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4-Hydroxy-3-methyl-2(1H)-quinolone, originally discovered
from a Brassicaceae plant, produced by a soil bacterium of
the genus Burkholderia sp.: determination of a preferred
tautomer and antioxidant activity
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Abstract

4-Hydroxy-3-methyl-2(1H)-quinolone (1), a molecule known for a long time and recently discovered from a Brassicaceae plant
Isatis tinctoria without providing sufficient evidence to support the structure, was isolated from a fermentation extract of Burk-
holderia sp. 3Y-MMP isolated from a soil by a Zn?* enrichment culture. Detailed spectroscopic analyses by MS and NMR,
combined with '3C chemical shift comparison with literature values of the related compounds and a synthetic preparation of 1,
allowed its first full NMR characterization and identification of 2-quinolone but not 2-quinolinol (2) as the preferred tautomer for
this heterocyclic system. While the metal-chelating activity was negligible, compound 1 at 10 pM, a concentration lower than that
in liquid production cultures, quenched hydroxy radical-induced chemiluminescence emitted by luminol by 86%. Because some
Burkholderia species are pathogenic to plants and animals, the above result suggests that 1 is a potential antioxidant to counteract

reactive oxygen species-based immune response in the host organisms.

Findings
4-Hydroxy-2(1H)-quinolone (3) is a unique structural motif ing 2,4-dihydroxyquinoline (4) [3-5], although which form to be
mostly found in alkaloids from rutaceous plants (family taken seems not always be correctly identified in some of the

Rutaceae) [1,2]. This motif has several tautomeric forms includ-  studies [6-8]. Currently, 229 compounds are known to contain
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this unit as a part or a whole of the structure, among which only
12 originated from organisms other than rutaceous plants [9].
Examples from microbes include chymase inhibitors SF2809-1
to VI from an actinomycete of the genus Dactylosporangium
[10], a quorum sensing signaling molecule 2,4-dihydroxyquino-
line (DHQ, 4) from Gram-negative bacteria Pseudomonas
aeruginosa and Burkholderia thailandensis, [7], and 4-O-B-p-
glucopyranosyl-2,3,4-trihydroxyquinoline (5) from an

ascomycete of the genus Alternaria [8].

The genus Burkholderia sensu lato, within the class Betapro-
teobacteria, represents a polyphyletic group of bacteria, which
undergoes reclassification into several lineages [11]. Members
of this group are basically free-living aerobes inhabiting soil
and freshwater, but some are also found in the tissues of
animals, plants, or fungi as pathogens or beneficial symbionts
[12]. Not only as the subjects of human/animal health care and
plant pathology [13], but they are now gathering significant
attention as an emerging source of bioactive molecules. Many
new structure classes, even after being spun off as a new genus
from Pseudomonas in 1992 [14], have been discovered from
this group, which, along with their large genomes comparable
to those of actinomycetes or myxobacteria, demonstrate a
higher capacity of secondary metabolism [15].

In the course of our continuing studies on bioactive metabolites
of less studied bacterial taxa [16], Burkholderia sp. 3Y-MMP,
isolated from soil by an exhaustive enrichment culture under
Zn?*-load, was selected for a detailed chemical study, which
resulted in the isolation of 4-hydroxy-3-methyl-2(1H)-
quinolone (1, Figure 1). This compound was recently reported
from the root of woad (Isatis tinctoria, family Brassicaceae)
with no details of structure characterization [17]. Herein we
describe the isolation, unequivocal structure characterization,
and antioxidant activity of compound 1.
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Figure 1: Structures of compounds 1-5.
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The producing strain 3Y-MMP was cultured in King’s B medi-
um [18] for 4 days and the production culture was extracted
with 1-BuOH. The butanolic extract was partitioned between
CH,Cl, and 60% MeOH, and the latter layer was flash-chro-
matographed on ODS followed by reversed-phase HPLC to
yield 1 (5.2 mg) with sufficient purity for structure characteriza-
tion.

The molecular formula of 1 was determined to be C;gH9NO,
based on a sodium adduct molecular ion peak at m/z 198.0525
observed by a HRESITOFMS measurement (calcd 198.0526).
The broad IR absorption band around 3100 cm™! and an intense
peak at 1600 cm™! indicated the existence of hydroxy and aro-

matic groups, respectively.

The 'H and 13C NMR spectra in DMSO-d;, displayed 6 and 10
resonances, respectively, and by combining with the results of
'H,"H coupling constants and COSY and HSQC spectroscopic
analysis, following 8 molecular pieces were revealed: a consec-
utive four aromatic methines (8¢ 129.8, 122.7, 121.2, 115.0;
Oy 7.85, 7.41, 7.23, 7.12), two heteroatom-substituted nonproto-
nated sp? carbons (5¢ 164.0 and 157.4), three sp® nonproto-
nated carbons (8¢ 137.4, 115.8, and 106.9), an allylic methyl
group (d¢ 9.6/0y 1.98 s), and a singlet exchangeable proton
(g 11.30). The four methine unit (C5-C6-C7-C8) was
connected to the two quaternary carbons (d¢c 137.4 and 115.8:
C8a and C4a) to form a disubstituted benzene ring by HMBC
correlations H5/C8a, H6/C4a, H7/C8a, H8/C4a, and H8/C8a.
On the other hand, the remaining parts were assembled into a
C,4 enol-amidyl or enol-imidic acyl unit based on HMBC corre-
lations from the methyl proton H39 to the three nonprotonated
carbons C4 (8 157.4), C3 (8 106.9), and C2 (d 164.0). Connec-
tion of this unit to C4a of the benzene ring was implied by an
HMBC correlation from H39 to C4a, and correlations from the
exchangeable proton to C4a and C3 supported this linkage as
well as hydroxylation at the benzylic position. Finally, the
chemical shift of C8a at 137.4 ppm was in favor of N-substitu-
tion, and comparison with the literature values from 4-methoxy-
1,3-dimethyl-2(1H)-quinolone (6, d 138.4) [19], N-methyl-2-
pyridone 7 (8 139.5) [20], 2,4-dimethoxy-3-methylquinoline (8,
0 147.0) [21], and 2-methoxypyridine 9 (d 147.2) [22] sup-
ported a 2-quinolone form 1 but not 2-quinolinol 2 (Figure 2,
Table 1). The same structure was synthesized from diethyl
malonate and aniline (see Supporting Information File 1 for full

experimental data), which substantiated this assignment.

Although compound 1 has repeatedly been synthesized since
1921 [23] and enumerated chemical shifts for IH and 13C reso-
nances were available [24], one-on-one assignments of the reso-
nances to each structural part have not been made until this

work. In addition, HMBC correlations from the enol proton and
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Figure 2: COSY-deduced spin-system (bold lines) and key HMBC correlations (arrows) for compound 1, and structures for compounds 6-10 with a

13C chemical shift at the C8a position.

Table 1: 'H (500 MHz) and 13¢ (125 MHz) NMR data of compound 1 in DMSO-dg (297 K).

1

No. 3¢ TH multiplicity, (J in Hz), integration HMBC (- 13C)

1a

2 164.0

3 106.9

4 157.4

4-OH 11.30 brs, 1H 3, 4a

4a 115.8

5 122.7 7.85dd (7.9, 1.0), 1H 4,7,8a

6 121.2 7.12ddd (7.9,7.2,0.7), 1H 4a,5,7,8, 8a
129.8 7.41ddd (8.1,7.2.1.2), 1H 5,8, 8a

8 115.0 7.23d(8.1), 1H 4,4a3,6,7,8a

8a 137.4

9 9.6 1.98s, 3H 2,3,4,4a

aSignal for amide proton not observed.

the comparison of the chemical shift of the carbon adjacent to
the nitrogen with the literature values unequivocally deter-
mined 2-quinolone to be a preferred tautomer of this hetero-
cyclic system. The same C8a carbons of compounds 4 and §
resonate at 139.2 [25] and 133.4 ppm [8], respectively (Figure 1
and Figure 2), which indicates that both also exist as
2-quinolone and hence should more precisely be called as
4-hydroxy-2(1H)-quinolone (4HQ, 3) and 4-O-B-p-glucopyra-
nosyl-3,4-dihydroxy-2-quinolone (10), respectively.

Though not alkylated, the close structural similarity to 3 sug-
gests that 1 is also a member of the 2-alkyl-4-quinolone class
signaling molecules/antibiotics known from Pseudomonas

aeruginosa and some Burkholderia species [26,27]. Quinolones

of this class are classified into two lineages, those with or with-
out a 3-methyl group, and the former lineages are unique to
Burkholderia producers [28]. These metabolites are shown to be
biosynthesized by head-to-head condensation of anthranilate
and fB-ketoacylate precursors, followed by a modification at C3
or nitrogen by putative monooxygenases or methyltransferase
[27]. Entry of malonate as the acylate precursor into this path-
way is proposed to yield 3 (4 in the original literature) [29].
Thus, 1 is very likely to be biosynthesized by the same mecha-
nism followed by additional methylation on C3.

Compound 1 is reportedly inhibitory to Mycobacterium tuber-

culosis H37Ra at ICq( 6.8 uM while weakly cytotoxic to MRC-
5 human lung-derived fibroblasts with GIsg 84.7 uM [30]. It did
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not inhibit the production of nitric oxide in RAW 264.7 murine
macrophage-like cells [31]. In our hands, 1 was inactive against
any of the tested strains including Staphylococcus aureus
FDA209P JC-1 (Gram-positive bacterium), Rhizobium
radiobacter NBRC14554, Ralstonia solanacearum SUPP1541,
Tenacibaculum maritimum NBRC16015 (Gram-negative
bacteria), Candida albicans NBRC0197, and Saccharomyces

cerevisiae S100 (yeasts).

Oxidative burst, which is a transient production of massive
reactive oxygen species (ROS), is implemented in eukaryotic
cells, including protists [32], as an innate immune response to
deactivate foreign substances or as part of phagocytic digestion
of internalized nutrients [33]. Pathogenic microbes are equipped
with a multitude of strategies to circumvent host immunity [33],
among which redox enzymes and antioxidants are the direct
countermeasures to neutralize the toxicity of ROS [34]. Limited
examples of antioxidants include catecholamine melanin from a
fungus Cryptococcus neoformans [35], 1,8-dihydroxynaphtha-
lene melanin from fungi Wangiella dermatitidis and Alternaria
alternata [36], staphyloxanthin from a firmicute Staphylo-
coccus aureus [37], vitamin Bg from fungi Cercospora nico-
tianae, [38] and Rhizoctonia solani [39], and a melanin-like

pigment from Burkholderia cenocepacia [40].

The antioxidant activity of 1 was evaluated using the luminol
chemiluminescence extinction assay [41,42]. This assay quanti-
fies the presence of the most detrimental ROS, hydroxy radical
[43,44], as intensity of luminescence emitted by oxidation of
luminol. Compound 1 at 10 uM, which is lower than a concen-
tration in production liquid cultures (15 pM), decreased lumi-
nescence to 14% of the control reaction (Figure 3). Because the
Fenton reaction catalyzed by Cu?* was used to generate the
hydroxy radicals, entrapment of CuZ* by 1 was initially
suspected as the mechanism of chemiluminescence inhibition.

However, this speculation was ruled out by a titration experi-
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Figure 3: Extinction of luminol chemiluminescence by 1.
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ment using Chrome Azurol S-Fe3* (CAS) [45], which required
a 1600 times higher concentration for metal-chelation. Thus,
compound 1 was found to be another example of the antioxi-
dant from Burkholderia. Detailed studies on the antioxidation
mechanism of 1 is now underway.

Experimental

General experimental procedures

UV and IR spectra were obtained on a Hitachi U-3210 and
a Perkin Elmer Spectrum 100, respectively. NMR spectra
were collected on a Bruker AVANCE 500 spectrometer in
DMSO-dg and CDClj3 referenced at dy/8¢c 2.49/39.8 and
7.27/717.0, respectively. HRESITOFMS were recorded on a
Bruker micrOTOF focus mass spectrometer. Chemilumines-
cence was measured on a Molecular Devices SpectraMax M2

microplate reader.

Microorganism

Burkholderia sp. 3Y-MMP was isolated from a soil sample
collected in Toyama, central Japan, in June 2015 by a proce-
dure similar to that described in [46]. One mM of ZnCl,,
instead of CoCl,, was used as a selection pressure during the
initial exhaustive enrichment culture stage. The 16S rDNA se-
quence of strain 3Y-MMP was determined by a DNA analysis
service (Tsuruga Bio, Toyobo Co. Ltd., Osaka, Japan) using a
primer set 10F (5'-GTTTGATCCTGGCTCA-3") and 800R
(5'-TACCAGGGTATCTAATCC-3'). A partial sequence with a
length of 800 bp (accession number LC508727) thus read was
queried against the Basic Local Alignment Search Tool
program (BLAST) available at the DNA Data Bank of Japan
(DDBJ) website, which reported 99.9% homology to Burk-
holderia cepacia strain N1_1_43 (accession number
MNG691134). This strain will be deposited in NBRC once it
resumes services, which is currently suspended due to a nation-
wide State of Emergency regarding COVID-19 declared on
April 16 by the Government of Japan.

Fermentation and isolation

A cell mass of Burkholderia sp. 3Y-MMP, scraped off from an
agar plate, was inoculated into 500 mL K-flasks each contain-
ing 100 mL King’s B medium composed of peptone 2%, glyc-
erin 1%, KoHPO4 0.41%, and MgSOy4-7H,0 0.15%. The pro-
duction cultures thus made were rotary shaken at 200 rpm at
30 °C for 4 days. After fermentation, an equal amount of 1-bu-
tanol was added to each flask, shaken for additional 1 h, and
then centrifuged at 6000 rpm. The butanol layer was collected
and dried in vacuo to give a solid (2.7 g) from a 2 L culture.
The extract was partitioned between 60% aqueous MeOH and
CH,Cl,, and the former layer was fractionated on ODS eluted
sequentially with a step gradient of MeCN/0.1% HCOOH
mixed in ratios of 2:8, 3:7, 4:6, 5:5, 6:4, 7:3, and 8:2, respec-
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tively. A fraction eluted by 30% MeCN was evaporated to
provide 69.4 mg of a solid, which was purified by HPLC on an
ODS column (Cosmosil AR-II, 1 x 25 cm) eluted with 16%
MeCN containing 0.1% HCO,H at a flow rate of 4 mL/min,
which yielded 1 (5.2 mg, tg 31.3 min) with sufficient purity for
NMR-based structure characterization.

4-Hydroxy-3-methyl-2(1H)-quinolone (1): UV (MeOH) A«
nm (g): 312 (2300), 226 (12000); IR (ATR) vpax: 3268, 3186,
2958, 2927, 1595, 1486, 1387, 1354, 1243, 1026, 772, 761, 692,
664 cm™!; HRESITOFMS (m/z): [M + Na]* calcd for
C0HgNNaO,, 198.0526, found: 198.0525 ; 'H and 13C NMR
data are shown in Table 1.

Evaluation of Fe3* binding activity

The iron-binding activity was evaluated by the CAS assay de-
veloped by Schwyn and Neilands [45]. Compound 1 (2.5 mg) in
DMSO (20 uL) was mixed with a blue-colored CAS stock solu-
tion (50 uL) and further brought up to 100 pL with H,O (final
concentration of 1: 160 mM). After 10 min at an ambient tem-
perature, the solution turned orange due to the loss of Fe3* from
the indicator CAS dye, indicating positive to the iron-binding
ability of 1. A prolonged reaction caused biphasic separation of
the mixture.

Antimicrobial assay
The antimicrobial activity was evaluated by the method de-

scribed previously [16].

Antioxidant assay

The antioxidant activity was evaluated by the method described
in [41]. Briefly, luminol (10 uM), H»O, (1000 uM), and vehicle
solvent with or without test compounds were mixed in 50 mM
boric acid/sodium hydroxide buffer (pH 9.0). To this mixture
was added CuCl, (100 uM) to initiate the Fenton reaction, and
after 5 min of incubation, the chemiluminescence at 500 nm
was recorded on a microplate reader. The experiments were run
in triplicate, and the mean ratio of light extinction was

expressed as the potency of antioxidant activity.

Supporting Information

Supporting Information File 1

Synthetic procedure of 1, UV, IR, IH NMR, B3¢ NMR,
COSY, HSQC, HMBC spectra for natural and synthetic 1,
and UV, IR, '"H NMR, 13C NMR spectra for synthetic
intermediates.

[https://www .beilstein-journals.org/bjoc/content/
supplementary/1860-5397-16-124-S1.pdf]
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