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Arylalkylamine N-acyltransferases (AANATs) catalyze the formation of an N-acylamide

from an acyl-CoA thioester and an amine. One well known example is the production of

N-acetylserotonin from acetyl-CoA and serotonin, a reaction in themelatonin biosynthetic

pathway from tryptophan. AANATs have been identified from a variety of vertebrates

and invertebrates. Considerable efforts have been devoted to the mammalian AANAT

because a cell-permeable inhibitor specifically targeted against this enzyme could

prove useful to treat diseases related to dysfunction in melatonin production. Insects

are an interesting model for the study of AANATs because more than one isoform

is typically expressed by a specific insect and the different insect AANATs (iAANATs)

serve different roles in the insect cell. In contrast, mammals express only one AANAT.

The major role of iAANATs seem to be in the production of N-acetyldopamine, a

reaction important in the tanning and sclerotization of the cuticle. Metabolites identified in

insects including N-acetylserotonin and long-chain N-fatty acyl derivatives of dopamine,

histidine, phenylalanine, serotonin, tyrosine, and tryptophan are likely produced by an

iAANAT. In vitro studies of specific iAANATs are consistent with this hypothesis. In this

review, we highlight the current metabolomic knowledge of the N-acylated aromatic

amino acids and N-acylated derivatives of the aromatic amino acids, the current

mechanistic understanding of the iAANATs, and explore the possibility that iAANATs

serve as insect “rhymezymes” regulating photoperiodism and other rhythmic processes

in insects.

Keywords: arylalkylamine N-acyltransferase, insect, kinetic mechanism, chemical mechanism, timezyme,

circadian rhythm

INTRODUCTION

The N-acylation of aromatic monoamines is mostly associated with the acetylation of serotonin
to form N-acetylserotonin, an N-acylarylalkylamide precursor in the formation of melatonin
(Hardeland and Poeggeler, 2003; Mukherjee and Maitra, 2015). Production of N-acetylserotonin
is the rate-determining step in the biosynthesis of melatonin and the enzyme responsible
is arylalkylamine N-acyltransferase (AANAT). The rhythmic production of melatonin, which
regulates circadian rhythms inmammals, correlates to rhythmic changes in AANAT activity (Tosini
et al., 2012; Ganguly and Klein, 2017). For this reason, AANAT has been labeled the “timezyme”
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(Klein, 2007). Thus far, only one AANAT has been characterized
in humans and most other vertebrates (Coon et al., 1996; Li
et al., 2016). However, it has been suggested that other AANAT-
like enzymes are likely to exist in most vertebrates because
N-acylaryalkylamides are found in several regions of the body
(Tosini et al., 2012; Mukherjee and Maitra, 2015).

In contrast to humans, insects express multiple AANATs in
order to regulate aromatic amino acid metabolism (Hiragaki
et al., 2015). For example, thirteen putative iAANATs have been
identified in Aedes aegypti (Han et al., 2012) and eight putative
iAANATs have been identified in Drosophila melanogaster
(Amherd et al., 2000; Dempsey et al., 2014b). There are a number
of plausible reasons why insects express multiple iAANATs.
Firstly, in insects, monoamine oxidase (MAO) activity is limited
(Sloley, 2004). In mammals, MAO is critical to the inactivation
of catecholamines and other aromatic amines (Eisenhofer et al.,
2004). The inability to catabolize the catecholamines is linked
to schizophrenia, apnoea, psychosis, as well as physiological
disorders related to prolactin inhibition (Koulu et al., 1989;
Mallet et al., 1994). To avoid a toxic buildup of these constituents,
insects recruit numerous iAANATs to inactivate catecholamines
by N-acetylation (Dewhurst et al., 1972; Hiragaki et al., 2015).
Secondly, the product of the iAANAT-catalyzed acetylation of
dopamine, N-acetyldopamine, is a key component in the cuticle
sclerotization process for many insects (Sekeris and Karlson,
1966; Andersen, 2010). Knockdown of iAANAT in Bombyx mori
(Zhan et al., 2010; Long et al., 2015) and Tribolium castaneum
(Noh et al., 2016) resulted in an increase in intracellular
concentrations of dopamine and other biogenic alkylamines
and the overproduction and deposition of melanin. The lack
of acetylated dopamine gave rise to abnormalities in the wing
casings, misfolding of the hind wings, and a darkened and
malformed exoskeleton due to melanin overproduction. The
cuticle is a vital barrier from the environment, protecting the
insect against injury and infection, while also providing structural
stability (Brunet, 1980; Chung and Carroll, 2015).

The low sequence homology (usually 20–40% identity) of
these enzymes from insect to insect implies that iAANAT could
be a viable target for novel insecticide design (Tsugehara et al.,
2013; O’Flynn et al., 2018). Additionally, phylogenetic analysis
demonstrates several apparent sub-groups of iAANAT that
could potentially offer specific targeting. These sub-groups are
best defined based on their substrate specificity. For example, a
neighbor-joining tree (Figure 1) of all characterized iAANATs
divides these enzymes (with some exceptions) into those
which demonstrate standard dopamine-N-acetyltransferase
activity, polyamine N-acetyltransferase activity, and a more
insect-specific N-acyltransferase activity. The functions of
these sub-groups are delegated among cuticle sclerotization,
neurotransmitter activation, and long-chain fatty acid amide
formation, with some iAANATs likely covering multiple roles.

It is apparent much remains to be unearthed about the
iAANATs and their role in catecholamine and aromatic amino
acid metabolism. Much of this work comes from examining
the enzymes directly, for clues on how and why they function
kinetically and chemically. We present here an in-depth analysis
of the structural and functional relationships of the iAANATs

FIGURE 1 | Neighbor-joining tree built using Poisson-corrected distances on

characterized insect arylalkylamine N-acetyltransferases (iAANATs). The

orange box represents probable typical insect dopamine-N-acetyltransferases

(Saitou and Nei, 1987). The blue box represents probable polyamine

N-acetyltransferases. The red box represents putative insect-specific

N-acyltransferases. The percentage of replicate trees in which the associated

taxa clustered together in the bootstrap test (1,000 replicates) are shown next

to the branches (Felsenstein, 1985). The tree is drawn to scale, with branch

lengths in the same units as those of the evolutionary distances used to infer

the phylogenetic tree. The evolutionary distances were computed using the

Poisson correction method (Zuckerkandl and Pauling, 1965) and are in the

units of the number of amino acid substitutions per site. Evolutionary analyses

were conducted in MEGA7 (Kumar et al., 2016).

and how the iAANATs contribute to the N-acylation reactions of
aromatic amino acid metabolism in insects. We point the reader
to another recent review on the iAANATs; one with a different
focus than what we have written herein (Hiragaki et al., 2015).
It is our hope that this current review coupled to the review
of Hiragaki and colleagues provides a thorough analysis of the
current state of knowledge of the iAANATs.

N-Acylation of the Aromatic Amino Acids
and Aromatic Amino Acid-Derived
Metabolites
Early work identified the aromatic amino acids and other
catecholamines in insects (Ostlund, 1954; Sekeris and Karlson,
1966; Brunet, 1980; Larsen et al., 2009). With the exception
of tyrosine, insects are incapable of the de novo synthesis of
the aromatic amino acids (Payne and Loomis, 2006; Douglas,
2009; Suen et al., 2011) and, thus, histidine, phenylalanine, and
tryptophan are either obtained from the diet or via a symbiotic
relationship with bacteria, fungi, and/or plants (Suen et al., 2011;
Piper, 2017).

Histidine, phenylalanine, tyrosine, and tryptophan serve as
the precursors to other bioactive compounds in insects, including
other aromatic amino acids that are not on the canonical list of
the 20 typically found in proteins: 3,4-dihydroxyphenylalanine
(DOPA), dopaquinone, kynurenine, and xanthommatin. The
focus of this review is on the enzymatic acylation of the α-
amino group of the aromatic amino acids, which stems from
our interests in the biosynthesis of the fatty acid amides. Other
chemical transformations of specific aromatic amino acids in
insects are discussed elsewhere: oxidation (Kramer et al., 2001;
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Sugumaran and Barek, 2016), decarboxylation (Cole et al., 2005;
Han et al., 2010), hydroxylation (Gorman et al., 2007; Watanabe
et al., 2011), transamination (Han and Li, 2002; Sterkel et al.,
2016), phosphorylation (Van Vactor et al., 1998; Manning et al.,
2002), halogenation (Andersen, 2004; Phatarphekar and Rokita,
2016), and sulfation (Predel et al., 1999).

Enzymes that catalyze the acyl-CoA-dependent
acylation of the α-amino group of aromatic amino acids
are members of the GCN5-related N-acetyltransferase
(GNAT) superfamily of enzymes (Dyda et al., 2000;
Vetting et al., 2005). They have been described from
insects under a variety of names, including dopamine N-
acetyltransferase, indolamine N-acetyltransferase, indoleamine
N-acetyltransferase, serotonin N-acetyltransferase, spermidine
N-acetyltransferase, agmatine N-acetyltransferase, and
arylalkylamine N-acetyltransferase (AANAT) (Hiragaki et al.,
2015). Much of the focus on these enzymes has been on amineN-
acetylation, with acetyl-CoA serving as the acetyl group donor.
This is because of the importance of dopamine acetylation in the
sclerotization process (Andersen, 2010), of serotonin acetylation
in melatonin biosynthesis (Hardeland and Poeggeler, 2003), and
of biogenic amine acetylation in their inactivation (Sugumaran
and Barek, 2016). We also note that N-acetyltyrosine and
N-acetylhistidine have been reported as metabolites in insects
(Kerwin et al., 1999; Hawes et al., 2008).

Fatty acid amides represent a large family of biologically-
occurring lipids of the general structure, R-CO-NH-R1 (Waluk
et al., 2014; Iannotti et al., 2016). This structural simplicity
belies a wealth of diversity amongst this lipid family as the
R-group is derived from fatty acids (R-COOH) and the R1-
group is derived from the biogenic amines (H2N-R1). N-
Fatty acyl derivatives of histidine, phenylalanine, tyrosine, and
tryptophan have been identified in insects (Kamleh et al.,
2009; Tortoriello et al., 2013). In addition, N-fatty acyl
derivatives of dopamine and serotonin have been identified
in D. melanogaster (Dempsey et al., 2014a; Jeffries et al.,
2014). We have proposed that novel iAANATs exist which will
catalyze the acyl-CoA-dependent formation of these N-fatty
acylamides (Figure 2). AANATs in D. melanogaster (Dempsey
et al., 2014a) and B. mori (Anderson et al., 2018; Battistini,
2015) have been identified that will utilize long-chain fatty
acyl-CoA thioesters as substrates leading to the production of
these fatty acylamides. Thus, we suggest replacing the name
“N-acetyltransferase” with “N-acyltransferase” to better reflect
the most current data on this family of enzymes. Note that all
the iAANATs characterized to date will accept aromatic amino
acid-derived metabolites as substrates (dopamine, serotonin,
tyramine, tryptamine, phenethylamine, and/or octopamine), but
none of the iAANATs that have been characterized will accept
the aromatic amino acids as substrates (Ichihara et al., 2001;
Tsugehara et al., 2007, 2013; Mehere et al., 2011; Dempsey et al.,
2014b, 2015a,b, 2017). In fact, we have reported that the aromatic
amino acids and tyrosine methyl ester do not bind to three D.
melanogaster AANATs,Dm-AANATA,Dm-AANATL2, andDm-
AANATL7, with any appreciable affinity (Kd > 10mM) because
these compounds shown no inhibition at 1.0mM (Dempsey et al.,
2014b, 2015a,b).

FIGURE 2 | The reaction catalyzed by an arylalkylamine N-acyltransferase.

The AANAT-catalyzed formation of N-acylamides is not the
only reaction thought to account for the synthesis of these
molecules in insects. While thermodynamically unfavorable
under biological conditions, the biosynthesis of N-linolenoyl-L-
glutamine in Manduca sexta has been attributed to the direct
conjugation of unactivated linolenic acid to L-glutamine (Lait
et al., 2003).

N-β-Alanyldopamine (NBAD) and N-β-alanylhistamine
(carcinine) are two other N-acylated aromatic amino acid-
related compounds found in insects (Hopkins et al., 1982; Denno
et al., 2016). These are produced by an ATP-dependent reaction
between β-alanine and dopamine or histamine, catalyzed by the
enzyme NBAD synthase (also known as Ebony). Mechanistic
studies of NBAD synthase show that β-alanine is initially
activated by a reaction with ATP to yield β-alanyl-AMP and
pyrophosphate (Richardt et al., 2003; Hartwig et al., 2014). The
β-alanyl moiety is then transferred to the sulfhydryl group of
4′-phosphopantetheine, a prosthetic group attached to Ser-611
in the D. melanogaster enzyme. Nucleophilic attack by the amino
group of dopamine or histamine at β-alanyl-thioester yields
NBAD or carcinine (Figure 3).

Insect AANAT–Kinetic Mechanism
Due to the bi-substrate, bi-product (bi-bi) nature of the reaction,
there are two possibilities for iAANAT kinetic mechanism:
sequential or non-sequential (ping-pong). A sequential kinetic
mechanism is divided further into either ordered or random
mechanisms by determining if one of the substrates requires the
formation of an enzyme-substrate (E•S) complex before binding
(Cleland, 1963). Protocols to differentiate between steady-state
ordered and rapid-equilibrium ordered bi-bi kinetic mechanisms
involve initial velocity kinetic experiments varying one substrate
at different fixed concentrations of the second substrate in the
presence and absence of a dead-end inhibitor. The trends given
by these types of experiments are fingerprints for the elucidation
of the kinetic mechanism. Supplementary experiments such as
measurements of direct substrate binding and/or kinetic isotope
effects are often illustrative. Both sequential and ping-pong
mechanisms have been attributed to iAANATs; however, themost
common is a sequential mechanism.

Early studies of an iAANAT from the American cockroach,
Periplaneta americana. demonstrated that this enzyme
functioned via a sequential kinetic mechanism (Asano and
Takeda, 1998; Ichihara et al., 2001). iAANATs from other
insects were purified and characterized following the work
on the P. americana AANAT. iAANATs from Acyrthosiphon
pisum (pea aphid) (Barberà et al., 2013), Aedes aegypti (yellow
fever mosquito) (Mehere et al., 2011; Han et al., 2012),
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FIGURE 3 | The reaction catalyzed by NBAD synthase. The structures of two products of the NBAD synthase reaction, NBAD and carcinine, are in the inset.

Antheraea pernyi (silkmoth) (Tsugehara et al., 2013), Bombyx
mori (silkworm) (Tsugehara et al., 2007; Long et al., 2015),
Dianemobius nigrofasciatus, (band-legged cricket) (Izawa et al.,
2009), Drosophila melanogaster (fruit fly) (Hintermann et al.,
1996; Amherd et al., 2000; Cheng et al., 2012), and Tribolium
castaneum (red flour beetle) (Noh et al., 2016) were purified
and characterized, often including a set of biogenic amine
substrates evaluated using acetyl-CoA as the acyl donor.
However, determination of the kinetic mechanism for these
various iAANATs was not included in these cited works.

Our work in this field started with the hypothesis that
iAANATs were responsible, not just for short chain N-acylation,

but also for long chain N-acylation to form N-oleoylated,
N-palmitoylated, and, perhaps, N-arachidonylated amines.
Drosophila melanogaster presented the ideal model organism;
the flies were known to produce N-fatty acylamides (Tortoriello
et al., 2013; Jeffries et al., 2014) and to express at least eight
different iAANATs (Amherd et al., 2000). Dempsey et al.
(2014b) demonstrated that D. melanogaster AANATA (Dm-
AANATA) followed an ordered sequential mechanism, with
acetyl-CoA binding first and catalysis only taking place after the
formation of the Dm-AANATA•acetyl-CoA•tyramine complex.
We built on our work on Dm-AANATA leading to expression
and characterization of three other AANAT-like enzymes
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from D. melanogaster, Dm-AANATL2 (Dempsey et al., 2015a),
Dm-AANATL7 (Dempsey et al., 2015b,), and Dm-AANATL8
(Dempsey et al., 2017). The best substrates for Dm-AANATL8
were agmatine and acetyl-CoA, so we renamed Dm-AANATL8
as Dm-AgmNAT–agmatine N-acetyltransferase. Our data for all
three of these D. melanogaster iAANATs were consistent with
a steady-state ordered kinetic mechanism with the acyl-CoA
substrate binding first for all three of these Dm-AANATs.

We have recently broadened our scope beyond
D. melanogaster to Bombyx mori, another insect known to
express multiple iAANATs. Three B. mori iAANATs have
been described and partially characterized: Bm-iAANAT
(Tsugehara et al., 2007), Bm-iAANAT2 (Long et al., 2015), and
Bm-iAANAT3 (Battistini, 2015). We found that the kinetic
mechanism for Bm-iAANAT3 was steady-state ordered with the
acyl-CoA substrate binding first, similar to kinetic mechanisms
elucidated for iAANATs from D. melanogaster and P. americana.
Structural studies by Aboalroub et al. (2017) revealed that the
binding of acetyl-CoA to Bm-iAANAT3 alters the conformation
of the enzyme to facilitate binding of the amine substrate. In the
absence of acetyl-CoA, the amine substrate binds with relatively
low affinity to Bm-iAANAT3. A summary of the substrate
specificities of B. mori and D. melanogaster iAANATs, including
steady-state kinetic constants, are included in O’Flynn et al.
(2018).

Insect AANAT–Catalytic Mechanism
The kinetic mechanism of an enzyme provides only a
partial insight of the intricacies of enzymatic catalysis. To
get a more complete picture of the specific interactions
that mediate catalysis, work must be done to elucidate
a chemical mechanism. Delicate balances between pH,
residue positions, and local and long-ranged readjustments
in active site orientation offer a fascinating conundrum
which is only now beginning to be understood thanks to a
combination of experimental, computational and quantum
mechanical studies. To investigate the catalytic mechanism is
to understand the very intricate subtleties that regulate enzyme
catalysis.

One goal of the mechanistic work on the iAANATs is
to understand the pH-dependence of catalysis regarding the
protonation state of critical active site amino acids. Asano and
Takeda (1998) first noted the importance of pH to iAANAT
activity in their work on the P. americana iAANATs. They
identified one acidic and one basic form of the P. americana
enzymes. The optimal pH for acidic iAANAT was approximately
pH 6.0, whereas that for the basic form was approximately pH
10. Definitive mechanistic conclusions about the P. americana
iAANATs could not be drawn because their data was generated
using only one concentration of both substrates rather than
a more complete pH-rate profile obtained by varying both
substrates as pH was varied. To date, only one other iAANAT,
from D. nigrodasciatus has been described that has maximum
activity at pH < 7.0 (Izawa et al., 2009).

Activity profiles as a function of pH were reported for two
iAANATs from A. aegypti, AaNAT2 and AaNAT5b. Activity was
maximum between pH 8 and 9 with either a decrease in activity

as pH was increased (AaNAT5b) or a relatively constant level of
activity as pH was increased (AaNAT2) (Han et al., 2012). Similar
trends were noted in the pH vs. activity data for other iAANATs
in Antheraea pernyi (Tsugehara et al., 2013) and Tribolium
castaneum (Noh et al., 2016), except that the maximum activity
was observed at a lower pH, pH 7.5–8.5.

While these data are interesting and useful, these studies do
not provide conclusive mechanistic information about iAANAT-
mediated catalysis. Instead, a more complete analysis (varying
both substrates) to measure the pH-dependence of the KM,
kcat, and kcat/KM values must be undertaken. Such studies
were carried out on four iAANATs from D. melanogaster, Dm-
AANATA (Cheng et al., 2012; Dempsey et al., 2014b), Dm-
AANAT2 (Dempsey et al., 2015a), Dm-AANATL7 (Dempsey
et al., 2015b), and Dm-AgmNAT (Dempsey et al., 2017).

Some overlapping trends were observed in the pH-rate
profile data on these four D. melanogaster AANATs. Catalysis
was dependent on a general base, which exhibited a pKa of
approximately pH 7.5. Battistini (2015) observed a similar trend
in pH rate profiles of Bm-iAANAT3, except the general base
had a pKa of approximately 6.8 for this enzyme. One other
interesting nuance of the pH rate data on theD.melanogaster and
B. moriAANATs was a bell-shaped curve, indicating the presence
of a second catalytically important pKa of 9–10 (Cheng et al.,
2012; Dempsey et al., 2014b, 2015b). One suggestion to account
for the second pKa is an active site Ser serving as a general
acid to protonate the thiolate anion of coenzyme A (CoA-S−)
(Cheng et al., 2012). An active site Ser serving as a general acid
is unusual in enzymatic chemistry because this would require
a significant decrease in pKa of the serine hydroxyl from 13–
14 to 9–10. More likely, this second pKa reflects the pKa of
the departing CoA-SH, pKa = 9.6–10.4 (Pitman and Morris,
1980), meaning that that the release of CoA-S− is slower for the
iAANATs.

Alanine-scanning mutagenesis, sequence alignments, and
crystallographic data (when available) were all used to alleviate
the ambiguity of some of the results and to assign residue-specific
roles in iAANAT catalysis. Sequence alignments demonstrated
several conserved motifs, representative of structurally or
catalytically relevant residues (Figure 4). Within the iAANATs,
we noted a highly conserved DEPLN motif (Figure 5)—an
obvious target for mutagenesis. Mutation of the glutamate in
this motif to alanine, Glu-47 in Dm-AANATA (Dempsey et al.,
2014b), Glu-26 in Dm-AANATL7 (Dempsey et al., 2015b), Glu-
34 in Dm-AgmNAT (Dempsey et al., 2017), and Glu-27 in
Bm-iAANAT3 (Battistini, 2015), resulted in an almost complete
eradication of iAANAT activity. The pH-rate profiles for Glu-
to-Ala mutants in Dm-AANATA, Dm-AANATL7, and Dm-
AgmNAT strongly supported a role for the Glu in the DEPLN
motif serving as the general base during catalysis. For the mutant
iAANATs, the acidic pKa disappeared and the resulting pH-rate
profiles were either flat (no dependence of the residual rate on
pH) or exhibited a linear relationship with pH (slopes from 0.2
to 0.7) suggesting a “rescue” of catalytic activity by hydroxide as
the pH increased. We must point out that the Glu in the DEPLN
also has a role in amine binding because the (KM,amine)app values
increased significantly for the E47A mutant in Dm-AANATA,
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FIGURE 4 | Sequence alignment of iAANATs demonstrating conserved regions. Residues are colored depending on acidic (red), basic (blue), polar (green), or

hydrophobic (yellow). Cysteines are in gold and glycine is purple. Aedes aegypti – AaNAT1 (GenBank accession no. XP_001661400); AaNAT2 (GenBank accession

no. XP_001663122); AaNAT5b (GenBank accession no. XP_001649916); Bombyx mori – Bm-iAANAT (GenBank accession no. NM_001079654.2); BmAANATL3

(GenBank accession no. NM_001190842.1); Drosophila melanogaster – DmAANATA (GenBank accession no. NM_079115.3); DmAANATB (GenBank accession no.

NM_206212.1); DmAANATL2 (GenBank accession no. NM_135161.3); DmAANATL7 (GenBank accession no. NM_130653.3); DmAgmNAT (GenBank accession no.

NP_572268.1); Periplaneta americana – PaNAT (GenBank accession no. BAC87874.1); TcAANAT1 – Tribolium castaneum (GenBank accession no.

NM_001145908.1).

the E26A mutant in Dm-AANATL7, and the E34A mutant in
Dm-AgmNAT.

One exception to the pattern of results obtained for Dm-
AANATA, Dm-AANAT7, Dm-AgmNAT, and Bm-iAANAT3 was
Dm-AANATL2 (Dempsey et al., 2015a). The E29A mutant for
Dm-AANATL2 showed only a relatively slight decrease in the
kcat,app relative to wildtype as well as a bell-shaped pH-rate
profile yielding the same pKa values as wildtype. Thus, for Dm-
AANATL2 the general base required for catalysis with a pKa value
of∼7.4 is not Glu-29 and is currently unknown. As we found for
the other D. melanogaster AANATs, the Glu in the DEPLN motif
for Dm-AANATL2 has a role in amine substrate binding because
the (KM,amine)app increased∼20-fold relative to wildtype without
any change in the (KM,acetyl−CoA)app value.

Availability of a crystal structure for Dm-AANATA (PDB
accession code: 3TE4) (Cheng et al., 2012) and Dm-AgmNAT
(PDB accession code: 5K9N) (Dempsey et al., 2017) allowed
for more in-depth structural analysis. Combined with this,
homology models were developed using SWISS-MODEL for
Dm-AANATL2 (based on 3TE4 and 5GIF) and Dm-AANATL7
(based on 4FD6) (Han et al., 2012; Waterhouse et al., 2018).
Both Glu-47 in Dm-AANATA and Glu-34 in Dm-AgmNAT are
located in their respective active sites with several structural
waters positioned within proximity (Figure 6). This led to the
suggestion that these water molecules form a “proton wire” to
assist the general base in catalysis by facilitating proton transfer,
as had been suggested in other GNAT enzymes (Dyda et al.,
2000).
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FIGURE 5 | Crystal structure of Dm-AANATA (PDB: 3TE4) active site with

bound acetyl-CoA. Residues shown in cyan represent DEPLN region

conserved among many iAANATs.

FIGURE 6 | Crystal structure of Dm-AANATA (PDB: 3TE4 - cyan) active site

with bound acetyl-CoA aligned with apo structure of Dm-AgmNAT (PDB:

5K9N - orange). Highlighted residues indicate Glu-47 and Glu-34 which

function respectively in these enzymes as the apparent general base. The

surrounding water molecules (colored spheres) enable a “proton wire” to

facilitate proton transfer.

Sequence alignment of the iAANATs also revealed a highly
conserved arginine residue, Arg-153, which based on the crystal
structure of Dm-AANATA, seemed necessary in maintaining
structure. A salt bridge is formed between Arg-153 and Asp-
46 (Figure 7; Cheng et al., 2012). Surprisingly, the kcat,app
for the R153A mutant in Dm-AANATA was ∼5-fold higher
than wildtype. Corresponding increases in the KM,app for both
substrates resulted in the (kcat/KM)app for the R153A being 2- to
5-fold lower than wildtype (Dempsey et al., 2014b).We attributed
the results for the R153A mutant to elimination of the R153-D46
salt bridge that is critical to a Dm-AANATA conformation that
decreases the rate of CoA-SH release. This argument suggests
that Arg-153 does not have a direct role in catalysis and, further,
points toward a partially rate-determining conformational
change in Dm-AANATA, which has been observed in other
GNAT enzymes (Dyda et al., 2000; Vetting et al., 2005). Arg-138
in Dm-AANATL7 and Arg-138 in Dm-AANATL2 are equivalent
to Arg-153 in Dm-AANATA. Data generated for the R138A
mutant in Dm-AANATL7 was similar to what was found for the
R153A mutant of Dm-AANATA, again, arguing against a direct

FIGURE 7 | Crystal structure of Dm-AANATA (PDB: 3TE4 - cyan) active site

with bound acetyl- CoA aligned with homology models of Dm-AANAT2

(magenta) and Dm-AANATL7 (yellow). Illustrated by the yellow dashes is the

salt bridge that forms between Asp-46 and Arg-153 of Dm-AANATA.

role of Arg-138 in Dm-AANATL7 catalysis and for a partially-
rate determining conformation change regulating the release of
CoA-SH (Dempsey et al., 2015b).

Dm-AANATL2 (Dempsey et al., 2015a) proved different.
Mutation of Arg-138 to Ala in Dm-AANATL2 resulted in kcat,app
values that are ∼20% of the wild-type enzyme and KM,app

values similar to the wild-type. These data imply that Arg-138
may have a direct role in Dm-AANATL2 catalysis and that
a conformational change involving Arg-138 is not particularly
rate-determining for this iAANAT. Homology modeling of Dm-
AANATL2 based on Dm-AANATA (3TE4) indicates a conserved
position for the respective arginine residues. The different
effects mutation of this residue has on kcat for both enzymes
implies that Arg-138 of Dm-AANATL2 may share catalytic and
conformational responsibilities. An alternative residue perhaps
fills the role for this catalytic residue in wild-type Dm-AANATA
and in Dm-AANATL7, or possibly in the mutated species
as a “rescue” in the absence of the arginine residue. HSQC-
NMR titrations of both wild-type and mutated species could
be employed to examine this phenomenon. However, because
of the apparent aggregation of many of these enzymes at high
concentrations, NMR is usually difficult and often impossible to
perform.

The structure of Dm-AANATA indicated that His-220 was in
van der Waals contact with Pro-48 of the active site (Figure 8A)
(Cheng et al., 2012). Sequence and structural alignments of
iAANATs reveal this His to be relatively well conserved
(Figure 8B). The H220A mutant exhibited 4- to 7-fold increase
in KM,app and a 4-fold decrease in kcat,app, a trend observed in
the corresponding His-to-Ala mutants in Dm-AANATL7 (His-
206) and in Dm-AgmNAT (His-206). The Dm-AgmNAT crystal
structure demonstrated clearly that His-206 was important to the
formation of the active site through interaction with numerous
residues in its environment (Figure 8C). Dm-AANATL2 was
again an outlier in this aspect, with mutation of its respective
histidine, His-206, resulting in a mutant enzyme completely
devoid of catalytic activity (Dempsey et al., 2015b). The creation
of an inactive H206A mutant of Dm-AANATL2 is difficult to
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FIGURE 8 | The importance of the active site histidine of iAANATs in the structural maintenance of the active site. (A) Crystal structure of Dm-AANATA (PDB: 3TE4 -

cyan) active site with bound acetyl CoA. Spheres indicate relative proximity of His-220 and Pro-48, which in-turn facilitates van der Waals contact. (B) Alignment of

Dm-AANATA (PDB: 3TE4 - cyan), Dm-AgmNAT (PDB: 5K9N - orange), Dm-AANAT2 (magenta) and Dm-AANATL7 (yellow) demonstrating conservation of this

active-site histidine. (C) Crystal structure of Dm-AgmNAT (PDB: 5K9N - orange) highlighting numerous interactions of His-206 with surrounding residues, confirming

its importance in active-site formation.

interpret. His-206 may be essential to structural integrity of the
enzyme or may have an essential role in catalysis.

While one set mechanism has not been agreed upon for
iAANAT catalysis, there are at least two plausible suggestions
that agree with the available data. The first represents an
ordered sequential mechanism, where the acyl-CoA binds first,
followed by the amine substrate. This leads to the formation of
an iAANAT•acyl-CoA•amine ternary complex before catalysis
can occur. From here, a catalytic base (generally a glutamate,
but possibly a histidine in Dm-AANATL2) deprotonates the
positively charged amine moiety through the use of a “proton
wire” of ordered water molecules. Nucleophilic attack of the
carbonyl of the acyl-CoA thioester generates a zwitterionic
tetrahedral intermediate. This collapses as the CoA-S− is
protonated by the positively charged amine of the intermediate,
thus, relinquishing the two products, most likely in the
order of N-acylamide first, followed by CoA-SH (Figure 9).
This mechanism is equivalent to that proposed for serotonin
N-acetyltransferase found in mammals (De Angelis et al.,
1998).

The second mechanism proposed represents the involvement
of a general acid. Following binding of the substrates to form the
iAANAT•acyl-CoA•amine ternary complex, nucleophilic attack
of the carbonyl of the acyl-CoA thioester by the amine generates a
zwitterionic tetrahedral intermediate. Collapse of this is catalyzed
by a general base deprotonation of the positively charged amine
intermediate, as well as a general acid protonation of CoA-S−,
yielding the two products. While this mechanism cannot be
eliminated by the available mechanistic data on the iAANATs,
this mechanism is less favored, due to questions about an active
site amino acid serving as a general acid during catalysis.

Insect AANAT–A “Timezyme”?
As mentioned, in vertebrates, AANAT is involved in regulating
circadian rhythms. It cannot be assumed, however, that the
AANATs function in the same way in insects. Circadian rhythms
are any biological processes that follow a daily cycle; sleeping
at night and being awake in the day is a common example of
a light-related circadian rhythm. The driving force behind the
circadian rhythm of any organism is the innate biological clock.
The rhythmic pattern of this clock is maintained through a
complex, feedback-induced pathway associated with clock genes
and their related proteins (von Gall et al., 2005). Entrainment
of this pathway is controlled by mediation of melatonin levels
(Bell-Pedersen et al., 2005), which is dependent on photoperiodic
messages, i.e., light exposure to the eyes. The changes in
melatonin levels lead sequentially to photoperiodic responses.
Vertebrate AANAT is expressed in photosensitive organs such
as the pineal gland, retina, and parietal eyes (Hiragaki et al.,
2015), demonstrating a clear association with photoperiodic
signaling in vertebrates (Vivien-Roels and Pévet, 1993). Thus,
AANAT was termed the “timezyme” (Klein, 2007). In insects,
it is unknown how photoperiodic signaling is integrated into
daily rhythms because insect eyes are usually insufficiently
photosensitive (Lazzari and Insausti, 2008; Ganguly and Klein,
2017). This suggests insects may rely on other environmental
cues rather than light alone to distinguish between night and
day. A few insects, however, have shown the ability to interpret
photoperiodic stimuli, namely P. americana, L. migratoria,
D. nigrofasciatus, and L. hedyloidea (Vivien-Roels et al., 1984;
Bembenek et al., 2005; Yack et al., 2007; Izawa et al., 2009).

The classification of an iAANAT as a “timezyme” is unclear
because the exact role played by melatonin in insect physiology
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FIGURE 9 | Proposed catalytic mechanisms for iAANAT. (A) Mechanism demonstrating a general base functioning to deprotonate the positively charged amine

yielding a zwitterionic tetrahedral intermediate. Subsequent protonation and release of the CoA-SH product yields the final fatty acylamide product. (B) Mechanism

demonstrating both a general base and general acid functioning in intermediate collapse and release of the CoA-SH and fatty acylamide products.

is not fully understood and what constitutes a daily rhythm
in insects is not fully defined. In some insects, melatonin and
AANAT content fluctuate in a circadian manner, one case
being P. americana (Ichihara et al., 2001; Bembenek et al.,
2005). Because of their complex eye structure (Heimonen et al.,
2006), P. americana are capable of interpreting a photoperiod
message as a temporal cue in order to initiate physiological
responses that allows them to distinguish between night and
day (Vivien-Roels and Pévet, 1993). In contrast to P. americana,
melatonin and AANAT failed to follow any circadian patterning
in D. melanogaster (Amherd et al., 2000).

While the link between circadian rhythms and the
photoperiodic system remains largely unknown in insects,
previous studies have hinted at a possible link between circadian
clock systems and diapause (Bell-Pedersen et al., 2005; Stehlík
et al., 2008). Three families of hormones, prothoracicotropic
hormone (PTTH), ecdysteroids, and juvenile hormones
(JHs) are vital in regulating diapause and pupation (De Loof,
2008). These hormones work in daily rhythms during insect
larval stages, and therefore can be categorized as circadian
rhythm regulators (Riddiford, 1993; Bajgar et al., 2013). In
A. pernyi, melatonin regulates PTTH release, acting as an
endocrine switch, thereby, connecting circadian rhythms
with endocrine function (Mohamed et al., 2014). Mohamed
et al. (2014) demonstrated that iAANAT is the critical switch
regulating PTTH and, subsequently, diapause. By acting as
a regulator of this endocrine system, iAANAT may enable a
wide variety of insects to maintain homeostasis and circadian
function.

It has been seen in few insects that both melatonin
synthesis and iAANAT expression follow a circadian rhythm.
There are other insects, such as A. pernyi, where iAANAT
acts as a mediator of circadian rhythms and endocrine
systems through the regulation of PTTH. In this case,
of A. pernyi having the ability to interpret photoperiodic
responses, melatonin secretion is known to participate in
PTTH stimulation. From the evidence presented, we cannot
argue definitively that iAANATs are insect “timezymes.”
It is just not clear if iAANATs are directly involved in
regulating circadian rhythms like what has been demonstrated
in vertebrates. However, iAANATs do seem to mediate rhythmic
processes within insects, meaning that iAANATs, and, perhaps;
AANATs in general, are more appropriately referred to as
“rhymezymes.”

CONCLUSION

We have outlined what is currently known about N-acylated
derivatives of the aromatic amino acids and the N-acylated
derivatives of the biogenic amines produced in vivo from
the aromatic amino acids: dopamine, serotonin, tyramine,
tryptamine, phenethylamine, and octopamine. Most, if not all,
of these metabolites found in insects are produced enzymatically
in a reaction catalyzed by an insect arylalkylamine N-
acyltransferase. iAANATs from a number of different insects
have been purified and characterized. Detailed studies have
established that the kinetic mechanism for many iAANATs
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is steady-state ordered with the acyl-CoA substrate binding
first and catalysis taking place only after the formation of the
iAANAT•acyl-CoA•amine complex. An active-site Glu residue
found in a highly conserved DEPLN motif is often the general-
base critical to iAANAT catalysis. In addition, alanine-scanning
mutagenesis of D. melanogaster iAANATs points toward a rate-
determining conformational change that may regulate product
release. An expanding base of structural information for the
iAANATs will only deepen our understanding of iAANAT-
mediated catalysis.

The research summarized herein points towards some future
research directions: the identification of other N-acylated
metabolites in insects, defining the function, receptors, and
transporters for these molecules in insects, identifying the
enzyme responsible for the biosynthesis and degradation of
the N-acylated biogenic amines, and the use of mechanistic,
sequential, and structural information about the iAANATs for the
development of iAANAT-specific insecticides to control insect
pests. The low sequence—high structural homology has always
been a characteristic of insect AANATs. This review also shines
light on how key conserved residues, such as Arg-153 in Dm-
AANATA and Arg-138 in Dm-AANATL2, can have different
functions in catalysis or structure. This example illustrates that
much remains to be learned about the intricate interplay between
structure and catalysis for iAANATs. Conformational dynamics
are important to substrate binding and catalysis for the GCN5
family of enzymes (Rojas et al., 1999; Dyda et al., 2000; Pavlicek
et al., 2008; Podobnik et al., 2014), including the iAANATs
(Dempsey et al., 2014b; Aboalroub et al., 2017). Solution NMR
is an excellent method to study protein dynamics, yet has found
little application towardGCN5 enzymes (Tyler et al., 2006; Norris
and Serpersu, 2010). The iAANATs provide examples for NMR
investigations of protein dynamics because these proteins are

often monomeric, small (molecular weights <35 kDa), do not
aggregate at mM concentrations, and are expressed at high levels
in E. coli. Thus, solution NMR investigations of the iAANATs
could yield important new insights into the role of dynamics in
the structure/function relationships for the GCN5 enzymes.

The role served by the iAANATs in vivo is a source of debate.
Due, in part, to the link between mammalian AANATs and the
circadian rhythms, it is easy to assume iAANATs play a similar
role in insects. It is apparent this is not the case, with each insect,
and their corresponding group of iAANATs presenting a unique
model for metabolomics investigations.
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