4^{\text {ii }}$	-172.7 (3)	N1-C5-C6-S1	-176.3 (2)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 4{ }^{\text {ii }}$	-56.0 (4)	$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 6-\mathrm{C} 5$	-175.8 (2)
$\mathrm{Ag} 1-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 4^{\text {ii }}$	67.3 (3)	O3-S1-C6-C5	62.7 (3)
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3{ }^{\text {ii }}$	174.6 (3)	O1-S1-C6-C5	-55.5 (3)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3{ }^{\text {ii }}$	56.1 (4)	C3-N2-C7-C8	74.0 (4)
Ag1-N1-C2-C3 ${ }^{\text {ii }}$	-66.7 (3)	C4-N2-C7-C8	-168.8 (3)
$\mathrm{C} 7-\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 2 \mathrm{iii}$	176.5 (3)	Ag1-N2-C7-C8	-48.8 (3)
$\mathrm{C} 4-\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 2{ }^{\mathrm{iii}}$	58.4 (4)	N2-C7-C8-O4	61.9 (4)
Ag1-N2-C3-C2 ${ }^{\text {iii }}$	-62.9 (3)		

Symmetry codes: (i) $-x+1,-y,-z+1$; (ii) $-x+1 / 2, y-1 / 2,-z+1 / 2$; (iii) $-x+1 / 2, y+1 / 2,-z+1 / 2$.

supplementary materials

Hydrogen-bond geometry ($A,{ }^{\circ}$)

D-H \cdots A	$D-\mathrm{H}$	H \cdots A	D \cdots A	$D-\mathrm{H} \cdots A$
O7-H7C $\cdots \mathrm{O}^{\text {iv }}$	0.85 (2)	1.96 (2)	2.777 (4)	161 (4)
O6-H6A $\cdots 3^{\text {v }}$	0.84 (2)	1.88 (2)	2.706 (4)	166 (4)
O6-H6C $\cdots \mathrm{O}^{\text {vi }}$	0.86 (2)	2.02 (2)	2.868 (4)	169 (4)
$\mathrm{O} 5-\mathrm{H} 5 \mathrm{C} \cdots \mathrm{O} 7^{\text {vii }}$	0.85 (2)	2.01 (2)	2.834 (4)	163 (5)
O5-H5D $\cdots 6^{\text {viii }}$	0.86 (2)	2.02 (2)	2.864 (4)	171 (4)
O4-H4 $\cdots \mathrm{O}^{\text {viii }}$	0.84	1.89	2.726 (4)	178

Symmetry codes: (iv) $x-1, y, z$; (v) $-x+3 / 2, y+1 / 2,-z+1 / 2$; (vi) $x, y+1, z$; (vii) $-x+1,-y+1,-z+1$; (viii) $-x+3 / 2, y-1 / 2,-z+1 / 2$.

Fig. 1

Fig. 2

