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Numerical study of a highly 
efficient light trapping 
nanostructure of perovskite solar 
cell on a textured silicon substrate
Alireza Tooghi1, Davood Fathi1* & Mehdi Eskandari2

In this paper, a nanostructured perovskite solar cell (PSC) on a textured silicon substrate is examined, 
and its performance is analyzed. First, its configuration and the simulated unit cell are discussed, and 
its fabrication method is explained. In this proposed structure, poly-dimethylsiloxane (PDMS) is used 
instead of glass. It is shown that the use of PDMS dramatically reduces the reflection from the cell 
surface. Furthermore, the light absorption is found to be greatly increased due to the light trapping 
and plasmonic enhancement of the electric field in the active layer. Then, three different structures, 
are compared with the main proposed structure in terms of absorption, considering the imperfect 
fabrication conditions and the characteristics of the built PSC. The findings show that in the worst 
fabrication conditions considered structure (FCCS), short-circuit current density (Jsc) is 22.28 mA/
cm2, which is 27% higher than that of the planar structure with a value of 17.51 mA/cm2. As a result, 
the efficiencies of these FCCSs are significant as well. In the main proposed structure, the power 
conversion efficiency (PCE) is observed to be improved by 32%, from 13.86% for the planar structure 
to 18.29%.

In recent years, organometal halide perovskite solar cells (PSCs) have received much attention and have made 
exceptional progress in terms of energy conversion efficiency1–3. Within a few years, the PCE of these cells has 
increased from 3% in 20094, to more than 22% in 20195. Features such as appropriate absorption in the visible 
spectrum6, long diffusion length of carriers7, high carrier mobility8, easy manufacturing9, and low production 
costs10,11 have made perovskite a promising nominee for use as light absorbent material in next-generation solar 
cells.

PSCs are conventionally designed in two general architectures, planar and mesoporous. In recent years, the use 
of nanostructures with different dimensions and shapes in the construction of various types of solar cells resulted 
in high efficiencies with less volume of absorbing material and generally more complex cell structures12–17. The 
use of nanostructures causes the cell to be lighter, more flexible and less bulky, in addition to enabling improve-
ments in efficiency. Nanostructures enhance cell performance through the mechanism of light trapping in the 
absorbing medium18, improving carrier extraction19, or concentrating the electromagnetic field in the active 
layer using various configurations, especially plasmonic structures20.

In light trapping structures, due to a shift in the direction of light path within the active layer, its interaction 
time with this layer increases, which increases the optical absorption21–24. In these structures, by scattering the 
light to the off-normal directions, in addition to prolonging its pathlength in the active layer, the probability of 
reflection of each interface increases due to its angular movement. Therefore, light passes through the absorb-
ing layer via multiple paths, which increases likelihood of absorption25. Depending on the wavelength of the 
incoming wave, and the dimensions and formation of the nanostructure, different light trapping mechanisms 
may occur within the solar cell26.

In plasmonic structures, plasmonic resonance occurs at the interface of metallic and non-metallic mediums 
by the collective excitation of the metal surface electrons gemerated by the electromagnetic waves27,28. Depending 
on the dimensions of the metal nanostructures (MNS) used in the main structure, the surface plasmon resonance 
(SPR) would happen in one of two mechanisms - near-field or far-field. If the size of the MNS were small (<50 
nm), the SPR has mainly near-field effects and causes the electromagnetic field to concentrate in the vicinity of 
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the MNS. But if the size of these nanostructures were larger (>50 nm), the SPR is mostly of the far-field scattering 
type and the plasmonic structure acts as a back or forward scatterer29. In 2015, Carretero-Palacios et al. analyzed 
the effect of the size and concentration of Au nanoparticles (NPs) embedded within the perovskite film on its 
absorption and have demonstrated that in such a configuration, the absorption is maximized when near-field 
and far-field effects of SPR are balanced30. Cui and co-workers reported a 13.7% improvement in efficiency using 
Au NPs inside the CH3NH3PbI2.85Br0.15 perovskite solar cell, which is related to the local enhancement of the 
electric field due to the near-field effects of SPR31. In 2018, Shi et al. introduced a high performance perovskite 
light-emitting diode with a core-shell nanostructured configuration and Au NPs inside the structure of the pho-
tovoltaic device, and achieved an emission enhancement ratio of 1.55 due to local surface plasmon coupling32.

There are various methods for shaping micro and nanostructures used in micro sensors, micro actuators, and 
nano devices. Among them, silicon micro-machining technologies have made great strides in recent decades33. 
This is due to the valuable properties of silicon, such as precisely shaping capability, compatibility with tech-
nologies used in the fabrication technologies of the integrated circuits, broad availability, and suitable electrical, 
mechanical, and thermal properties. Therefore, these advanced technologies could also be used in the fabrication 
of nanostructured solar cells34.

In this work, we use modeling studies to analyze the performance of nanostructured PSC on a textured silicon 
substrate. First, conventional planar PSC is simulated to verify the applicability of the modeling method used in 
this research. The obtained electrical outputs are set as references for the proposed structure. The optical losses 
of planar structure, which cause energy loss in this cell and reduction of its efficiency are investigated. The light 
trapping structure of the PSC based on a silicon substrate is presented, in which a PDMS layer is used as a cell 
protector instead of glass to reduce light reflection. The fabrication method of such a cell, based on an etched 
crystalline silicon substrate, is explained in this paper, and the simulation model used in this research is also 
discussed. The optical properties of this structure are compared with those of the planar structure considering 
the electric field profiles and the geometric path of light inside the cell. The effect of decreasing the density of 
hole transport material on the PSC performance according to the occurred plasmonic resonance is investigated. 
Then, three possible shapes of the structure concerning the deposition limitations and fabrication conditions 
are considered and compared with the ideal structure to estimate its efficiency after construction. Finally, the 
electrical properties of the main structure and three structures in which fabrication conditions were considered 
are investigated and compared.

Results
Figure 1a shows the typical planar architecture of a perovskite solar cell. This structure comprises five layers 
located on a flat glass substrate. These layers are ITO (indium doped thin oxide), TiO2 (titanium dioxide), Per-
ovskite (methylammonium lead iodide), CuSCN (copper thiocyanate) and Au with the thicknesses of 50, 50, 
200, 600, and 100 nm, respectively. The properties of perovskite, which is used as the absorbing material, has 
been discussed before. Here, TiO2 is used as the electron extraction and hole blocking layer. It is widely used 
in PSCs due to its high chemical stability, appropriate optical and electronical properties, and simple deposi-
tion methods35,36. In this structure, CuSCN is used as the hole transport layer (HTL). It is a cheap and efficient 
inorganic p-type material. PSCs based on this architecture have high efficiency and thermal stability in addition 
to having low fabrication costs. CuSCN possesses desirable properties such as high mobility, transparency to 
visible light, and suitable energy band levels37.

The output parameters of this structure obtained using the computational model are described in methods 
section and are used as the reference structure for comparison with subsequent structure. Figure 1b shows the 
current and output power density characteristics of this planar structure in terms of voltage. According to this 
figure, Jsc, open-circuit voltage (Voc), PCE, and filling factor (FF) for this structure are 17.51 mA/cm2, 0.96 V, 

Figure 1.   (a) A schematic of a planar structure of a PSC. (b) The current-voltage, and output power-voltage 
characteristics of a planar PSC.
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13.86%, and 82.42%, respectively. The results obtained in this section are in good agreement with the results of 
previous numerical and experimental studies for a planar PSC with similar dimensions13,37,38.

Figure 2 presents the light absorption scheme of the perovskite, parasitic absorption of other layers, and the 
total reflection in terms of the impact light wavelength for the planar structure of a PSC. This spectrum shows 
that not all of the energy of the incoming light is absorbed in the active layer, and a considerable amount of the 
energy is dissipated. According to calculations, 20% of light is lost due to parasitic absorption of the other layers 
and 13% to reflection. Since the carrier recombination during transportation in the cell is insignificant due to 
the low thickness of the perovskite and high diffusion length of carriers, it does not limit the output current. 
Therefore, the low Jsc in the planar PSC is due to the limited light absorption in the perovskite layer. Thus, to 
increase the current density and output power corresponding to it, the amount of energy loss in the cell must be 
reduced. For this reason, the light trapping structure is used to facilitate the entry of light into the cell by reducing 
the reflection, and to confine light to the absorbing layer by reducing the parasitic losses of the inactive layers.

Presentation of the proposed nanostructured perovskite solar cell.  Figure 3a shows our proposed 
structure for a perovskite solar cell. In this structure, due to the specific fabrication process, a thin layer of PDMS 
with a thickness of 100 nm is used instead of the thick glass layer. PDMS in addition to being a transparent mate-
rial with nearly no absorption in the visible and near-infrared spectral range, enhances the physical resistance 
of the cell and reduces reflection from the surface due to its suitable refractive index. Furthermore, a cell with 
this structure is more flexible than the conventional planar structure because of the absence of a thick layer of 
glass. The layers of this cell must be deposited on a textured silicon substrate to shape the presented light trap-

Figure 2.   The spectrum of the perovskite absorption, parasitic absorption of the other layers, and total 
reflection of a planar PSC.

Figure 3.   (a) A schematic of the proposed nanostructure of a PSC on an etched silicon substrate, and (b) the 
unit cell of the computational domain used in optical simulation with applied periodic boundary condition.
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ping structure.This structured solar cell, unlike the planar structures, should be built from the bottom layer, as 
described in the following section.

Studying the structural formation and simulated unit cell of the proposed PSC.  Bulk micro-machining tech-
nique using wet anisotropic etching can etch silicon to the desired structure. Using this method, one can make 
three-dimensional shapes depending on the crystalline orientation of silicon and the type of etchant with the 
advantages of low cost, high etching speed, and a high degree of selectivity. Since the <100> plane of the crystal-
line silicon etches more rapidly and at a higher rate than the <111>, by etching the silicon crystal (100), angular 
shapes can be produced. This angle, which is 54.7 degrees, is the angle between the <100> and the <111> planes 
and is caused by the fact that the etching is much slower in the <111> plane. Thus, with appropriate orientation 
of crystalline silicon, choice of suitable etchant and etching time, and use of appropriate temperature, the pro-
posed structure can be obtained with a smooth surface.

Photolithography and wet etching techniques have commonly been used to fabricate V-shaped and pyramidal 
structures on silicon substrates39. In this method, initially, a Si3N4 film is grown on a silicon (100) wafer, usually 
by an evaporation method, and then a photoresist (PR) film is deposited by spin coating. After the forming the 
desired pattern on the PR using photolithography, first the Si3N4 etching barrier selectively is etched using the 
buffered hydrofluoric (HF) acid etchant, and then the PR photo-mask is completely removed. In the following, 
by immersing the wafer in the KOH solution at temperatures between 80 and 85◦ C, the desired V-shaped struc-
ture with flat surfaces and tips is formed. In the end, to completely remove the Si3N4, the sample is immersed in 
diluted hydrogen fluoride34,39–41.

Since the proposed PSC must be built from the bottom layer to shape the desired light trapping structure, 
preserving the quality of the deposited films on the silicon substrate is critical. In order to achieve desired high 
efficiency, we can utilize fabrication methods used to assemble inverted perovskite solar cells (IPSC). This is 
because investigations have shown that in IPSCs, in which, the coating of the films is done from the bottom 
layer, high efficiencies can be obtained using appropriate deposition methods42–44. In this regard, with one step 
fast deposition-crystallization, one can fabricate a high-quality perovskite film on CuSCN layer with low surface 
roughness and small series resistance. In this process, the thickness of the CuSCN film can be adjusted by varying 
its electrodeposition time45. Additionally, by utilizing the Brookite-phase TiO2 top buffer on perovskite film, in 
addition to better extraction and transport of the carrier, high efficiency and long lifetime IPSC can be obtained46.

There are various methods such as evaporation, vacuum deposition, atomic layer deposition, sputtering, etc. 
to fabricate a conformal perovskite film and other components of the PSC on a textured substrate47–52. In this 
regard, one can use a two-step hybrid technique combining co-evaporation and spin-coating to deposit perovskite 
on an underlying textured silicon wafer50. Studies have also shown that the sputter-based process can be used 
to fabricate homogeneous perovskite films on a surface with high roughness53. Furthermore, if a dry two-step 
deposition proceeding is used, the quality of perovskite film can be adjusted by controlling the precursor com-
position, temperature, and duration of the conversion process34.

Given that our proposed structure is different from the planar structure, to equalize the light absorption 
conditions for investigating these two structures, the volume of the absorbing layer in these structures is set to 
be equal. By this, the carrier generation conditions in these structures would be identical since the generation 
of electron and hole pairs occurs only in this layer. The layers of the ITO, TiO2, and Au also have similar thick-
nesses in the two structures. However, the CuSCN layer must be thin. This is because, due to the deposition 
conditions, less the amount of material used in the deposition, the better it follows the form of the underlying 
layer. However, due to the difficulty of the material deposition with small thicknesses, the CuSCN thickness is 
taken to be 50 nm, which can be deposited by the method presented in previous research54. In order to control 
the thickness and morphology of the deposited layers, especially perovskite, in addition to the preceding men-
tioned methods, various techniques, including thermal vacuum deposition, solvent solvent extraction (SSE), 
ultra-sonic spray-coating, etc. have been proposed by researchers55–57. In these suggested deposition methods, the 
intention is to obtain stable, uniform and smooth films with a desired thickness. Figure 3a shows the periodical 
structure of the proposed nanostructured PSC. To reduce the amount of computation, as seen in Fig. 3b, a unit 
cell of periodical structure is considered. The boundary condition, which applied to its sides, is periodic and is 
based on Bloch’s theorem. The simulation of finite element method (FEM) electromagnetic optical is performed 
for this computational domain of the unit cell.

Studying the optical features of the proposed nanostructured PSC.  Figure 4a shows the geomet-
rical path of moving light inside the PSC with the given structure. Unlike in the planar architecture, in which, the 
direction of light in the PSC is normal to the cell surface, in this structure, due to the deformation of the configu-
ration, the path of light changes on passing through each layer. In the conventional planar structure, assuming 
vertical illumination of light to the surface of the cell, the direction of light at the boundary of two layers does not 
change. But due to differences in the refractive indices of the two media, part of the impact light reflects, and the 
rest of it goes to the next layer without changing direction. But in this configuration, according to the Snell’s law, 
due to the angular incident of light at the interface of two media with different refractive indices, the direction of 
light changes at each layer, and its path is no longer perpendicular to the cell surface.

As presented in Fig. 4a, the light path inside the presented light trapping structure has two states depending 
on which part of the cell it enters. If the incoming light is closer to the middle of the studied unit cell, according 
to the state 1, the light path does not change after entering the PSC from the external medium (air). However, at 
the PDMS/ITO interface, because of the larger refractive index of ITO, it converges slightly to the middle of the 
cell. At the TiO2 interface, due to the high angle of impact, light is reflected, and consequently, approaches the 
center. Therefore, it reaches the interface of the perovskite at an almost perpendicular angle and thus penetrates 
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it. The direction of light does not change much on passing through HTL. As it collides with the Au back-contact, 
due to the SPR effect, which will be discussed further in the electric field review section, it scatters back into 
the absorbing layer. Again, due to the approaching impact angle to the total reflection angle at the interface of 
perovskite and CuSCN, it returns to the active layer. Thus, light is trapped inside the absorbing layer and moves 
further inside this layer. This increases the probability of the perovskite absorption and carrier generation inside 
it. State 2 shows the geometrical light path when it is away from the center of the unit cell. In this case, light 
moves in a similar path to that of a planar structure, and its direction does not shift much until it reaches the 
Au back-contact. When it hits the metal surface, due to the angular impact and the scattering effect of surface 
plasmon resonance, it scatters to the sides of the cell. Therefore, light returns to the absorbing layer at a nonver-
tical angle. Like state 1, in the perovskite/HTL interface, due to the high impact angle, light is reflected and is 
trapped in the active layer. Therefore, in both cases, the light that enters the cell is trapped inside the absorbing 
layer, until it is absorbed.

Figure 4b,c show the profiles of the normalized electric field at wavelength of 800 nm for a planar PSC and the 
presented structure. At this wavelength, the energy of photons is lower than that of the shorter wavelengths of the 
perovskite absorption spectrum, and therefore light moves longer before being absorbed. Thus, the electric field 
profile at 800 nm, in contrast to the lower wavelengths in which light is not trapped completely inside the active 
layer, is compatible with the light trapping mechanism of the nanostructure. Accordingly, at this wavelength, 
the comparison of the electric field profiles is accomplished. As expected, in the planar structure, the electric 
field intensity along the width of the PSC is constant. This indicates that the direction of light in this structure is 
unaltered and it always moves perpendicular to the cell surface. Also, within the perovskite and near its bound-
ary with the HTL, the electric field intensity is higher than in the middle of the layer. This proves that part of 
the light reflects into the perovskite from this boundary and enhances the electric field in this area, and part of 
it enters the lower layer of CuSCN and causes parasitic losses.

One can see that in the proposed structure, the intensity of the electric field in ITO is higher than that of the 
planar structure, indicating more light entering the cell due to the use of PDMS and the specific configuration 
of the PSC. This is because PDMS has a closer refractive index to the outer environment of the PSC (air), and 
the adaptation of the refractive indices of these two adjacent media, reduces the reflection from the cell surface. 
Unlike the planar structure, in this structure, due to the non-vertical movements of the light, the profile of the 
electric field is changed completely, and it is no longer constant across the width of the cell. According to this 
profile, the electric field intensity inside the absorbing medium and in certain areas of it is increased, which shows 
that light is trapped inside this layer. Part of this trapped light within the perovskite is located in the lower por-
tion of the triangular section, which is the result of the first investigated state in the preceding section, and part 
of it in the upper portion and belongs to the second state, which is shown in Fig. 4a as dotted circles. Due to the 
specific shape of this structure, the approach of the metal contact to the absorbing layer reduces the parasitic 
losses and causes the light to return and trap in the active layer through the SPR enhancement of the metallic 
back-contact. As presented in the electric field profile, as expected considering the dimensions of the MNS 
( > 100 nm), there is no confinement of light in the vicinity of Au surface. Consequently, the occurred SPR has 
no near-field effects, and it mainly has far-field effects and acts as a scatterer. Since the incident light is scattered 
in the longest wavelength of the studied spectrum, in shorter wavelengths, to the extent that light impacts the 
back-contact of Au, it scatters as well. Hence, one can say that the MNS acts only as a back scatterer and reflects 
most of the light (except for the part that is absorbed in the metal surface) to the first medium, at an angle equal 
to the incident angle according to Fresnel’s law. Overall, one can conclude that such a structure improved light 
entry, reduced parasitic losses, and trapped light in the cell.

Figure 5a,b illustrate the reflectance of the PSC and the absorption of its active layer for the planar and pro-
posed structures. It is seen that the light reflectance has decreased almost in the whole spectrum in the proposed 
structure. As mentioned, the use of PDMS instead of glass on the cell surface reduces the reflection of the inci-
dent light due to its suitable refractive index. This is because, as mentioned earlier, its refractive index is lower 

Figure 4.   (a) A schematic of light path inside a PSC with the proposed structure. (b) The normalized electric 
field profile of the planar and (c) presented structures at the wavelength of 800 nm.
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than that of its underlying layer (ITO) and is closer to the external environment (air) with a refractive index 
of one. Therefore light better penetrates the structure. On the other hand, the non-planar structure causes the 
non-vertical movement of photons inside the PSC. Therefore, the light that enters the cell deviates from the cell’s 
perpendicular direction, and if it reflects internally at the interface of two layers and returns to the cell surface, it 
reaches it at an angle closer to the total reflection angle. Therefore, it is less likely to leave the cell, which leads to 
decreased reflection. However, in two parts of the wavelength range, there is a slight increase in the reflectance 
due to the change in the configuration of the cell, but it is small compared to the whole wavelength range and 
does not have much effect.

Due to the reduction of reflectance (Fig. 5a), and the trapping of light inside the cell, especially within the 
absorbing layer, according to the profile of the electric field (Fig. 4c), there is a significant increase in the perovs-
kite absorption (Fig. 5b). Reductions in optical losses, including a decrease in parasitic losses in the red part of 
the spectrum ( � > 550 nm) and a decrease in reflection losses in the blue part ( � < 550 nm), causes 90% of the 
incoming light to be absorbed in the range of 400 to 750 nm. Therefore, one can see an increase in absorption 
throughout the proposed structure spectrum.

Investigating the effects of reducing HTL thickness on cell function.  The volume of materials in 
each layer in the proposed structure is equal to that in the planar structure, and only the thickness of the HTL in 
this structure is smaller. Therefore, to accurately compare these two structures in equal conditions of used mate-
rials, or in other words, to study the effect of reducing the thickness of HTL on the performance of the proposed 
cell, the output parameters of this cell with the ordinary volume of HTL (400 nm) must also be studied. How-
ever, as discussed in the structural analysis section, in practice, the deposition of a layer with this thickness on a 
textured substrate with such dimensions, destroys its angular formation and flattens the cell surface. Therefore, 
instead of examining the proposed structure with an ordinary thickness of HTL (400 nm), and comparing it with 
the main one (50 nm thick HTL), we study the planar structure with a thin HTL (the thickness that used in the 
proposed structure, which is 50nm) and compare it with the proposed structure. In such a case, the properties of 
the two structures are the same in terms of the materials used, and the comparison is reasonable.

As shown in Fig. 6, reducing the thickness of the HTL in the planar structure increases the absorption only 
in the red part of the spectrum. Because, at shorter wavelengths, light is absorbed before it reaches the HTL. 
Therefore, the changes in the thickness of this layer do not affect this part of the spectrum. However, at higher 
wavelengths (the red light), the low energy of photons prevents them from being fully absorbed in the top lay-
ers. They thus enter the lower layer of CuSCN. In a conventional planar structure, the light that enters HTL 
is parasitically lost in this layer before reaching the back-contact of Au. But in the planar structure with thin 
HTL, reducing the thickness of this layer reduces light loss in this layer to a large extent. Therefore, at these 
wavelengths, the incoming light collides with the metallic back-contact and is scattered due to the SPR effect. In 
this planar structure, similar to the proposed structure, due to the large dimensions of the structure (assuming 
the smooth surface as a fragment of a circle with an infinite radius), the SPR has no near-field effects and only 
has far-field scattering effects, which causes light to return to the absorbing layer. As a result, decreasing the 
HTL thickness increases the absorption in the planar structure. However, the light absorption in this structure 
is still much lower than that of the proposed structure. Therefore, one can conclude that the high absorption of 
the proposed structure, while affected by the reduction of the thickness of this layer, is mainly due to the light 
trapping mechanism and the use of PDMS on the cell surface.

Fabrication considerations of the proposed nanostructure of a PSC.  In the fabrication process, 
materials are not deposited with a perfectly smooth surface and uniform thickness throughout the cell, and 
depending on the type of fabrication process and the deposition conditions, they form differently. Since, on the 
one hand, the proposed structure has to be fabricated from the bottom up, and each layer should follow the shape 
of the previous layer, and on the other hand, the presented nanostructured PSC has angled configuration with 
a low width unit cell, after the fabrication process, it would not accurately form as proposed and would have a 
shape similar to the one shown in Fig. 7a, depending on the manufacturing conditions47,49,50,53.

Figure 5.   (a) The normalized reflectance and (b) absorption spectra of the planar and proposed structures.
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According to the studies, by etching the crystal silicon (100), due to the high resistance of < 111 > plane 
to etching, the textured silicon would be very similar to the presented structure with curvature angles of 54.7 
degrees34. But by depositing the other materials, especially Au, as the first layer, the triangular parts would not 
copy, and the deposited layers would have a smooth curvature at their bottom, as shown in Fig. 7a with zero 
angles34,47,49,50,53. This increases with the deposition of each material, and each layer follows the shape of the 
previous layer to a smaller extent. As mentioned, that is the reason that in this structure, HTL not inserted with 
the thickness used in the planar PSC. In this case, after the deposition of such a thick layer, the structure would 
be almost flat. Figure 7c,d, and e show three different assumptions about the fabricated cell. In each case, the 
curvature of the angular section is reduced, and the form of textured silicon is less followed. The first fabricated 
conditions considered structure (FCCS) is very similar to that of the proposed one, and there is only a slight dif-
ference in the triangular part. This difference is slightly increased in the second FCCS and more in the third one. 
By studying these assumptions about the FCCSs (Fig. 7c–e) and comparing them with the proposed structure 
(Fig. 7b), the effects of fabrication conditions on cell performance can be examined.

Figure 8 shows the absorption spectrum of the active medium for the proposed nanostructure and three 
FCCSs shown in Fig. 7c,d, and e. According to this spectrum, the absorption of these structures is not very dif-
ferent from the proposed one, and there are only some changes in the range of 360 to 470, and 640 to 730 nm. 
In the first range, because of the higher energy of the photons, they are absorbed in the upper part of PSC and 
have no interaction with the lower layers of the perovskite. Therefore, the changes are due to the deformation 
of the ITO layer and the slight changes in the light path in each structure. In the second range of changes, the 
energy of the photons is low, so they penetrate more into the cell before being absorbed. As a result, the changes 
are due to the deformation of the metal contact, and the decrease in light trapping. Since in each structure, the 
curvature of the triangular part is reduced, the probability of light escaping from the cell, and being scattered by 
SPR towards the cell surface is increased as well. There is, thus, a slight decrease in the absorption of each FCCS 

Figure 6.   The normalized absorption spectrum for a conventional planar structure, the planar structure with a 
thin HTL (50 nm), and the proposed structure.

Figure 7.   (a) The structure of the proposed PSC considering the conditions of fabrication processes. (b) 
The unit cell of previously studied structure, and (c–e) the configurations of the PSC unit cell concerning the 
fabrication conditions at three different curvature.
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in this range. Overall, the absorptions of these structures are not very different, and they all absorb almost the 
same amount of light.

Electrical performance of the proposed nanostructure and three FCCSs of PSCs.  In this work, 
the collection efficiency spectrum is used to investigate the rate of transferred electrons and holes to the charge 
transport layers. This parameter shows the ability of carrier extraction and its transportation in a solar cell and 
is obtained by dividing the number of collected carriers by the contacts to the number of photo-generated elec-
tron-hole pairs at each wavelength. Fig. 9a shows the normalized collection efficiency spectrum for the planar 
PSC, the proposed structure, and the three FCCSs. As expected, in all PSCs, by increasing the wavelength, the 
carrier collection rate is improved. This is because at longer wavelengths, due to the reduction of photons energy 
according to the relation of E = hc

�
 , the photons travel a longer path before being absorbed. As a result, the elec-

tric field inside the absorbing layer becomes distributed, and the extraction of generated carriers becomes easy 
due to their proximity to the interfaces of both carrier transport layers. According to the figure, planar PSC is 
more efficient in collecting the carrier than the proposed structure and its FCCSs. It can be attributed to the dis-
tribution of the electric field inside the solar cell. As seen in Fig. 4b,c, unlike the planar structure, in the proposed 
architecture, the distribution of the electric field in the active layer is not uniform. Consequently, the photo-
generated carriers are in the specific sites of the active layer, and due to the angular configuration of the proposed 
structure, they must travel a longer path to reach the charge extraction layers. In other words, because of the light 
trapping mechanism of this PSC, the effective interface of the absorbing layer with the carrier transport layers at 
a constant unit cell width is reduced, making carrier collection difficult. On the other hand, collection efficiency 
improves to some extent by reducing the curvature of the triangular part in FCCSs. According to Fig. 9a, among 
the proposed structure and its fabrication considered PSCs, the third FCCS has the best collecting characteristic. 
Again, this result can be attributed to the effective interface of layers and the carrier transport path. By reducing 
the curvature of the angular part of the cell, due to the proximity of their generated sites to the interfaces of the 
transport layers, the extraction of the produced carriers is facilitated. The fluctuating trends of the collection 
efficiency spectrum in the proposed structure and its FCCSs are also due to differences in the distribution of the 
electric field at each wavelength.

Figure 8.   The normalized absorption spectra for the proposed structure and the three FCCSs.

Figure 9.   (a) The normalized collection efficiency spectra, and (b) the current-voltage characteristics for the 
planar PSC, the proposed structure, and the three FCCSs.
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Figure 9b shows the characteristics of the current density in terms of voltage for a planar PSC, the proposed 
structure, and three FCCSs of a proposed PSC. As expected, the reduction in reflection and parasitic losses, 
and increased light absorption of the perovskite layer due to light trapping results in an increase in the Jsc in the 
presented structure compared to the planar PSC. But since the constituents of the PSC and the thickness of the 
active layer remains unchanged, filling factor does not change significantly. However, there is a slight change in 
Voc. This is partly due to the increase in current density. Because it has caused in higher voltage, the cell current 
(Jdark) is equal to the carrier generation current (Jsc). That is the reason that the third FCCS, although having 
a better collection efficiency, has slightly smaller Voc than that of the main proposed structure and the other 
FCCSs . On the other hand, due to the reduction in the thickness of the HTL, the recombination in this material 
is decreased, leading to a higher Voc. Considering the limited diffusion length of the holes, the reduction of the 
current path reduces the carrier losses during transportation in this layer. Overall, these two factors improve 
the Voc in this structure.

According to the J-V characteristics presented in Table 2, the Jsc of the FCCSs, such as their absorption, do 
not differ much from the main presented structure. This indicates that if the proposed structure is fabricated, it 
would exhibit high effieincy even though it may not be identical to the design proposed structure. According to 
the Table 2, the Jsc of the proposed structure is 22.45 mA/cm2, which is increased by 28% compared to the planar 
structure. The Voc is also increased and reaches a value of 0.98 volts. The Jsc of the FCCSs are also almost equal 
to the main nanostructured PSC, and in the worst case, has a value of 22.28 mA/cm2 for the second FCCS. The 
conversion efficiency is also increased by 32%, from 13.86% for the planar structure to 18.29% for the presented 
structure.

Discussion
In the present study, a coupled optical-electrical simulation has been performed to obtain the optical spectra 
and electrical parameters of the PSCs. First, the light loss factors in the planar architecture of a PSC have been 
analyzed, and a nanostructured solar cell on a textured silicon substrate has been presented to reduce these losses. 
The results have shown that the use of PDMS instead of glass in the proposed structure reduces the reflection 
loss of the cell. Furthermore, the perovskite absorption due to the light trapping in the active layer, and the 
far-field scattering enhancement of SPR have been found to increase dramatically. The effects of reducing the 
HTL thickness on the perovskite absorption have been investigated, and the mechanism of SPR on the surface 
of the metallic back-contact has been determined. The possible formation of the presented PSC according to 
the fabrication process has also been considered, and the optical absorption in these nanostructures has been 
compared with that of the main structure. The perovskite absorption in these structures have been found to be 
not very different from the main structure, and the PSCs have shown significant efficiencies. In the final part 
of the research, the current-voltage characteristics of the main proposed structure and three FCCSs have been 
investigated. The findings have revealed that due to the increased absorption almost in the entire spectrum, and 
the improvement of carriers’ transportation, Jsc and Voc increase significantly. As a result, the power conversion 
efficiency of the PSC was seen to increase from 13.86% to 18.29%. Based on the calculations, the PCE in the most 
different case of the FCCS compared to the main structure has been shown to have a value of 18.04%, which has 
still a notable efficiency improvement.

Methods
Since a solar cell is a photovoltaic device, its optical and electrical physics must be studied simultaneously. In 
the optical part of the simulation, the behavior of the cell exposed to sunlight and the resulting photo-generated 
carriers are investigated. In the electrical section, the characteristics of the PSC in the flow of these generated 
carriers are examined.

Photo-generated carriers measurments. In the optical simulations part, the Maxwell’s equation (Eqs. 1 and 
2) is used to calculate the electric field of the propagated light inside the cell, which is emitted by the incoming 
light source.

In this equation, H is the magnetic field, µ is permeability, E is the electric field, ε is permittivity, and σ is the 
electric conductivity. For the simulated unit cell of the investigated solar cells, a periodic boundary condition is 
implemented to all sides of cell’s layers except the Au contact. Perfect electric conductor as boundary condition 
is used for this part in order to consider the reflected light from its surface. The light source is a plane wave and 
is placed outside the cell in a medium with air properties to calculate the reflection of the cell surface as well. The 
input light power is based on the standard AM 1.5 and is applied over the wavelength range of the perovskite 
absorption with a resolution of 10 nm.

Using Eqs. 1 and 2, the electric field is obtained in the whole domain at each wavelength. With the measured 
value of the electric field inside the perovskite, the amount of photo-generated electron-hole pairs in the absorb-
ing medium in each wavelength is calculated as follows:

(1)
∂H

∂t
=

−1

µ
∇ × E

(2)ǫ
∂E

∂t
= −∇ ×H − σE

(3)G�(�) =
ε′′|E(�)|2

2h
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where ε′′ is the imaginary component of relative permittivity, and h is the Plank’s constant. By the integral of G� at 
the entire wavelength range, the total carriers generated by the simulated sunlight ( Gtotal ) is calculated as follows:

Absorption measurments. Absorption of each layer and reflection from the PSC surface are obtained using the 
scattering parameters58:

In calculating these parameters, the power of the input light is unity. This is because the elements of the scatter-
ing matrix only show the absorption, transmission, and reflection percentages of the incoming light. Therefore, 
the input power does not affect the calculation. The complex refractive indices in terms of wavelength for the 
investigated solar cell constituents, namely TiO2, perovskite (CH3NH3PbI3), CuSCN, and Au are obtained from 
previous calculations59–62. However, for ITO, two different refractive indices are considered in the cases of ITO 
on glass or PDMS63.

Electrical characterization. Using Gtotal , one can obtain the electrical properties of the photovoltaic cell 
exposed to light. The following equation is employed to calculate the current density - voltage characteristic of 
the PSCs:

where e is the charge of an electron, n is an ideality factor that depends on the type of the matter, K is the Boltz-
mann’s constant, and T is the temperature. According to this equation, the current of a cell consists of two com-
ponents of Jsc and Jdark that flow in opposite directions in the cell. Jsc is caused by light propagation in the cell, 
and consequently, generated carriers by the absorbed photons. But Jdark does not relate to the carriers generated 
by incident light and is a function of the voltage applied to the two ends of the cell. Both of these currents are 
obtained using Poisson and continuity equations. The calculations of the electrical part of the cell are made only 
for three layers of TiO2 and CuSCN as the electron and hole transport layers, respectively, and perovskite as the 
absorbing layer. Ideal ohmic for the upper contact of ITO and Schottky condition with the surface recombination 
speed of 107 cm/s for the lower contact of Au are considered. The electrical parameters used are presented in 
Table 111,38,64–73. Here, NC and NV are effective density of states of conduction and valence bands, NA and ND are 
acceptor and donor densities, X is electron affinity, Eg is bandgap energy, τn and τp are electron and hole lifetimes, 

(4)Gtotal =

∫

�max

�min

G�(�) d�

(5)Absorption =1− (|S11|
2 + |S21|

2)

(6)Reflection =|S11|
2

(7)J(V) = Jsc(Gtotal)+ Jdark = Jsc(Gtotal)−

∣

∣

∣

∣

J0
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exp
eV

nKT

)

− 1

)∣

∣

∣

∣

Table 1.   The used electrical parameters in the PSCs simulations.

Parameter TiO2 Perovskite CuSCN

NC (cm−3) 1× 10
19

5.41× 10
19

2.51× 10
19

NV (cm−3) 1× 10
19

1.66× 10
19

1.79× 10
19

NA (cm−3) 0 5× 10
13

5× 10
18

ND (cm−3) 5× 10
18 0 0

εr 9 6.5 10

X (eV) 4 3.93 1.9

Eg (eV) 3.2 1.5 3.4

τn/τp (ns) 5/2 8/8 5/5

µn/µp (cm2/V s) 20/10 50/50 1× 10
−4/0.01

Table 2.   The short-circuit current density (Jsc), the open-circuit voltage (Voc), the filling factor (FF), and the 
power conversion efficiency (PCE) for the planar, the presented, and three fabrication conditions considered 
structures of PSCs.

Structure Planar Str. Proposed Str. FCCS 1 FCCS 2 FCCS 3

Jsc (mA/cm2) 17.51 22.45 22.39 22.28 22.34

Voc (V) 0.96 0.98 0.98 0.98 0.97

FF (%) 82.42 83.13 83.09 83.06 82.92

Efficiency (%) 13.86 18.29 18.19 18.08 18.04
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and µn and µp are electron and hole mobilities, respectively. The computational method used in this work is 
the FEM. It is a mathematical analysis technique that is widely used to solve a variety of engineering problems.

Data availability
The data generated and analyzed during the study are available from the authors on reasonable request.

Received: 19 July 2020; Accepted: 14 October 2020

References
	 1.	 Correa-Baena, J.-P. et al. Promises and challenges of perovskite solar cells. Science 358, 739–744 (2017).
	 2.	 Park, N.-G., Grätzel, M., Miyasaka, T., Zhu, K. & Emery, K. Towards stable and commercially available perovskite solar cells. Nature 

Energy 1, 1–8 (2016).
	 3.	 Lin, R. et al. Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress sn (ii) 

oxidation in precursor ink. Nature Energy 4, 864–873 (2019).
	 4.	 Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. 

J. Am. Chem. Soc. 131, 6050–6051 (2009).
	 5.	 Yang, G., Zhang, H., Li, G. & Fang, G. Stabilizer-assisted growth of formamdinium-based perovskites for highly efficient and stable 

planar solar cells with over 22% efficiency. Nano Energy 63, 103835 (2019).
	 6.	 Tao, H. et al. High absorption perovskite solar cell with optical coupling structure. Opt. Commun. 443, 262–267 (2019).
	 7.	 Chen, B. et al. Enhanced optical path and electron diffusion length enable high-efficiency perovskite tandems. Nat. Commun. 11, 

1–9 (2020).
	 8.	 Kumavat, S. R., Sonvane, Y., Singh, D. & Gupta, S. K. Two-dimensional ch3nh3pbi3 with high efficiency and superior carrier 

mobility: A theoretical study. J. Phys. Chem. C 123, 5231–5239 (2019).
	 9.	 Song, Z. et al. Manufacturing cost analysis of perovskite solar modules in single-junction and all-perovskite tandem configura-

tions. In 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC)(A Joint Conference of 45th IEEE PVSC, 
28th PVSEC & 34th EU PVSEC), 1134–1138 (IEEE, 2018).

	10.	 Albrecht, S. & Rech, B. Perovskite solar cells: on top of commercial photovoltaics. Nat. Energy 2, 1–2 (2017).
	11.	 Kim, H.-S. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceed-

ing 9%. Sci. Rep. 2, 1–7 (2012).
	12.	 Ali, M. et al. Nanostructured photoelectrochemical solar cell for nitrogen reduction using plasmon-enhanced black silicon. Nat. 

Commun. 7, 1–5 (2016).
	13.	 Tooghi, A., Fathi, D. & Eskandari, M. High-performance perovskite solar cell using photonic-plasmonic nanostructure. Sci. Rep. 

10, 1–13 (2020).
	14.	 Ali, N. M. & Rafat, N. H. Modeling and simulation of nanorods photovoltaic solar cells: A review. Renew. Sustain. Energy Rev. 68, 

212–220 (2017).
	15.	 Aliyariyan, M., Fathi, D., Eskandari, M. & Tooghi, A. Efficiency enhancement of perovskite solar cells by designing gese nanowires 

in the structure of the adsorbent layer. Nanotechnology 31, 465405 (2020).
	16.	 Xu, H. et al. Morphology control of organic halide perovskites by adding bifeo 3 nanostructures for efficient solar cell. Sci. Rep. 9, 

1–8 (2019).
	17.	 Mohammadi, M. H., Fathi, D. & Eskandari, M. Nio@ gese core-shell nano-rod array as a new hole transfer layer in perovskite solar 

cells: A numerical study. Sol. Energy 204, 200–207 (2020).
	18.	 Boroumand, J., Das, S., Vázquez-Guardado, A., Franklin, D. & Chanda, D. Unified electromagnetic-electronic design of light 

trapping silicon solar cells. Sci. Rep. 6, 31013 (2016).
	19.	 Liu, C. et al. Strategies for growing perovskite films on nanostructured tio 2 for high performance solar cell. In 2018 IEEE 2nd 

Electron Devices Technology and Manufacturing Conference (EDTM), 107–109 (IEEE, 2018).
	20.	 Lee, K.-T. et al. Highly efficient colored perovskite solar cells integrated with ultrathin subwavelength plasmonic nanoresonators. 

Sci. Rep. 7, 1–10 (2017).
	21.	 Yu, P. et al. Giant optical pathlength enhancement in plasmonic thin film solar cells using core-shell nanoparticles. J. Phys. D Appl. 

Phys. 51, 295106 (2018).
	22.	 Li, Z., Li, Z., Shi, Z. & Fang, X. Facet-dependent, fast response, and broadband photodetector based on highly stable all-inorganic 

cscu2i3 single crystal with 1d electronic structure. Adv. Funct. Mater. 30, 2002634 (2020).
	23.	 Du, Z. et al. Cspbi3 nanotube photodetectors with high detectivity. Small 15, 1905253 (2019).
	24.	 Zheng, L. et al. Self-powered flexible tio2 fibrous photodetectors: Heterojunction with p3ht and boosted responsivity and selectivity 

by au nanoparticles. Adv. Funct. Mater. 30, 2001604 (2020).
	25.	 Chen, K. et al. Light-trapping schemes for silicon thin-film solar cells via super-quadratic subwavelength gratings. Appl. Opt. 58, 

8702–8712 (2019).
	26.	 Choudhury, S. A., Munir, M. S., Nawshin, N. & Chowdhury, M. H. Effect of varying the row and column size of periodic arrays of 

plasmonic nanoparticles on the energy conversion efficiency of thin-film solar cells. In 2017 International Conference on Electrical, 
Computer and Communication Engineering (ECCE), 44–49 (IEEE, 2017).

	27.	 Erwin, W. R., Zarick, H. F., Talbert, E. M. & Bardhan, R. Light trapping in mesoporous solar cells with plasmonic nanostructures. 
Energy Environ. Sci. 9, 1577–1601 (2016).

	28.	 Enrichi, F., Quandt, A. & Righini, G. C. Plasmonic enhanced solar cells: Summary of possible strategies and recent results. Renew. 
Sustain. Energy Rev. 82, 2433–2439 (2018).

	29.	 Feng, L., Niu, M., Wen, Z. & Hao, X. Recent advances of plasmonic organic solar cells: Photophysical investigations. Polymers 10, 
123 (2018).

	30.	 Carretero-Palacios, S., Calvo, M. E. & Míguez, H. Absorption enhancement in organic-inorganic halide perovskite films with 
embedded plasmonic gold nanoparticles. J. Phys. Chem. C 119, 18635–18640 (2015).

	31.	 Cui, J. et al. Surface plasmon resonance effect in inverted perovskite solar cells. Adv. Sci. 3, 1500312 (2016).
	32.	 Shi, Z. et al. Localized surface plasmon enhanced all-inorganic perovskite quantum dot light-emitting diodes based on coaxial 

core/shell heterojunction architecture. Adv. Funct. Mater. 28, 1707031 (2018).
	33.	 Kovacs, G. T., Maluf, N. I. & Petersen, K. E. Bulk micromachining of silicon. Proc. IEEE 86, 1536–1551 (1998).
	34.	 Lee, S.-W. et al. Perovskites fabricated on textured silicon surfaces for tandem solar cells. Commun. Chem. 3, 1–11 (2020).
	35.	 Lee, D. G. et al. Effect of tio2 particle size and layer thickness on mesoscopic perovskite solar cells. Appl. Surf. Sci. 477, 131–136 

(2019).
	36.	 Dadashbeik, M., Fathi, D. & Eskandari, M. Design and simulation of perovskite solar cells based on graphene and tio2/graphene 

nanocomposite as electron transport layer. Sol. Energy 207, 917–924 (2020).
	37.	 Qin, P. et al. Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency. Nat. Commun. 5, 

1–6 (2014).



12

Vol:.(1234567890)

Scientific Reports |        (2020) 10:18699  | https://doi.org/10.1038/s41598-020-75630-4

www.nature.com/scientificreports/

	38.	 Zandi, S. & Razaghi, M. Finite element simulation of perovskite solar cell: A study on efficiency improvement based on structural 
and material modification. Sol. Energy 179, 298–306 (2019).

	39.	 Abidin, U., Majlis, B. Y. & Yunas, J. Fabrication of pyramidal cavity structure with micron-sized tip using anisotropic koh etching 
of silicon (100). Jurnal Teknologi74, (2015).

	40.	 Xie, H., Friedman, D., Mirpuri, K. & Chawla, N. Electromigration damage characterization in sn-3.9 ag-0.7 cu and sn-3.9 ag-0.7 
cu-0.5 ce solder joints by three-dimensional x-ray tomography and scanning electron microscopy. J. Electron. Mater. 43, 33–42 
(2014).

	41.	 Nassiopoulou, A. et al. Selective self-alignment of au nanoparticle-coated k2so4 microcrystals in micrometre gratings of v-grooves 
on a silicon substrate. Nanotechnology 15, 352 (2004).

	42.	 Yu, J. C. et al. Highly efficient and stable inverted perovskite solar cell employing pedot: go composite layer as a hole transport 
layer. Sci. Rep. 8, 1–9 (2018).

	43.	 Yu, J. C. et al. Highly efficient and stable inverted perovskite solar cell obtained via treatment by semiconducting chemical additive. 
Adv. Mater. 31, 1805554 (2019).

	44.	 Zhu, Z. et al. Enhanced efficiency and stability of inverted perovskite solar cells using highly crystalline sno2 nanocrystals as the 
robust electron-transporting layer. Adv. Mater. 28, 6478–6484 (2016).

	45.	 Ye, S. et al. Cuscn-based inverted planar perovskite solar cell with an average pce of 15.6%. Nano Lett. 15, 3723–3728 (2015).
	46.	 Hu, X. et al. 22% efficiency inverted perovskite photovoltaic cell using cation-doped brookite tio2 top buffer. Adv. Sci. 7, 2001285 

(2020).
	47.	 Cojocaru, L. et al. Detailed investigation of evaporated perovskite absorbers with high crystal quality on different substrates. ACS 

Appl. Mater. Interf. 10, 26293–26302 (2018).
	48.	 Momblona, C. et al. Efficient vacuum deposited pin and nip perovskite solar cells employing doped charge transport layers. Energy 

Environ. Sci. 9, 3456–3463 (2016).
	49.	 Nogay, G. et al. 25.1%-efficient monolithic perovskite/silicon tandem solar cell based on ap-type monocrystalline textured silicon 

wafer and high-temperature passivating contacts. ACS Energy Lett. 4, 844–845 (2019).
	50.	 Sahli, F. et al. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nat. Mater. 

17, 820–826 (2018).
	51.	 Hsiao, S.-Y. et al. Efficient all-vacuum deposited perovskite solar cells by controlling reagent partial pressure in high vacuum. Adv. 

Mater. 28, 7013–7019 (2016).
	52.	 Fu, H. .-C. et al. Mxene-contacted silicon solar cells with 11.5% efficiency. Adv. Energy Mater. 9, 1900180 (2019).
	53.	 Raifuku, I. et al. Fabrication of perovskite solar cells using sputter-processed ch3nh3pbi3 films. Appl. Phys. Express 10, 094101 

(2017).
	54.	 Thangawng, A. L., Ruoff, R. S., Swartz, M. A. & Glucksberg, M. R. An ultra-thin pdms membrane as a bio/micro-nano interface: 

fabrication and characterization. Biomed. Microdev. 9, 587–595 (2007).
	55.	 Gil-Escrig, L. et al. Vacuum deposited triple-cation mixed-halide perovskite solar cells. Adv. Energy Mater. 8, 1703506 (2018).
	56.	 Barrows, A. T. et al. Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. Energy 

Environ. Sci. 7, 2944–2950 (2014).
	57.	 Zhou, Y. et al. Room-temperature crystallization of hybrid-perovskite thin films via solvent-solvent extraction for high-performance 

solar cells. J. Mater. Chem. A 3, 8178–8184 (2015).
	58.	 Ke, S. et al. Plasmonic absorption enhancement in periodic cross-shaped graphene arrays. Opt. Express 23, 8888–8900 (2015).
	59.	 Pattanasattayavong, P. et al. Electric field-induced hole transport in copper (i) thiocyanate (cuscn) thin-films processed from 

solution at room temperature. Chem. Commun. 49, 4154–4156 (2013).
	60.	 Ball, J. M. et al. Optical properties and limiting photocurrent of thin-film perovskite solar cells. Energy Environ. Sci. 8, 602–609 

(2015).
	61.	 Johnson, P. B. & Christy, R.-W. Optical constants of the noble metals. Phys. Rev. B 6, 4370 (1972).
	62.	 Siefke, T. et al. Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range. Adv. 

Opt. Mater. 4, 1780–1786 (2016).
	63.	 Yan, X. et al. Refractive-index-matched indium-tin-oxide electrodes for liquid crystal displays. Jpn. J. Appl. Phys. 48, 120203 (2009).
	64.	 Minemoto, T. & Murata, M. Device modeling of perovskite solar cells based on structural similarity with thin film inorganic 

semiconductor solar cells. J. Appl. Phys. 116, 054505 (2014).
	65.	 Hirasawa, M., Ishihara, T., Goto, T., Uchida, K. & Miura, N. Magnetoabsorption of the lowest exciton in perovskite-type compound 

(ch3nh3) pbi3. Phys. B 201, 427–430 (1994).
	66.	 Jaffe, J. E. et al. Electronic and defect structures of cuscn. J. Phys. Chem. C 114, 9111–9117 (2010).
	67.	 Zhou, Q. et al. Two-dimensional device modeling of ch3nh3pbi3 based planar heterojunction perovskite solar cells. Sol. Energy 

123, 51–56 (2016).
	68.	 Zhang, A., Chen, Y. & Yan, J. Optimal design and simulation of high-performance organic-metal halide perovskite solar cells. IEEE 

J. Quantum Electron. 52, 1–6 (2016).
	69.	 Stoumpos, C. C., Malliakas, C. D. & Kanatzidis, M. G. Semiconducting tin and lead iodide perovskites with organic cations: phase 

transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013).
	70.	 Pattanasattayavong, P. et al. Hole-transporting transistors and circuits based on the transparent inorganic semiconductor copper 

(i) thiocyanate (cuscn) processed from solution at room temperature. Adv. Mater. 25, 1504–1509 (2013).
	71.	 Hao, F., Stoumpos, C. C., Chang, R. P. & Kanatzidis, M. G. Anomalous band gap behavior in mixed sn and pb perovskites enables 

broadening of absorption spectrum in solar cells. J. Am. Chem. Soc. 136, 8094–8099 (2014).
	72.	 Tang, Z.-K. et al. Enhanced optical absorption via cation doping hybrid lead iodine perovskites. Sci. Rep. 7, 1–7 (2017).
	73.	 Liu, F. et al. Numerical simulation: toward the design of high-efficiency planar perovskite solar cells. Appl. Phys. Lett. 104, 253508 

(2014).

Author contributions
D.F and M.E initiated the idea. D.F, M.E and A.T developed the concept. A.T wrote the simulation algorithm 
and did the calculations and theoretical analysis. D.F supervised the research. All authors discussed the content, 
analyzed the data, reviewed and edited the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to D.F.

Reprints and permissions information is available at www.nature.com/reprints.

www.nature.com/reprints


13

Vol.:(0123456789)

Scientific Reports |        (2020) 10:18699  | https://doi.org/10.1038/s41598-020-75630-4

www.nature.com/scientificreports/

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

© The Author(s) 2020

http://creativecommons.org/licenses/by/4.0/

	Numerical study of a highly efficient light trapping nanostructure of perovskite solar cell on a textured silicon substrate
	Results
	Presentation of the proposed nanostructured perovskite solar cell. 
	Studying the structural formation and simulated unit cell of the proposed PSC. 

	Studying the optical features of the proposed nanostructured PSC. 
	Investigating the effects of reducing HTL thickness on cell function. 
	Fabrication considerations of the proposed nanostructure of a PSC. 
	Electrical performance of the proposed nanostructure and three FCCSs of PSCs. 

	Discussion
	Methods
	References


