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Abstract

In the process of applying a plant protection product mixed with water (spray mixture) at the

prescribed concentration with conventional sprayers for chemical protection of tree cano-

pies in an orchard, standard models are used to express the dose rate of the plant protection

product. Characteristic properties of the tree canopy in an orchard are not taken into consid-

eration. Such models result in fixed quantities of spray mixture being sprayed through indi-

vidual nozzles into a tree canopy. In this research work, an autonomous system is

presented, which ensures a controlled quantity of spray mixture sprayed through the noz-

zles onto different tree canopy segments. The autonomous system is based on a fuzzy logic

system (FLS) that includes information about the estimated leaf area to ensure more appro-

priate control of the spray mixture. An integral part of the FLS is a fuzzy logic controller for

three electromagnetic valves operating in the pulse width mode and installed on the axial

sprayer prototype. The results showed that, with the FLS, it was possible to control the

quantity of spray mixture in the specific range depending on the estimated value of the leaf

area, with a quantitative spray mixture average saving of 17.92%. For the phenological

growth stage BBCH 91, this method represents a powerful tool for reducing the quantity of

spray mixture for plant protection in the future.

Introduction

Plants can be protected in different ways, chemical protection with plant protection products

(PPP) mixed with water, i.e. spray mixture, being the most important one. The purpose of

using this method is to destroy harmful organisms and to prevent infection of plants; however,

only part of the spray mixture remains on the plant, while part of it goes into the surrounding

environment. The remains of the spray mixture lead to pollution of the land, groundwater, air,

plants and animals, which represents a serious issue in modern agriculture, more specifically

in fruit production. For stable and sustainable fruit production, effects harmful to the environ-

ment we live in will have to be reduced. Smaller spray mixture quantities will have to be
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applied; however, the quality of crop protection in an orchard will have to be retained. This

can be ensured with a selective and precise spray mixture application process using an

advanced measurement and control system, whereby the process of determining the spray

mixture dose rate through the nozzles will be controlled on the basis of an intelligent fuzzy

logic system (hereinafter FLS).

Empirical dose rate determination in permanent crops

For dose rate calculation in permanent crops, fruit growers use a range of empirical models

(the per hectare model, TRV model, per leaf surface wall model, etc.) recommended in a series

of recent publications [1–6]. These models enable a fixed calculation of the quantities of water

and PPP in an orchard. Four decades ago, investigators [2] and [7] established that it would be

sensible to consider the characteristic properties of tree canopies in the application process

and that it is not suitable to apply the same dose to both small and large tree canopies in

orchards, without taking into consideration the total leaf surface in a tree canopy.

Decision-making models for spray mixture dose rate application in

permanent crops

There are many different deciosion-making dose rate control models for permanent crops. In

the beginning, the first such models were based on the principle of simple algorithms (deci-

sion-making models) that allowed spray mixture control in the ON/OFF mode. Later, owing

to the simple decision-making logic of dose rate control, models began to be developed that

allowed dose rate control in a discrete way. In recent decades, models enabling continuous

dose rate control have begun to be developed.

The ON/OFF control mode is based on Boolean logic, with two possible values: 0 and 1.

Dose rate control is based on the information about the presence of the tree canopy that is

included in the decision-making model; on the basis of this, the decision-making model

enables dose rate control. Investigators [8] were the first to describe the simple decision-mak-

ing model including an ON/OFF control mode and an optical measurement system to detect

tree canopies. Investigator [9] was the first to develop a commercially accessible patented

sprayer prototype. Investigator [9] placed an ultrasound measurement system on the sprayer

prototype to enable the detection of tree canopies in an orchard and, based on the measured

details about the distance and using the ON/OFF mode, he activated the dose rate application

process through the nozzles at five different heights. As pointed out in [10] describe the ON/

OFF dose rate control model based on the Relative Load Factor (RLF). The distance measured

by using ultrasound measurement components at three different heights (at the top, in the

middle and in the lower part of a tree canopy) was taken into consideration for calculating the

RLF [10]. In recent publication [11] developed an ON/OFF dose rate control mode that

enabled control only in case of moving the sprayer and simultaneous detection of a tree canopy

at a distance interval measured with an ultrasound measurement system. A similar system was

used by [12], except that they used optical sensors to detect tree canopies in an orchard. For

dose rate control, investigators [13] used a decision-making model based on the detection of

the leaf surface density with a dedicated ultrasound measurement instrument. In recent publi-

cation [14] developed a decision-making model based on Lukasiewitz logic and enabling dose

rate control using the following three discrete values: no dose, minimal dose and maximum

dose. Investigators [15] established that, in order to ensure uniform dose rate application and

reduced loss of spray mixture in the surroundings, a continuous real-time control system

should be used and determined the maximum spray mixture dose rate depending on the larg-

est measured tree canopy width in an orchard and the minimum value when a tree canopy was
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absent. For continuous dose rate control, used a control module to generate pulse-width sig-

nals based on which the dose rate application was controlled between 0% and 100% [16]. In

recent publication [17] placed a LIDAR measurement system on the sprayer prototype. With

the LIDAR measurement system, they enabled measurement of the tree canopy volume in an

orchard. Information about the measured tree canopy volume was included in the decision-

making model. Via a proportionate control system, the decision-making model enabled con-

tinuous spray mixture dose rate control. As one of the dose rate reduction possibilities in a

recent publications [18, 19] recommend the decision-making model for continuous dose rate

control in orchards, based on the ratio of tree canopy height to row spacing.

Fruit growers’ wish to be able to apply spray mixture drops at higher travel speeds of a

sprayer is growing; this would shorten the spray mixture application process. Additionally,

dose rate control could be ensured with electronic control systems that work on intelligent

decision-making models. Certain deficiencies can be detected in relation to all the above deci-

sion-making models. Dose rate control in the ON/OFF mode is the simplest; the decision-

making models open or close the EMV through which the spray mixture is expressed, based

on information about the presence or absence of a tree canopy at the selected distance interval.

Investigators [14] enhanced the dose rate control, using a decision-making model that enables

dose rate control based on three discrete values. However, it must be stressed that the model is

still based on the principle of simple detection of presence or absence of tree canopies. Only

after the development of the LIDAR measurement technology did investigators [17] enable

measurement of the tree canopy volume, on the basis of which a more precise dose rate control

through proporotionate EMV became possible.

In recent years investigators [20] have proposed a real-time method based on an array of

ultrasonic sensors to estimate the canopy density in apple orchards and vineyards. Such esti-

mation is used as a reference for adjusting the spraying machine parameters according to the

canopy in order to improve droplet deposition on leaves while avoiding drift. In the research

work [21], the authors described the application of the Kinect system in the area of precision

spray control. For dose-response studies in Plant Protection, logarithmic sprayers are used for

a wide range of pesticides [22]. Investigators [23] presented a novel, autonomous, air-assisted

sprayer, which is designed with a genetic algorithm to provide automatic spraying and to

improve the uniformity of droplet deposition. However, it must be stressed that each of the

above-mentioned continuous or other decision-making models is based on a strictly deter-

mined mathematical model.

As shown in a series of recent publications [24–31], to develop a genuinely useful statistical

predictor for a statistical system, one should observe the guidelines of Chou’s 5-step rule [32]

and proceed deliberately through the following five guidelines: (i) how to construct or select a

valid benchmark dataset to train and test the predictor; (ii) how to formulate the statistical

samples with an effective mathematical expression that can truly reflect their intrinsic correla-

tion with the target to be predicted; (iii) how to introduce or develop a powerful algorithm (or

engine) to operate the prediction; (iv) how to properly perform cross-validation tests to objec-

tively evaluate the anticipated accuracy of the predictor; (v) how to establish a user-friendly

web-server for the predictor that is accessible to the public.

Materials and methods

Using a FLS to determine dose rate in permanent crops

In the control technique, complex dynamic systems with non-linear behaviour or behaviour

changing over time are often present; thus, it is often difficult to select variables and
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characteristics of model parameters. The fuzzy model had been used by many previous investi-

gators (see, e.g., [33–39]).

Based on fuzzy control models, human experience (of fruit growers and phytopathologists)

can be used and included in the dose rate control process, as pointed in a recent publications

(see, e.g., [40–41]. Thus, control problems can be solved without determining a precise mathe-

matical model, which is required by the classic control approach. If compared to the classic

approach, in the dose rate control process, fuzzy models can include an optional number of

process variables (measured leaf area and volume, sprayer travel speed, chemical, phytophar-

maceutical and biological properties of the functioning of the spray mixture, experience of

phythopathologists and fruit growers, orchard age and type, other orchard-specific properties,

etc.), and it is possible to enhance the dynamic properties of the control process for spray mix-

ture application. In the literature available to us, no contributions by other authors were found

using FLS for PPP application in permanent crops.

Experiment design

The research work consisted of two main parts. The first part involved determining the tree

canopy with the LIDAR measuring system compared to the manually measured leaf area index

(LAI) and the number of leaves (Fig 1). The second part included a laboratory trial of spraying

with a FLS and is presented in (Fig 2).

Orchard. Experiments were carried out in the research orchard (46˚30’9.01 ’’ N, 15˚

37’38.94 ’’ E) owned by the University of Maribor, Faculty of Agriculture and Life Sciences,

Slovenia. The size of the orchard surface was 41,000 m2. In this intensive orchard plantation,

different apple varieties were grafted on a M9 dwarf rootstock, which limits the growth of the

above-ground part of the tree (noble varieties), enters earlier into the fruit bearing period and

requires a smaller growing crown to achieve the optimum yield. The apple trees were grown in

the "narrow spindle" form, which improves the overall volume of trees by intensive cutting.

For evaluating the leaf area index, the following varieties of apple trees were randomly selected:

(a) ’Golden delicious’ (5 years old), (b) ’Jonagold’ (7 years old) and (c) ’Gala’ (20 years old), at

the BBCH91 phenological growth phase, according to recent publication [42].

Determination of the tree canopy with a LIDAR measuring system and

manual counting of leaves and leaf area index

For reconstructing the tree canopy, the density of the leaf was separately measured for the left

and right half of the tree with the LIDAR measuring system, which was mounted on a tractor.

When the tractor was moving between two rows of trees in the orchard, measurements of dis-

tance with LIDAR were carried out on the basis of the laser beam time needed for reflecting

the laser light from the left to the right half of the tree. Data was simultaneously recorded in

real time on a computer hard drive. The number of points was individually determined from

the cloud of points for four individual segments of the left halh and four individual segments

of the right half of the tree—altogether 8 segments for each tree (Fig 1, left). The particular val-

ues of the number of points in the cloud were then compared to the actual leaf area, which was

defined on the basis of manual measurements for each individual segment separately (Fig 1,

right). For analysis of the leaf area, 20 trees were randomly selected in the orchard.

LIDAR sensor SICK LMS111 was used, located 140 cm from the ground to the front steel

console of the tractor. LIDAR was connected to the Ethernet communication interface with

the data storage computer. The SICK LMS111 sensor belongs to the group of active contactless

meters and is especially suitable for measuring the natural characteristics of the tree canopy in

the orchard. With this sensor, we can measure the distance in the two-dimensional plane in
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the 270˚ view sector at a 0.5˚ resolution. The measurement range of the sensor is from 0.5 m to

20 m at the 50 Hz acquisition frequency and the 12 V DC voltage supply.

Manual measurements of the leaf surface in the experiment were carried out by removing

leaves from each individual tree manually from the left and right half of the canopy in the 50

cm width and at heights between 50 to 250 cm. We decided to divide the segments by height,

as in (Fig 1), because the spray nozzles are aligned at the same distance. In depth, the segments

extended to the middle line of the row represented by the trunk of the tree (Fig 1). The number

of leaves and the leaf area index were determined for each individual segment according to the

method presented by publication [43].

FLS for dosage spray mixture control on the principle of a fuzzy logic

system

The second part of the research work consisted of the experiment, which included the FLS for

dosage spray mixture control. This is shown schematically in (Fig 2). This part of the experi-

ment was carried out under laboratory conditions.

For a FLS (Fig 2 –FLS), we developed an intelligent fuzzy algorithm in the LabVIEW 2015

Fuzzy System Designer (hereinafter, FSD) software package and via a graphic user interface

for observing its operation. The FLS was influenced by the width of the duty cycle pulse-width

Fig 1. Reconstruction of the tree crown on the principle of measurement with the LIDAR measuring system (left) and manual measurement of the leaf area (right).

https://doi.org/10.1371/journal.pone.0214315.g001
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Fig 2. Implementation of the experiment with an automated modular system.

https://doi.org/10.1371/journal.pone.0214315.g002

Fig 3. The structure of partial procedure (fuzzification, inference, defuzzification) for dosage control example on a segment, for example, when two rules are

valid.

https://doi.org/10.1371/journal.pone.0214315.g003
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generated signal (Fig 2 - PWM signal generator), which was physically generated at the output

of the digital module. After starting an automated dosage control process with a FLS, a dosage

of spray mixture (Fig 2 –Sprayer EMV) was measured on each individual segment. For opera-

tion, a FLS needs the LIDAR data which were presented in subsection Determination of the

tree canopy with a LIDAR measuring system and manual counting of leaves and leaf area

index (Fig 2 - Database).

The procedure for designing a FLS based on a fuzzy logic controller consists of three partial

procedures: (1) the FUZZIFICATION procedure, (2) the INFERENCE procedure and (3) the

DEFUZZIFICATION procedure. All partial procedures were planned using the LabVIEW

2015, FSD software package. All partial implementation of procedures and their sub-processes

are illustrated using the example of dosage spray mixture control on an individual tree canopy

segment, where the structure of the entire modular automated system for dosage control, as

shown in (Fig 3), Fuzzy controller, has four inputs and outputs. These are (a) the input variable

IV1 (number of point clouds in the 1st segment), (b) the input variable IV2 (number of point

clouds in the 2nd segment), (c) the input variable IV3 (number of point clouds in the 3rd seg-

ment), (d) the input variable IV4 (number of point clouds in the 4th segment), (e) the output

variable OV1 (variable coefficient on the 1st segment), (f) the output variable OV2 (variable

coefficient on the 2nd segment), (g) the output variable OV3 (variable coefficient on the 3rd

segment), and (h) the output variable OV4 (variable coefficient on the 4th segment).

The fuzzification procedure. The number of input variables (4) was determined by the

number of nozzles on the prototype sprayer. We wanted to keep the prototype adequately sim-

ple, while at the same time providing good plant protection through sprayer operation flexibil-

ity. The first part of the procedure (fuzzification) served to determine the set, interval area and

fuzzification of the input variables, named IV1-IV4. First, we determined a set of input and

output variables, named OV1-OV4. A set of input and output variables were defined by four

inputs (IV1, IV2, IV3 and IV4) and four outputs (OV1, OV2, OV3 and OV4). This means that

in controlling dosage on an individual segment of the left and right halves of the tree canopy,

at the input of the fuzzy logic controller, four input variables were added, and at the output of

the controller four output variables were added (Fig 2). This means that, for each segment of

the tree canopy, one input and one output variable are defined. All inputs to and outputs from

the fuzzy controller were classified according to the interval areas, which represent those areas

where the input (measurement) and output setpoints appear. In our case, the crisp value of the

input variables was defined, so that IV1min = IV2min = IV3min = IV4min = 0; IV1max = IV2max =

IV3max = IV4max = 1551, where 1551 is the maximum measured number of point clouds with

the LIDAR measurement system on an individual segment. Crisp values of output variables

were represented by OV1 = OV2 = OV3 = OV4 = 100%, so that OV1min = OV2min = OV3min

= OV4min = 0%; OV1max = OV2max = OV3max = OV4max = 100%.

Fuzzification of the input and output variables is determined subjectively, depending on the

natural properties of the tree canopy, the impact of disease on the tree canopy in the orchard

and the fruit grower’s experience, which control the consumption of the spray mixture dosage,

depending on the different tree canopy stages. The tree canopy properties were determined by

the number of point clouds on an individual segment, which represents the estimated size of

the leaf surface on the individual segment. The estimated values of the leaf surface on the indi-

vidual tree canopy segment were included in the dosage spray mixture process control. Fuzzifi-

cation of the crisp input and output variables values was carried out through membership

functions (Fig 3), where the trapezoidal form of the affiliation level has a decisive influence on

the behavior of the fuzzy controller and represents a basic form of control technology. In our

case of dosage control on an individual segment, the following membership functions were

defined, which actually represent a discretization level of the FLS:

Plant protection product dose rate estimation using a fuzzy decision-making model
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✓ input membership functions μIV1 to μIV4 and

✓ output membership functions μOV1 to μOV4.

Individual input and output membership functions represent three levels of membership,

where, for parametric representation, normalized values of the levels used functions of trape-

zoidal form with parameters [x1, x2, x3, x4] for input variables (number of point clouds) and

parameters [y1, y2, y3, y4] for output variables (duty cycle width of pulse-width generated sig-

nal). For the example of dosage control on an individual tree canopy segment, the following

trapezoid forms of affiliation were defined (written in the form of normalized values), with

their terminological descriptions presented in Table 1. We have followed standard procedure

according to [44], by doing so we wanted to increase the dosage rate in selected individual tree

canopy segments and provide adequate plant protection and yield. Other choices of functions

enable higher dosage rate reduction, but the plant protection is questionable.

Based on the three levels of membership defining the individual input and output member-

ship functions of the fuzzy controller, it was demonstrated that the parameter in the form of

the number of point clouds can partly belong to a set and can form part of two sets.

Procedure inference. In the second partial procedure (inference), the composition of a

set of rules of control or the composition of the control algorithm were defined and inference

operators were formed. A set of control rules forms one of the most important members of the

FLS, because with their help, we can connect the input and output variables. A set of control

rules was formed from experience (among fruit growers, phytopathologists, leaf area measure-

ment etc.). It is based on good fruit-growing practice, which will be discussed later, along with

the individual set rules in Table 2. Based on a set of rules Table 2, the input and output vari-

ables were connected; these affect the dynamic behavior of the FLS. The language description

of the control system for controlling the dosage of the spray mixture on an individual tree can-

opy segment was defined as a set of rules using the basic Eq (1), which is written in the follow-

ing form for the case of Rule 1 from Table 2:

if ðIV1 ¼ LLMS AND IV2 ¼ LLMS AND IV3 ¼ LLMS AND IV4 ¼ LLMSÞ then ðOV1

¼ LOEMV AND OV2 ¼ LOEMV AND OV3 ¼ LOEMV AND OV4 ¼ LOEMVÞð1Þ

Other rules are derived in the same way according to Table 2. It includes all possible combina-

tions of input variables by segment—in our example 81 rules. Number of rules is calculated as:

number of input affiliation label levelsnumber of input variables = 81. For each such rule, we have

decided to create one set of output variables (OV1-OV4).

The main goal of the linguistic description of the control system for dosage control on an

individual tree canopy segment with the rules ''IF–THEN'' is the realization of optimal dosage

control, which the fuzzy input information processed in the output. The following sections

Table 1. Terminological affiliation descriptions for trapezoidal forms which defined the individual input and output membership functions.

Terminological label of

affiliation level

Description of terminological

affiliation label level

Normalized trapezoidal functions forms with parameters, representing the number of points

clouds duty cycle width of pulse-width generated signal in [%]

LLMS Low number of point clouds x1 = 0, x2 = 0, x3 = 250, x4 = 400

MLMS Medium number of point clouds x1 = 250, x2 = 300, x3 = 800, x4 = 850

HLMS High number of point clouds x1 = 700, x2 = 850, x3 = 1551, x4 = 1551

LOEMV Low open EMV y1 = 0%, y2 = 0%, y3 = 30%, y4 = 35%

MOEMV Medium open EMV y1 = 30%, y2 = 35%, y3 = 75%, y4 = 80%

HOEMV High open EMV y1 = 75%, y2 = 80%, y3 = 100%, y4 = 100%

https://doi.org/10.1371/journal.pone.0214315.t001
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Table 2. Number of rules that influence spray mixture process control.

Rule Input variables Output variables

R IV1 IV2 IV3 IV4 OV1 OV 2 OV 3 OV 4

1 LLMS LLMS LLMS LLMS LOEMV LOEMV LOEMV LOEMV

2 LLMS LLMS LLMS MLMS LOEMV LOEMV LOEMV MOEMV

3 LLMS LLMS LLMS HLMS LOEMV LOEMV MOEMV HOEMV

4 LLMS LLMS MLMS LLMS LOEMV LOEMV MOEMV MOEMV

5 LLMS LLMS HLMS LLMS LOEMV MOEMV HOEMV MOEMV

6 LLMS MLMS LLMS LLMS MOEMV MOEMV LOEMV LOEMV

7 LLMS HLMS LLMS LLMS MOEMV HOEMV MOEMV LOEMV

8 LLMS LLMS MLMS MLMS LOEMV LOEMV MOEMV MOEMV

9 LLMS LLMS HLMS HLMS LOEMV MOEMV HOEMV HOEMV

10 LLMS LLMS MLMS HLMS LOEMV LOEMV MOEMV HOEMV

11 LLMS LLMS HLMS MLMS LOEMV MOEMV HOEMV MOEMV

12 LLMS MLMS MLMS MLMS MOEMV MOEMV MOEMV MOEMV

13 LLMS HLMS HLMS HLMS MOEMV HOEMV HOEMV HOEMV

14 LLMS MLMS MLMS LLMS MOEMV MOEMV MOEMV MOEMV

15 LLMS HLMS HLMS LLMS MOEMV HOEMV HOEMV MOEMV

16 LLMS MLMS LLMS MLMS MOEMV MOEMV MOEMV MOEMV

17 LLMS MLMS LLMS HLMS MOEMV MOEMV MOEMV HOEMV

18 LLMS HLMS LLMS HLMS MOEMV HOEMV MOEMV HOEMV

19 LLMS HLMS HLMS MLMS MOEMV HOEMV HOEMV MOEMV

20 LLMS MLMS MLMS HLMS MOEMV MOEMV MOEMV HOEMV

21 LLMS MLMS HLMS LLMS MOEMV MOEMV HOEMV MOEMV

22 LLMS HLMS MLMS LLMS MOEMV HOEMV MOEMV MOEMV

23 LLMS HLMS LLMS MLMS MOEMV HOEMV MOEMV MOEMV

24 LLMS HLMS MLMS MLMS MOEMV HOEMV MOEMV MOEMV

25 LLMS MLMS HLMS HLMS MOEMV MOEMV HOEMV HOEMV

26 LLMS MLMS HLMS MLMS MOEMV MOEMV HOEMV MOEMV

27 LLMS HLMS MLMS HLMS MOEMV HOEMV MOEMV HOEMV

28 MLMS LLMS LLMS LLMS MOEMV LOEMV LOEMV LOEMV

29 MLMS LLMS LLMS MLMS MOEMV LOEMV LOEMV MOEMV

30 MLMS LLMS LLMS HLMS MOEMV LOEMV MOEMV HOEMV

31 MLMS LLMS MLMS LLMS MOEMV MOEMV MOEMV MOEMV

32 MLMS LLMS HLMS LLMS MOEMV MOEMV HOEMV MOEMV

33 MLMS MLMS LLMS LLMS MOEMV MOEMV LOEMV LOEMV

34 MLMS HLMS LLMS LLMS MOEMV HOEMV MOEMV LOEMV

35 MLMS LLMS MLMS MLMS MOEMV MOEMV MOEMV MOEMV

36 MLMS LLMS HLMS HLMS MOEMV MOEMV HOEMV HOEMV

37 MLMS LLMS MLMS HLMS MOEMV MOEMV MOEMV HOEMV

38 MLMS LLMS HLMS MLMS MOEMV MOEMV HOEMV MOEMV

39 MLMS MLMS MLMS MLMS MOEMV MOEMV MOEMV MOEMV

40 MLMS HLMS HLMS HLMS MOEMV HOEMV HOEMV HOEMV

41 MLMS MLMS MLMS LLMS MOEMV MOEMV MOEMV MOEMV

42 MLMS HLMS HLMS LLMS MOEMV HOEMV HOEMV MOEMV

43 MLMS MLMS LLMS MLMS MOEMV MOEMV MOEMV MOEMV

44 MLMS MLMS LLMS HLMS MOEMV MOEMV MOEMV HOEMV

45 MLMS HLMS LLMS HLMS MOEMV HOEMV MOEMV HOEMV

46 MLMS HLMS HLMS MLMS MOEMV HOEMV HOEMV MOEMV

(Continued)
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describe selected, individual rules that are important for good fruit growing practice (see

Table 2, marked in green).

Interpretation of individual rules relevant to fruit growing practice. The rule R-1 in

Table 2 reflects the state of the plant in the initial growth phase. Since all input variables in the

case of R-1 are the same (LLMS), it was decided to maintain all output variables the same

(LOEMV). All cases were treated similarly when all input variables were of the same value, eg.

MLMS (rule R-39, Table 2). Then all output variables were assigned the same value, that is

MOEMV. The following rule R-24 is given for the influence of scab, a disease which can

completely destroy the tree canopy. Scab attacks the tree canopy from the bottom upwards. In

all cases, when the difference between the two adjacent segments is different for two levels,

Table 2. (Continued)

Rule Input variables Output variables

R IV1 IV2 IV3 IV4 OV1 OV 2 OV 3 OV 4

47 MLMS MLMS MLMS HLMS MOEMV MOEMV MOEMV HOEMV

48 MLMS MLMS HLMS LLMS MOEMV MOEMV HOEMV MOEMV

49 MLMS HLMS MLMS LLMS MOEMV HOEMV MOEMV MOEMV

50 MLMS HLMS LLMS MLMS MOEMV HOEMV MOEMV MOEMV

51 MLMS HLMS MLMS MLMS MOEMV HOEMV MOEMV MOEMV

52 MLMS MLMS HLMS HLMS MOEMV MOEMV HOEMV HOEMV

53 MLMS MLMS HLMS MLMS MOEMV MOEMV HOEMV MOEMV

54 MLMS HLMS MLMS HLMS MOEMV HOEMV MOEMV HOEMV

55 HLMS LLMS LLMS LLMS HOEMV MOEMV LOEMV LOEMV

56 HLMS LLMS LLMS MLMS HOEMV MOEMV LOEMV MOEMV

57 HLMS LLMS LLMS HLMS HOEMV MOEMV MOEMV HOEMV

58 HLMS LLMS MLMS LLMS HOEMV MOEMV MOEMV MOEMV

59 HLMS LLMS HLMS LLMS HOEMV MOEMV HOEMV MOEMV

60 HLMS MLMS LLMS LLMS HOEMV MOEMV LOEMV LOEMV

61 HLMS HLMS LLMS LLMS HOEMV HOEMV MOEMV LOEMV

62 HLMS LLMS MLMS MLMS HOEMV MOEMV MOEMV MOEMV

63 HLMS LLMS HLMS HLMS HOEMV MOEMV HOEMV HOEMV

64 HLMS LLMS MLMS HLMS HOEMV MOEMV MOEMV HOEMV

65 HLMS LLMS HLMS MLMS HOEMV MOEMV HOEMV MOEMV

66 HLMS MLMS MLMS MLMS HOEMV MOEMV MOEMV MOEMV

67 HLMS HLMS HLMS HLMS HOEMV HOEMV HOEMV HOEMV

68 HLMS MLMS MLMS LLMS HOEMV MOEMV MOEMV MOEMV

69 HLMS HLMS HLMS LLMS HOEMV HOEMV HOEMV MOEMV

70 HLMS MLMS LLMS MLMS HOEMV MOEMV MOEMV MOEMV

71 HLMS MLMS LLMS HLMS HOEMV MOEMV MOEMV HOEMV

72 HLMS HLMS LLMS HLMS HOEMV HOEMV MOEMV HOEMV

73 HLMS HLMS HLMS MLMS HOEMV HOEMV HOEMV MOEMV

74 HLMS MLMS MLMS HLMS HOEMV MOEMV MOEMV HOEMV

75 HLMS MLMS HLMS LLMS HOEMV MOEMV HOEMV MOEMV

76 HLMS HLMS MLMS LLMS HOEMV HOEMV MOEMV MOEMV

77 HLMS HLMS LLMS MLMS HOEMV HOEMV MOEMV MOEMV

78 HLMS HLMS MLMS MLMS HOEMV HOEMV MOEMV MOEMV

79 HLMS MLMS HLMS HLMS HOEMV MOEMV HOEMV HOEMV

80 HLMS MLMS HLMS MLMS HOEMV MOEMV HOEMV MOEMV

81 HLMS HLMS MLMS HLMS HOEMV HOEMV MOEMV HOEMV

https://doi.org/10.1371/journal.pone.0214315.t002
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then a lower level of membership on the lower segment is raised by one level. For the R-24

rule, the output variables OV1 were assigned the value MOEMV and not LOEMV.

Further explanation is also needed for examples when the value of the input variables on

the top of the tree canopy (upper segment 4) for two levels were lower than in one segment

lower (segment 3). Such a case appears, for example, in rule R-75. The lower vertical segment 3

with a large number of leaves hid the laser beam path, which in the upper segment 4 apparently

measures a lower value number of point clouds. The LIDAR measurement system is posi-

tioned substantially lower than the upper segment 4, while the laser beams always derive from

the same point in the LIDAR sensor (LMS111). The phenomenon of leaves obscuring each

other and overlapping between the third and fourth tree canopy segment was described in sub-

section Results of LIDAR measurements and comparison with results of the manually mea-

sured leaf area (the minimum correlation coefficient was measured in the fourth segment,

R = 0.1536). By following the R-75 rule, insufficient estimated leaf area value on fourth seg-

ment does not reduce the dosage in the fourth segment (in subsection Analysis of laboratory

measurement results the correlation coefficient of the fourth segment was increased on value

R = 0.5837). Neither marginal segment has two adjacent segments (for example segments 1

and 4), so they lack the opportunity to link with adjacent segments. Rule R-18 deals with the

case when it is between the two input variables with the values HLMS a segment with a value of

input variables MLMS. Such growth forms of the tree canopy are not common in practice;

therefore, it is assumed that also in this case leaves were overlapping in the segment with the

value of the input variable MLMS by the two adjacent segments. In order for the middle seg-

ment to be insufficiently protected, in the case of rule R-18 and related rules, an output variable

on this segment was assigned a value of MOEMV. In a similarly meaningful way, the remaining

rules in Table 2 were formulated.

Example, when for each segment of the tree canopy, several rules exist. In the previous

subsection, we dealt with examples in Table 2 where only one rule was active for each tree can-

opy segment. According to Table 2, an individual tree canopy segment can have several appli-

cable rules. Overlap occurs when the number of point clouds is between 0 and 400 and

between 0 and 250. In the case overlapping for determining the output variables y Table 1, the

’’AND’’ procedure was used along with Mamdani’s [45] inference operator, which has been

written with a fuzzy relational Eq (2):

mIV1 IN IV2ðXÞ IN IV3ðXÞ IN IV4ðXÞ ¼ minfmIV1ðxÞ; mIV2ðxÞ; mIV3ðxÞ; mIV4ðxÞg ð2Þ

Based on Mamdani’s [45] inference operator, a new membership function was created with

a set of rules relating to the output variables. This means that for multiple input variables at the

output of the fuzzy controller, there is always a fuzzy output set. Modeling of the design proce-

dure inference for dosage control was formed on the example which had four input variables

(Fig 3). The example deals with two rules (R-1 and R-28, marked in green) on the basis of

Table 2 and the affiliation of membership functions, as in Table 1. After forming a set of dosage

control rules on an individual tree canopy segment in the form of Table 2, the defuzzification

procedure was continued.

Defuzzification procedure. The rules, which are represented in the inference procedure,

deliver a fuzzy set of results at the output of the FLS. These need to be converted to crisp values

using the defuzzification procedure. This means that the executive actuator (represented by

EMV) cannot supply a fuzzy set for its control, but can control the EMV via a crisp value (a

crisp value at the output of the FLS, represents a y variable), which affects on the duty cycle

width of the pulse-width generated signal. In calculating the crisp value of the yDC variable, the

gravity method COA (Center of Area) was employed [44]. The advantage of the method is
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shown in the simple calculating of the crisp value. A crisp output value yDC represents the

coordinate of the center of gravity and corresponds to the duty cycle of opening the EMV with

the equation [44]:

yDC ¼

R ymax
ymin

mOVðyÞ � ydy
R ymax
ymin

mOVðyÞdy
ð3Þ

where yDC is the crisp output value at the output of a FLS (%); ymin is the minimal crisp out-

put value at the output of a FLS (%), in our case the minimum value was 0%; ymax is the maxi-

mal crisp output value at the output of a FLS (%), in our case the minimum value was 100%;

μOV is the output membership function (interval range between 0 and 1). The interval value

of yDC ranges from 0 to 100%. This means that a new function is written for calculating the

spray mixture dosage, represented by Eq (4):

QS ¼ yDC �
NFR � 600

a � v

� �

ð4Þ

where QS is the spray mixture dosage on an individual segment of left and right halves of the

tree canopy (L); yDC is the crisp output value at the output of a FLS (%); NFR is the volume

flow rate through the nozzle (Lmin–1); a is the row spacing in the orchard (m); v is the constant

sprayer travel speed (ms–1); and 600 is the conversion factor between different units.

For an overall calculation of dosage for the tree canopy in an orchard one needs add up all

the partial flows by individual segments of the left and right halves of the tree canopy:

Q ¼
P

sQS ð5Þ

where Q is the overall quantitative dosage of spray mixture for the left and right halves of the

tree canopy (L); QS is the dosage of the spray mixture on the individual segment left and right

halves of the tree canopy (L).

Sprayer prototype

The FLS for controlling the dosage of the spray misture, which operated with the help of a FLS,

was placed on a conventional sprayer and tested under laboratory conditions. The FLS was

used in the laboratory experiment to control the optimal dosage of spray mixture on four seg-

ments of the left and right half of the tree canopy. The sprayer prototype (Fig 2) consisted of

several components:

(1) FLS (subsection FLS for dosage spray mixture control on the principle of a fuzzy logic

system),

(2) EMV trigger system in pulse width mode and

(3) a conventional axial spray connected to an agricultural tractor.

The AGP 200 sprayer is a modern sprayer, consisting of a supporting frame with a chemi-

cally resistant polyethylene reservoir and filling sieve, pump, pressure and flow regulator, suc-

tion filter, discharge filter, 3-way valves, mixing nozzle and air blower. The axial fan has a

diameter of Ø 585 mm and allows the air flow to be directed during the process of applying the

mixture drops and adjusting the air flow. Air flow can be changed by adjusting the fan blade

angle. Air velocity at discharge is low, so the canopy is not damaged. We modified the sprayer

control system so it allows individual activation of 4 nozzles on the left and 4 nozzles on the

right. The prototype can operate in both conventional and automated mode. In the powerless

state, we do not allow the spray mixture to flow through the EMV; instead, the mixture flows
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through the return line back into the tank. When the control EMV is under voltage, the nor-

mal flow of the mixture through the nozzles is enabled.

The mixture dosage for four canopy segments was controlled by HYPEX FKM MQ control

valves (3/2 NC valve with 3 connectors on the housing, rated output power 7 W). We placed

these on the adapted spray arbor. The valves have an input and output connector in the hous-

ing and a ventilation connector at the top of the magnet sleeve. Control valves operated in

direct mode.

In accordance with (Fig 2), the output from the fuzzy controller is led to an automated con-

troller. The Sprayer prototype has a cDAQ-9174 controller (National Instruments, Austin,

TX) with a corresponding 32-channel NI-9476 digital output module. On the controller, four

physical digital outputs (digital outputs DO0, DO1, DO2 and DO3) were configured to control

the doses of the mixture. Digital outputs controlled the power electronic circuit in the pulse-

width mode for triggering the EMV, consisting of RT424012 electromagnetic relays (Schrack,

Germany). EMVs were incited with10 Hz frequency which ensures optimum application of

the spray mixture drops (droplets with a diameter of 70 to 150 μm are predominant in the jet

structure), as found by recent publication [46].

The sprayer is equipped with classic vortex nozzles TR-80015C (Lechler GmbH, Metzingen,

Germany) with a hollow cone spray. The basic task of the nozzles is to disperse the liquid flow

of the spray mixture into the spray with a certain drop spectrum and direct it to the leaf sur-

face, where the droplets of the mixture are deposited evenly over the leaf surface. The nozzle

angle is 80˚. For the experiment, the operating pressure was set to 10 bar.

Laboratory experiment

In the laboratory experiment, we tested the operation of the prototype sprayer in two modes

(conventional and automated) of the dose control. In the conventional mode, EMVs were con-

tinuously fully open, while in the automated mode the width of the pulse width signal was

changed.

The process of automated dose control was carried out in real time by experimenting with

the values of the number of points in the cloud, which were measured in four segments of the

left and right halves of the canopy as part of the experiment in the orchard. We conducted 160

measurements of dosage quantities QS and 20 measurements of cumulative dosages Q for each

treated tree. The volume of the spray dosages was measured with measuring cylinders attached

to each nozzle.

After the measurements were completed, a comparative regression analysis was performed

between the measured dose levels and the number of points in the cloud. Conventional and

automated modes were compared, and dose savings in [%] were estimated. The laboratory

experiment was carried out at the Department of Agricultural Engineering of the Agricultural

Institute of Slovenia.

Results

Using the LIDAR automated system, we captured 20 selected canopies in the orchard. Follow-

ing LIDAR measurement, we removed all the leaves from these canopies and calculated the

total leaf area. For verification of our hypothesis, we will confirm that the model is correctly

implemented with respect to the conceptual model, so that it matches specifications and

assumptions deemed to be acceptable for the given purpose of application to plant protection.

In the FLS, rules from Table 2 were included that mimic good grower praxis in plant protec-

tion, as has been discussed in the subsection ‘Interpretation of individual rules relevant to fruit
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growing practice’. Because of this, we based the verification on established correlation analysis

of entire datasets. After that, we compared the LIDAR with the manual results.

In the laboratory experiment, the spray mixture dosages through the nozzles were con-

trolled by a FLS with pulse width mode. We conducted a comparative analysis of the use of the

spray mixture in either continuous or automated mode. The analysis was carried out for entire

plants and for individual vertical segments.

Results of LIDAR measurements and comparison with results of the

manually measured leaf area

The linear regression method was used to compare the LIDAR and the manually measured

leaf area. The results for the first segment are shown in (Fig 4). The results in (Fig 4) are for all

20 canopies. The results are separate for the left and right halves of the canopies. We deter-

mined that the linear regression coefficient for the first segment for the left half of the canopies

is R = 0.8261 and for the right half of the canopies, R = 0.7808. We analyzed all other canopy

segments, the results of which are shown in Figs 5–7.

Fig 4. Relationship between number of LIDAR cloud points and leaf area for the first segment left (a) and right (b) half for all 20 canopies.

https://doi.org/10.1371/journal.pone.0214315.g004

Fig 5. Relationship between number of LIDAR cloud points and leaf area for the second segment left (a) and right (b) half for all 20 canopies.

https://doi.org/10.1371/journal.pone.0214315.g005
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Depending on the ratio between the number of LIDAR cloud points and the leaf area, it

was found that the maximum value of the correlation coefficient was 0.8782 in the case of the

fourth segment of the right half of the 20 canopies (Fig 7B). Depending on the ratio of the

number of cloud points to the leaf surface, the minimum value of the correlation coefficient is

0.1536 in the case of the fourth segment of the left canopies (Fig 7A). From the value of the cor-

relation coefficient,s we can conclude that in our case there is a positive medium relationship

between the two variables.What is exceptional is the value of the correlation coefficient of

0.1536, where there is a slight positive correlation. From the results of the measurements, we

can conclude that the automated LIDAR measurement system is comparable to the solutions

of other researchers (investigators [47] measured the maximum value of the correlation coeffi-

cient of 0.409 with respect to the ratio of the number of reflected laser beams to the leaf area.)

and sufficiently effective for the application process controlling spray mixture dosage.

The mean and slight positive correlation between the two variables should be attributed to

the fact that we are comparing two different variables and problems in these measurements.

Among the problems of measurement were the following: (1) front leaves cover interior leaves

near the LIDAR sensor; (2) uneven LIDAR position in the left / right row, owing to the non-

Fig 7. Relationship between number of LIDAR cloud points and leaf area for the fourth segment left (a) and right (b) half for all 20 canopies.

https://doi.org/10.1371/journal.pone.0214315.g007

Fig 6. Relationship between number of LIDAR cloud points and leaf area for the third segment left (a) and right (b) half for all 20 canopies.

https://doi.org/10.1371/journal.pone.0214315.g006

Plant protection product dose rate estimation using a fuzzy decision-making model

PLOS ONE | https://doi.org/10.1371/journal.pone.0214315 April 24, 2019 15 / 23

https://doi.org/10.1371/journal.pone.0214315.g007
https://doi.org/10.1371/journal.pone.0214315.g006
https://doi.org/10.1371/journal.pone.0214315


ideal movement of the tractor between the rows; (3) the impact of the ruts on the tractor’s and

LIDAR’s slope; (4) the difficulty of detecting the beginning and end of the canopy segments in

the direction of travel; (5) changes in the travel speed of the tractor; (6) manual picking of

leaves in a particular segment and related problems with determining the edge of the picking

zone; (7) the fact that we did not analyze all the leaves in a particular segment but selected

them randomly, and (8) environmental conditions such as sunlight, etc.

Difficulties in detecting the number of cloud points with LIDAR depend on the variety, age

and growth form of the trees in the plantation. In younger canopies, the leaf density is lower

than for older canopies, and consequently the deviation between the two variables in the youn-

ger trees is lower.

In particular, we want to highlight the problem in the farthest upper crown segment, where

rays from the LIDAR reached at a sharp angle through the third canopy segment. In the event

that the third canopy segment is thick, the number of hits in the fourth segment is very low

compared to the hand-measured leaf surface. For this reason, we measured the most serious

deviation between the measured variables and the lowest value R = 0.1536 in the fourth

Fig 8. The relationship between the dose and the number of cloud points in the first segment of the left (a) and the right (b) of half of selected canopies.

https://doi.org/10.1371/journal.pone.0214315.g008

Fig 9. The relationship between the dose and the number of cloud points in the second segment of the left (a) and the right (b) of half of selected

canopies.

https://doi.org/10.1371/journal.pone.0214315.g009
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segment (Fig 7A). Manual measurement, on the other hand, measures all the leaves in the net-

work and is not burdened with this LIDAR problem with respect to the canopy segment

coverage.

Other reasons for low corelation between LIDAR and manual measurements are less

important. These can be significantly reduced with improved tractor management and the

LIDAR tilt control system in the future.

The authors believe that the problem of measuring with LIDAR can be mitigated to a great

extent by using a FLS. For example, if the number of LIDAR hits in the third segment is high, a

FLS will set a higher dose of spray mixture in the fourth segment than if it had been derived

solely from the measured values of the fourth segment. In this article, we have incorporated a

correction in the FLS, which increases the dosage amount in any segment, surrounded by two

adjacent segments, in which the number of LIDAR hits is high. For example, rule R-18 in the

set of rules in Table 2.

In the set of rules in Table 2, we also incorporated corrections that determine the dose of

the spray mixture in the case when the third segment has a large number of LIDAR hits. In

Fig 10. The relationship between the dose and the number of cloud points in the third segment of the left (a) and the right (b) of half of selected canopies.

https://doi.org/10.1371/journal.pone.0214315.g010

Fig 11. The relationship between the dose and the number of cloud points in the fourth segment of the left (a) and the right (b) of half of selected

canopies.

https://doi.org/10.1371/journal.pone.0214315.g011
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this case, a FLS increases the dose in the top-level segment for one stage. For example, rule R-

4. We acted similarly to the above segments in the case of the lower segments.

Based on the properties of the FLS mentioned above, the authors conclude that the control

of pests and diseases will be effective despite lower doses of the spray mixture relative to con-

ventional application. We see this as an advantage over similar methods by other authors.

Analysis of laboratory measurement results

LIDAR measurements of tree canopies provided a number of cloud points for all canopy seg-

ments. The relation to leaf area was discussed above. For the laboratory experiment, measure-

ments of numbers of cloud points enabled dosing control using a FLS and control of spray

dosage through the length of the EMV working cycle.

For analysis of laboratory measurements results, a comparative analysis was made between

the number of point clouds and the dosage provided to each individual segment for all treated

trees. Later, we compared the conventional and automated dosage control processes for evalu-

ation of dose savings.

The relationship between the dose and the number of cloud points on individual canopy

segments is presented in Figs 8–11. The left and right halves of crowns were evaluated sepa-

rately. Correlation anaysis between the number of cloud points and the spray dose revealed

that the maximum value of the correlation coefficient was 0.8350 in the case of the third seg-

ment and right half of canopies (Fig 10B). The minimum value of the correlation coefficient

was 0.5837 for the fourth segment of the left half of the canopies (Fig 11A). The calculated val-

ues of the correlation coefficients show a positive medium relationship between two variables.

The reasons for the mismatch between the number of cloud points and the leaf area were

discussed in the previous subsection. We presented reasons why and how we included individ-

ual rules in the FLS and how rules improve the operation of an automated sprayer. In this way,

an individual number of cloud points has been assigned different doses, while the relation

between the number of cloud points and the dose has become non-linear. The model does not

consider individual segments separately from neighboring segments. Figs 8–11 show how an

optimized FLS improves the determination of dosages for each segment according to LIDAR-

measured tree canopy characteristics with consideration of adjacent segments.

Dosage savings

To conclude the analysis, we will compare the conventional and automated dosage control

processes for all four individual segments of the left and right halves of canopies.

Figs 12 and 13 show dosage savings of the automated dose control procedure with respect

to the conventional process. The savings for the left half of canopies for the 1st segment were

23.31%, for the second segment 8.53%, for the third segment 13.07% and for the 4th segment

28.75%. The average spray saving for the left half was 18.41%. For the right half of the canopies,

we found that the savings of the spray automated dose control procedure relative to conven-

tional spraying were 22.25% for the 1st segment, 10.45% for the second segment, 12.07% for

the third segment and 24.93% for the fourth segment. The average saving on spray for the

right half of the 20 analysed canopies was 17.42%. With the comparison of conventional and

automated dosage control processes, we seek to draw attention to the excessive consumption

of spray in the case of the conventional operational mode of the prototype sprayer. From the

results, we conclude that the spray savings in automated mode are significant and amount to

17.92%. This is despite the fact that the trees were in the BBCH 91 phenolic growth phase. We

assume that the LIDAR measurement uncertainty for the number of leaves could be
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significantly lower and the saving in spray doses higher in the case of the phenolic growth

phase, e.g. C3 (Mouse ear, individual sheets begin to develop) according to recent publication

[42].

From the results of the measurements, we can conclude that the FLS is comparable to the

solutions of other researchers. Investigators [48] achieved an average saving on spray from

26% to 27%, while others [13] achieved an average saving of 48%. The authors in [13] and [48]

used simple on/off control of the plant protection product dosage rate. This means that the

EMV were closed for longer periods, and the dosage of plant protection products was lower.

Fig 12. Comparison between conventional and automated dosage control processes on four individual segments

of the left half of crowns.

https://doi.org/10.1371/journal.pone.0214315.g012

Fig 13. Comparison between conventional and automated dosage control processes on four individual segments

of the right half of crowns.

https://doi.org/10.1371/journal.pone.0214315.g013
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In this paper, we followed good praxis in plant protection: rules from Table 2 were included

(for instance, Rule 18, which increase the consumption of plant protection products). In so

doing, we also increased the probability of better plant protection and higher yield.

The above results confirm the suitability of the FLS for the spraying of PPP in permanent

crops. By reducing the dose of FFS using a FLS, we managed, to the maximum possible extent,

to provide environmentally-friendly application, while allowing for the same effectiveness in

controlling diseases and PPP with respect to the classic methods of application. This conse-

quently reduces the environmental impact of spraying on the environment.

Conclusion

In practice, we do not know the uniform standard in dosing quantities of PPP for the same

types of permanent crops (orchards) [49]. We therefore compare spray savings with results

from other researchers, for instance, from the review paper [49]. It is indeed difficult to com-

pare spray savings in plant protection because (1) the state of the art around the world varies,

and (2) we lack reliable reports about the degree of protection when using automated proto-

type sprayers, which implement various decision-making algorithms. Since the number of

drops of PPP spray on the leaf surface in the orcahrd is one of the key factors in the control of

diseases and pests, it is assumed that for calculating dosage, the most appropriate application

will be based on the measured leaf surface on an individual segment of the tree crown. The

process of dosing the PPP was based on the principle of measuring the leaf surface with

LIDAR and a FLS that was installed on the prototype of the air blast sprayer. This proves a pos-

itive medium relationship between the PPP dose in four individual segments of the left and

right halves of the tree crown and the measured number of points in the cloud. Given the ratio

between the number of cloud points and the dose, it was found that the maximum value of the

correlation coefficient was 0.8350 in the case of the third segment of the right half of the

20-covered tree crowns. The average saving in spray mixture was 18.41% for the left and

17.42% for the right half of the given tree crowns.

The FLS allows the correction of the measured number of points in the cloud of individual

tree crown segments. A FLS allows us to include information that builds on the experience of

fruit growers and phytopathologists. In this way, we can repair the unfavorable properties of

the measurement of leaf surface with LIDAR from one point and ensure adequate protection

of the shaded segments, which occur mostly above and below the tree crown. The spraying of

the tree crown with a FLS therefore enables the quality protection of all its parts.

The future of the PPP application process is seen in the rapid processing of the properties of

tree crowns that will be generated on the basis of powerful LIDAR measuring systems in con-

junction with fast-response, non-linear, fuzzy logic control systems, based on regulation that

can selectively control the PPP dosage. In this way, we will compensate for the weaknesses of

LIDAR measuring systems, such as shading of leaf sheets in the upper part of the plant.

With this control approach, the dosage of the mixture that is selectively applied to the four

tree crown segments can be reduced, while at the same time reducing the negative effects on

the environment and human beings.

As pointed out in [50] and demonstrated in a series of recent publications (see, e.g., [24–27,

29–31]), user-friendly and publicly accessible web-servers represent the future direction for

developing more useful prediction methods and computational tools for practice. In realitly,

many practically useful web-servers have already significantly increased the impact of bioinfor-

matics on medical science [51], driving medicinal chemistry towards an unprecedented revo-

lution [52]. For this reason, we shall make efforts in our future work to provide a web-server

for the model parameters presented in this paper.
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