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Abstract
Background The left-sided and right-sided colon cancer (LCCs and RCCs, respectively) have unique molecular features 
and clinical heterogeneity. This study aimed to identify the characteristics of immune cell infiltration (ICI) subtypes for 
evaluating prognosis and therapeutic benefits.
Methods The independent gene datasets, corresponding somatic mutation and clinical information were collected from 
The Cancer Genome Atlas and Gene Expression Omnibus. The ICI contents were evaluated by “ESTIMATE” and “CIB-
ERSORT.” We performed two computational algorithms to identify the ICI landscape related to prognosis and found the 
unique infiltration characteristics. Next, principal component analysis was conducted to construct ICI score based on three 
ICI patterns. We analyzed the correlation between ICI score and tumor mutation burden (TMB), and stratified patients into 
prognostic-related high- and low- ICI score groups (HSG and LSG, respectively). The role of ICI scores in the prediction 
of therapeutic benefits was investigated by "pRRophetic" and verified by Immunophenoscores (IPS) (TCIA database) and 
an independent immunotherapy cohort (IMvigor210). The key genes were preliminary screened by weighted gene co-
expression network analysis based on ICI scores. And they were further identified at various levels, including single cell, 
protein and immunotherapy response. The predictive ability of ICI score for prognosis was also verified in IMvigor210 cohort.
Results The ICI features with a better prognosis were marked by high plasma cells, dendritic cells and mast cells, low 
memory  CD4+ T cells, M0 macrophages, M1 macrophages, as well as M2 macrophages. A high ICI score was characterized 
by an increased TMB and genomic instability related signaling pathways. The prognosis, sensitivities of targeted inhibitors 
and immunotherapy, IPS and expression of immune checkpoints were significantly different in HSG and LSG. The genes 
identified by ICI scores and various levels included CA2 and TSPAN1.
Conclusion The identification of ICI subtypes and ICI scores will help gain insights into the heterogeneity in LCC and RCC, 
and identify patients probably benefiting from treatments. ICI scores and the key genes could serve as an effective biomarker 
to predict prognosis and the sensitivity of immunotherapy.
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Abbreviations
AM  Adjacency matrix
CC  Colon carcinoma
COAD  Colon adenocarcinoma
COX  Cox proportional hazard regression analysis
CSCs  Cancer stem cells
DCs  Dendritic cells
DEGs  Differentially expressed genes
GEO  Gene expression omnibus
GO  Gene ontology
GSEA  Gene set enrichment analysis
HH  Hedgehog
HSG  High-ICI score groups
ICI  Immune cell infiltration
IC50  Concentration causing 50% reduction growth
LCCs  Left-sided colon carcinomas
LSG  Low-ICI score groups
MCs  Mast cells
PCA  Principal component analysis
PPI  Protein–protein interaction
RCCs  Right-sided colon carcinomas
SCEA  The single cell expression atlas
T-SNE  T-distributed stochastic neighbor embedding
TAIM  Tumor-associated immune microenvironment
TCGA   The cancer genome atlas
TIs  Targeted inhibitors
TMB  Tumor mutation burden
Tregs  Regulatory T cells
WGCNA  Weighted gene co-expression network analysis

Introduction

The increasing morbidity and mortality of colon carcinoma 
(CC) have arisen as crucial public health issues [1]. The clin-
ical treatment and prognostic evaluation of CC have always 
been a hotspot. In 1990, Bufill highlighted the obvious dif-
ferences in epidemiology, cytogenetics and molecular char-
acteristics between proximal and distal CC [2]. Given the 
physiology and anatomy of the colon, colon cancer can be 
divided into left-sided colon carcinomas (LCCs) and right-
sided colon carcinomas (RCCs) [2–4]. In such categories, 
the clinical heterogeneity of LCCs and RCCs has also been 
studied more specifically (e.g., metastasis, recurrence, prog-
nosis, and sensitivity of treatment) [5–7].

As mentioned in the literature review, LCC patients ben-
efit more from chemotherapies and targeted therapies and 
have a better prognosis. RCC patients do not respond well to 
conventional chemotherapies, but demonstrate more prom-
ising results with immunotherapies [8]. Patients with RCC 

were found to have different molecular biological tumor pat-
terns and a poorer prognosis than patients with LCC [9]. The 
crucial role of primary sites in treatment decision-making 
has been progressively clarified. Around 2015, the "dispute 
between LCC and RCC" become one of the hot topics in CC. 
Tumor primary sites are considered an independent prog-
nostic factor for CC in stage III/IV. The prognosis of RCC 
is significantly worse than that of LCC, which is not related 
to relevant treatments. Additionally, RCC acts as a negative 
predictor of EGFR-targeted therapy [10].

It is noteworthy that LCC and RCC are inconsistent in 
numerous aspects (e.g., embryonic origin, anatomical blood 
supply and clinical manifestations). The critical culprit could 
cause the difference in treatment response, and prognosis is 
the molecular biological characteristics [11, 12]. However, 
stratification by tumor cells, molecular pathways, mutation 
status and tumor gene expression only exhibit moderate pre-
dictive accuracy and limited clinical utility [13]. The devel-
opment of tumors has been significantly associated with the 
immune system. Immunotherapy progressively becomes 
the developing direction of tumor therapy, which exhibits 
unparalleled advantages and survival benefits for numerous 
cancers [14]. In 2017 NCCN guidelines, Anti-PD-1 mono-
clonal, an immune checkpoint inhibitor, was initially recom-
mended for treatment of end-stage CC with dMMR/MSI-H 
phenotype [10]. However, the proportion of dMMR tumors 
only takes up about 5–8% [15], only a small part of colon 
cancer patients can benefit from immunotherapy [6]. For 
other patients, novel molecular subtypes should be identified 
to evaluate prognosis and assess treatment responses.

It has been extensively reported that TAIM is of criti-
cal significance to tumor development and immunotherapy 
responses [16]. The density of infiltrating T lymphocytes 
in colon cancer acts as a reliable estimate for the risk of 
recurrence and prognosis [17, 18]. However, tumor-asso-
ciated immune microenvironment (TAIM) contains a wide 
range of cellular components, and the identification of T 
lymphocytes cannot effectively represent the complex tumor 
immune environment. As indicated from the research on var-
ious cancers, the inhibitory TAIM characterized by infiltra-
tion of a series of immune cells and stromal cells critically 
impacts tumor proliferation, metastasis, recurrence, and 
immunotherapy resistance [19]. Thus far, the characteris-
tics of immune cell infiltration (ICI) in LCCs and RCCs 
remain unclear. More insights into TAIM of them should 
be urgently gained to identify the ICI subtypes that cause 
the difference of prognosis, as an attempt to lay a basis for 
improving immunotherapy.

This study aimed to develop a method to identify the 
ICI subtypes of LCC and RCC, and also to quantify the 



1315Cancer Immunology, Immunotherapy (2022) 71:1313–1330 

1 3

ICI landscape. As the sequencing technology is leaping 
forward, people have been enabled to accurately evaluate 
the immune infiltration of tumors by using algorithms. In 
this study, “CIBERSORT” and “ESTIATE” were used to 
analyze two gene expression datasets from different high-
throughput platforms, and a series of comprehensive anal-
yses were conducted on ICI in LCCs and RCCs. The sam-
ples were clustered based on the content of immune cells, 
and differentially expressed genes (DEGs) were screened 
out among different ICI clusters. With the mentioned 
DEGs, all samples were re-clustered and divided into three 
gene clusters. These three clusters exhibited unique char-
acteristics of ICI. Subsequently, a clusters-based ICI score 
was set to distinguish the prognostic-related high- and 
low-ICI score groups (HSG and LSG, respectively), and 
significant differences were identified in the tumor muta-
tion burden (TMB), prognosis and sensitivity of treatments 
between two groups. Lastly, “WGCNA” and prognostic 
analysis were conducted to screen out the gene modules 
with the highest correlation with ICI score and key genes. 
On that basis, we attempted to evaluate the prognosis and 
assess the treatment sensitivity more accurately.

Materials and methods

The flowchart of the whole study was presented in Sup-
plementary Fig. 1.

CC datasets and samples

In the present study, 629 colon adenocarcinoma (COAD) 
samples originated from The Cancer Genome Atlas 
(TCGA) (Data Release 24.0, Release Date: 7 May 2020, 
https:// tcga- data. nci. nih. gov/ tcga/) and Gene Expression 
Omnibus (GEO) (http:// www. ncbi. nlm. nih. gov/ geo/) 
(GSE103479). Other relevant data included somatic muta-
tion information and clinical information. The inclusion 
criteria were as follows: (1) The primary tumor sites of all 
patients were in the left or right colon. The LCCs included 
tumor primary sites in cecum, ascending colon, as well as 
hepatic flexure. The RCCs covered tumor primary sites in 
splenic flexure, descending colon, sigmoid colon, as well 
as rectosigmoid junction. The study excluded patients’ 
tumor sites in transverse colon and rectum. (2) All patients 
must have complete follow-up information and RNA-seq 
data. The gene ID of the respective dataset was converted 
to the corresponding gene symbol by complying with the 

gene annotation package. Moreover, the expression profiles 
were all transformed into TPM (Millions of Transcripts 
Per Kilobase) for the combined analysis. The “ComBat” 
algorithm was applied to reduce the likelihood of batch 
effects from non-biological technical biases between dif-
ferent datasets [20]. The analysis excluded RNA that was 
undetectable in over 10% of the samples.

Estimating of immune cell infiltration (ICI) 
and sample clustering

The R package “ESTIMATE” [21] and “CIBERSORT” [22] 
were adopted to estimate the immune score, stromal score 
and 22 types of ICI. The correlation between the ICI com-
ponents was analyzed. Subsequently, according to ICI pat-
tern, hierarchical agglomerative cluster was performed by 
R package “ConsensusClusterPlus” [23]. "ConsensusClus-
terPlus" adopts an algorithm to determine cluster count and 
membership based on stability evidence in the unsupervised 
analysis. This algorithm was repeated 1000 times to ensure 
the stability of clustering.

DEGs related to ICI subtypes

To identify the DEGs related to ICI, all samples were clus-
tered into different ICI subtypes. The DEGs among ICI 
subtypes were analyzed using the R package “Limma” [24] 
(|log2foldchange|> 1.5, false discovery rate (FDR) < 0.05).

Clustering with DEGs, dimension reduction 
and construction of ICI score

For sample clustering at the genetic level, unsupervised 
clustering was conducted to cluster samples according to 
DEGs. Here, DEGs positively and negatively correlated with 
gene clusters were defined as ICI gene signatures A and B, 
respectively. Gene Ontology (GO) and Kyoto Encyclope-
dia of Genes and Genomes (KEGG) functional annotations 
analysis was conducted by R package "clusterProfiler" [25]. 
To reduce the noise or redundant genes, the dimensionality 
reduction for ICI gene signatures A and B was performed 
by using Boruta algorithm [26], and the feature genes were 
identified. Subsequently, principal component analysis 
(PCA) was conducted to extract the main component 1 from 
feature genes as the signature score in the respective ICI 
gene signature. Lastly, a method similar to the gene expres-
sion grade index [27] was adopted to define the ICI score of 
each patient: ICI score = ∑PCA1A-∑PCA1B. To identify 
the HSG and LSG related to prognosis, the cut-off value was 
determined by using R package “maxstat” [28]. Then, after 

https://tcga-data.nci.nih.gov/tcga/
http://www.ncbi.nlm.nih.gov/geo/
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the combination with other clinical factors, we used uni-
variate and multivariate Cox proportional hazard regression 
analysis (COX) to verify the independent predictive effect of 
ICI score groups. The gene set enrichment analysis (GSEA) 
was conducted by using the Bioconductor package “fgsea” 
[29] with 10,00 permutations between HSG and LSG.

To investigate therapeutic sensitivity, the concentration 
causing 50% reduction growth (IC50) of targeted inhibitors 
(TIs) was calculated by R package "pRRophetic" [30] (e.g., 
vascular endothelial growth factor receptor 2 (VEGFR2), 
Hedgehog (HH) and Wnt inhibitors). Wilcoxon rank-sum 
test was performed to compare the IC50 difference between 
HSG and LSG. Furthermore, the differences were analyzed 
in gene expression of the 6 immunosuppressive checkpoints 
in HSG and LSG.

In addition, immunogenicity is determined by a vari-
ety of immune-related genes, including genes related with 
effector cells, immunosuppressive cells, MHC molecules 
and immune regulatory factors. By using machine learn-
ing, immunogenicity can be evaluated and quantified with-
out bias. We downloaded the Immunophenoscores (IPS) of 
colon cancer patients from the TCIA database (https:// tcia. 
at/) [31, 32]. To predict sensitivity of immunotherapy, we 
compared the IPS between HSG and LSG in different immu-
notherapy decisions.

Meanwhile, we conducted a comprehensive search on the 
gene expression profile of public immunotherapy cohort and 
selected metastatic urothelial tumors cohort (IMvigor210: 
http:// resea rch- pub. gene. com/ IMvig or210 CoreB iolog ies/) 
[33]. We preprocess the data according to the method in the 
R package "IMvigor210CoreBiologies" [33] provided by the 
author. The RNA-seq data were filtered and normalized by 
R package "edgeR" [34] and then transformed by voom in R 
package "limma" [24]. We also compiled the clinical infor-
mation and treatment outcomes. Based on the mentioned 
method above, we calculated the ICI score of each sample 
in the cohort.

Analysis of somatic alternation data

To identify the TMB of HSG and LSG, the total number of 
non-synonymous mutations was counted in the TCGA sam-
ple. The difference in TMB was analyzed between HSG and 
LSG. Moreover, the correlation between TMB and ICI score 
was analyzed. Lastly, R package "maftool" [35] was adopted 
to analyze and demonstrate the gene mutation patterns and 
frequencies in different groups. Furthermore, the difference 
of TMB in HSG and LSG was analyzed by performing chi-
square test.

Identification and comparison of key genes based 
on ICI score

Weighted gene co-expression network analysis (WGCNA) 
was conducted on DEGs and ICI scores using the R package 
"WGCNA" [36]. First, the power function was used to build 
the adjacency matrix (AM) of DEGs, and an appropriate 
power index was selected. Subsequently, the AM was altered 
to a topological overlap matrix. Lastly, the gene consensus 
modules were obtained and correlated with the ICI scores. 
The mRNAs in the modules with the highest correlation 
with ICI scores were used to conduct the prognostic analysis. 
The prognostic model was built by conducting multivariate 
COX with the R package “glmnet” [37]. Afterward, ROC 
curve and AUC were evaluated with the R package “surviv-
alROC” [38]. DISNOR (https:// disnor. uniro ma2. it/) [39], a 
disease network open resource, was conducted to analyze 
the upstream and downstream genes and the protein inter-
action of key genes. Furthermore, protein–protein interac-
tion (PPI) analysis was conducted with STRING (https:// 
www. string- db. org) [40]. The Single Cell Expression Atlas 
(SCEA) database (https:// www. ebi. ac. uk/ gxa/ sc/ exper 
iments/ E- MTAB- 8410/) [41] was used to explore the key 
genes of colon cancer in single-cell level under the project 
accession E-MTAB-8410 (https:// www. ebi. ac. uk/ array expre 
ss/ exper iments/ E- MTAB- 8410/). SCEA allows researchers 
to gain a quick insight into the expression pattern of their 
gene of interest at the level of individual cells across dif-
ferent species. By setting the appropriate t-distributed sto-
chastic neighbor embedding (t-SNE) perplexity score and 
the number of clusters (k value), t-SNE and the marker gene 
heat map were plotted. T-SNE plots are a useful way of visu-
alizing highly complex data in a 2D space. K value shows 
the output of the Scanpy clustering algorithm [42]. Scanpy 
clusters cells into subgroups using the Louvain algorithm. 
The cell types were inferred by sequencing analysis based on 
gene expression profile. The analysis methods applied to the 
raw data to obtain the clustering and gene expression results 
were shown in the Supplementary Table 1.

To further verify and screen key genes at the protein 
level, we downloaded the proteomic cohort of TCGA-
COAD samples from The Clinical Proteomic Tumor Anal-
ysis Consortium (CPTAC) (https:// prote omics. cancer. gov/ 
progr ams/ cptac) [43], including 29 normal samples and 
64 tumor samples. The differential expression analysis of 
these genes identified by ICI score was performed. The 
immunohistochemical staining images were obtained from 
The Human Protein Atlas project (https:// www. prote inatl 
as. org/] [44] to verify the actual expression. In addition, 

https://tcia.at/
https://tcia.at/
http://research-pub.gene.com/IMvigor210CoreBiologies/
https://disnor.uniroma2.it/
https://www.string-db.org
https://www.string-db.org
https://www.ebi.ac.uk/gxa/sc/experiments/E-MTAB-8410/
https://www.ebi.ac.uk/gxa/sc/experiments/E-MTAB-8410/
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-8410/
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-8410/
https://proteomics.cancer.gov/programs/cptac
https://proteomics.cancer.gov/programs/cptac
https://www.proteinatlas.org/
https://www.proteinatlas.org/
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we also analyzed the expression differences of these genes 
in different treatment outcome groups in IMvigor210 
cohort.

Statistical analyses

R software (version 3.6.3) was employed for all statistical 
analyses. The Wilcoxon test was performed to draw the com-
parison between two groups, and Kruskal–Wallis test was 

performed for over two groups. The Kaplan–Meier plotter 
was adopted to plot the prognostic survival curve for the sub-
groups, and the log rank test was performed to evaluate the 
differences with statistical significance. The chi-square test 
was performed to analyze the correlation between ICI score 
groups and the TMB, and Spearman analysis was conducted 
to calculate the correlation coefficient. P < 0.05 showed sta-
tistical significance.

Fig. 1   A The correlation heat map visualized the universal land-
scape of immune cell interaction in TME. The correlation coefficient 
decreased in size from red to blue. B Consensus matrixes of all CC 
samples for appropriate k value (k = 3), displaying the clustering sta-
bility using 1000 iterations of hierarchical clustering. All samples 
were clustered into 3 subtypes. C Kaplan–Meier curves of overall 
survival in different ICI clusters. Log rank test showed an overall 
p = 0.072. D Kaplan–Meier curves of overall survival between ICI 

cluster A and B. Log rank test showed an overall p = 0.045. E The 
heat map depicted unsupervised clustering of ICI in all CC samples. 
Rows represented tumor-infiltrating immune cells, and columns rep-
resented samples. F The fraction of tumor-infiltrating immune cells, 
immune score and stromal score in three ICI clusters. The statistical 
difference of three ICI clusters was compared by the Kruskal–Wallis 
test. G The difference of PD-L1 expression among distinct ICI clus-
ters. (*p < 0.05, **p < 0.01, ***p < 0.001, nsp > 0.05)



1318 Cancer Immunology, Immunotherapy (2022) 71:1313–1330

1 3

Results

The landscape of ICI in LCC and RCC 

By using the criteria, 411 LCCs and RCCs samples were 
included here (i.e., 322 samples from TCGA and 89 sam-
ples from GEO). The detailed information of 411 COAD 
patients was shown in Supplementary Table 2. We per-
formed "ESTIMATE" and "CIBERSORT" algorithms to 
calculate the ICI content of tumor samples from TCGA 
and GEO databases (Supplementary Table 3 and 4). A 
heat map was drawn to visualize the interaction of immune 
cells (Fig. 1A), and the content of different types of mac-
rophages was found to have highly positive correlation 
with immune score. Next, based on ICI content, the R 
package "ConsensusClusterPlus" was used to cluster all 
samples, and 3 subtypes were obtained (Fig. 1B) (Sup-
plementary Table 5).

We compared the prognosis of these three ICI subtypes 
(Fig. 1C) and found that the prognosis of ICI cluster A was 
significantly better than that of ICI cluster B (p = 0.045) 
(Fig. 1D). To more specifically clarify the inherent differ-
ences of ICI that caused the prognostic difference, a differ-
ential analysis of immune cells was conducted in different 
ICI subtypes. The ICI cluster B related to worse prognosis 
was marked by high Plasma cells, CD8 + T cells, activated 
memory CD4 + T cells, M1 macrophages, M2 macrophages, 
resting dendritic cells (DCs), as well as low activated DCs 
and activated mast cells (MCs) (Fig. 1F). CD8 + T cells were 
found to be highly infiltrated in the poor prognosis subtype, 
so the expression differences of PD1 and PD-L1 were ana-
lyzed, which are important immune checkpoints of CD8 + T 
cells. As indicated from the results, the expression of PD-L1 
in ICI cluster B was significantly higher than that in ICI 
cluster A (p < 0.05) (Fig. 1G).

Clustering by DEGs from ICI subtypes

To prepare for the establishment of ICI scores and visual-
ize the heat map of DEGs between ICI subtypes showing 
patterns, we used the R package "Limma" to analyze the 
DEGs among the three ICI subtypes at the genetic level, 
and a total of 1041 DEGs were obtained (Supplementary 
Table 6). Specific to the subsequent analysis, TCGA data-
sets with complete clinical information were primarily ana-
lyzed. By unsupervised clustering of these DEGs, the TCGA 
sample was re-divided into three gene clusters (i.e., A, B 
and C) (Fig. 2A) (Supplementary Table 7). We define the 
DEGs that are positively related to gene clusters as gene 
signature A, and the remaining DEGs as gene signature B 

(Supplementary Table 8). Moreover, GO analysis was con-
ducted on these two gene signatures, and gene signature 
A was found to be enriched in the regulation of immune 
response processes (Fig. 2B), and gene signature B was 
enriched in cell cycle processes (Fig. 2C) (Supplementary 
Table 9). The heat map was drawn to visualize the expres-
sion of DEGs in different ICI clusters and gene clusters 
(Fig. 2D).

In addition, we conducted a prognostic analysis on these 
three gene clusters, and patients in gene cluster C were found 
to have a better prognosis (p = 0.039) (Fig. 2E). After ana-
lyzing the ICI in different gene clusters, as indicated from 
the results, gene cluster C was marked by the high infiltra-
tion of naive B cells, Plasma cells, resting memory CD4 + T 
cells, activated DCs, activated mast cells and immune score. 
It was also marked by low infiltration of activated memory 
CD4 + T cells, M0 macrophages, M1 macrophages, M2 
macrophages and stromal score (Fig. 2F). The infiltration 
characteristics of gene cluster C with a better prognosis were 
almost opposed to the mentioned results of ICI cluster B 
with a worse prognosis.

Construction of ICI score

To quantify the ICI landscape of patients in LCC and RCC 
and facilitate the identification of key genes, after the dimen-
sionality reduction in gene signature A and B, PCA was 
used to compute the aggregate score of feature genes from 
gene signature A and B, respectively. We obtained the sum 
of scores and defined them as ICI scores. After the opti-
mal cut-off value was obtained by R package "maxstat," all 
TCGA patients were stratified into two groups with high 
or low ICI scores. As indicated from the prognostic analy-
sis, the prognosis of the LSG was better than that of HSG 
(p = 0.022) (Fig. 3A). Then, the univariate and multivariate 
COX was performed by the combination of ICI score groups 
with clinical information, including age, gender, tumor node 
metastasis classification and primary therapeutic modali-
ties. The results indicated that the ICI score group was an 
independent factor affecting the prognosis (Supplementary 
Fig. 2A and 2B). To verify the predictive effect of ICI score 
in Imvigor210 cohort, the ICI score was calculated and the 
prognostic curve was plotted. The results showed that the 
ICI score has potential to predict clinical prognosis in the 
different cohort (p = 0.031) (Fig. 5E).

In addition, GO- and KEGG-related GSEA revealed that 
cell cycle progression, DNA transcription, replication and 
repair processes were significantly enriched IN THE HSG 
(Fig. 3B and C).
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Fig. 2  | A Consensus matrixes of TCGA-COAD cohorts for appro-
priate k value (k = 3), displaying the clustering stability using 1000 
iterations of hierarchical clustering. TCGA samples were clus-
tered into 3 subtypes based on the DEGs among three ICI clusters. 
B GO enrichment analysis of the ICI-relevant signature genes A. C 
GO enrichment analysis of the ICI-relevant signature genes B. The 
X axis indicated the number of genes within each GO term. D The 
heat map depicted the expression of DEGs in different ICI clusters 

and gene clusters. Heat map colors indicate relative DEGs expression 
levels. E Kaplan–Meier curves of overall survival in different gene 
clusters. The log rank test showed an overall p = 0.039. F The fraction 
of tumor-infiltrating immune cells, immune score and stromal score 
in three gene clusters. The statistical difference of three gene clus-
ters was compared by the Kruskal–Wallis test (*p < 0.05, **p < 0.01, 
***p < 0.001, nsp > 0.05)
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Subsequently, a Sankey diagram was drawn to show the 
distribution of patients with tumor sites, gene clusters and 
ICI scores (Fig. 3D). As indicated by the figure, LCC and 
RCC were stratified into three gene clusters, and most sam-
ples in gene cluster A with worse prognosis belonged to 
HSG. Moreover, the samples in gene cluster B exhibited 
an even distribution in HSG and LSG, while the samples in 
gene cluster C with a better prognosis were mostly distrib-
uted in LSG. It was proved that prognostic results obtained 
by different clustering modes were consistent.

The role of ICI scores in the prediction of therapeutic 
benefits

We analyzed the difference in sensitivity of TIs between 
the groups. In Lapatinib (epidermal growth factor recep-
tor (EGFR) inhibitor) and AKT inhibitor VIII, the median 
IC50 of LSG was significantly lower than that of HSG (all 
p < 0.05) (Fig. 4a and b). In Sunitinib (VEGFR2 inhibitor), 
Cyclopamine (HH signaling inhibitor), Mitomycin.C (DNA 
synthesis inhibitor) and JNK Inhibitor VIII, HSG had the 

Fig. 3  | A Kaplan–Meier curves of overall survival in HSG and LSG. 
The log rank test showed an overall p = 0.022. B GO-related GSEA 
showed DNA damage response detection, synthesis involved in DNA 
repair, postreplication repair, etc. were significantly enriched in the 

HSG. C KEGG-related GSEA showed base excision repair, cell 
cycle, mismatch repair, etc. were significantly enriched in the HSG. D 
The Sankey diagram showed the distribution of patients with primary 
tumor sites, gene clusters and ICI scores
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significantly lower median IC50 than LSG (Fig. 4C–F). 
For immunosuppressive checkpoints, the expressions of 
PDCD1, PDCD1LG2, HAVCR2 and LAG3 were higher in 
HSG than those in LSG (all p < 0.05) (Fig. 4G–J), thereby 
indicating that HSG patients could benefit potentially from 
immunotherapy.

Meanwhile, we used two methods to verify the abil-
ity of ICI scores in prediction of immunotherapeutic ben-
efits. Recent studies have reported the role of IPS based on 
immunogenicity in predicting the immunotherapy response 
of melanoma patients. We analyzed the relationship of IPS 
between HSG and LSG. We used IPS, IPS- PD1/PD-L1/
PD-L2, IPS-CTLA4 and IPS- PD1/PD-L1/PD-L2 + CTLA4 
to evaluate the potential of ICI scores application. The IPS, 
IPS-PD1/PD-L1/PD-L2 and IPS-CTLA4 were significantly 
different within ICI score groups (all p < 0.05) (Fig. 5A–C). 
The ICI score in complete response (CR)/partial response 
(PR) group was significantly higher than that in SD (sta-
ble disease)/PD (progressive disease) group (p < 0.001) 
(Fig. 5F), and the proportion of CR/PR patients in HSG was 
significantly higher than that in LSG (p < 0.05) (Fig. 5G). 
Overall, the ICI score established by us has great potential in 
predicting prognosis and immunotherapeutic benefits.

Correlation between ICI score and TMB

As suggested from the enrichment analysis of the gene sig-
natures, they were enriched in the regulation of cell cycle 
progression. Moreover, GSEA showed that DNA damage 
repair related pathways were significantly enriched in HSG. 
According to existing studies, DNA damage and repair 
abnormalities are directly related to genome instability. 
Accordingly, we analyzed the correlation between TMB and 
ICI score in HSG and LSG, respectively.

First, the difference of TMB between HSG and LSG 
was analyzed. As indicated from the results, the TMB of 
HSG was significantly higher than that of LSG (p = 0.027) 
(Fig. 6a). As suggested from different studies, high TMB 
led to poor prognosis in considerable cancers [45]. In this 
study, the results were consistent with them. According to 
the correlation analysis of ICI score and TMB, we found 
that there was a significant positive correlation between 
them (Spearman coefficient: r = 0.16, p = 0.0089). With the 
increase in the ICI score, the distribution of gene clusters 
changed obviously. The samples belonging to gene clus-
ter C with a better prognosis were mainly distributed at 
the bottom left-hand side (TMB and ICI score were both 
lower) (Fig. 6b).

Next, we separately analyzed the TMB impact on prog-
nosis. As mentioned previously, patients were stratified into 
discrete TMB subgroups. As indicated from the results, the 
prognosis of high-TMB group was worse than that of low-
TMB group (p = 0.021) (Fig. 6C). Given the synergistic 

effect of TMB and ICI scores, their effect on prognostic 
stratification was evaluated. As indicated from the results, 
TMB status did not interference the predictive ability of ICI 
score. The survival difference of ICI score subtypes was 
significant in both high- and low-TMB groups (p = 0.014) 
(Fig. 6D). On the whole, ICI score might act as a prognostic 
indicator of LCC and RCC that is independent of TMB and 
can effectively predict TMB and sensitivity of treatment.

Furthermore, we evaluated the differences in driver genes 
of somatic variation between HSG and LSG. By using 
waterfall diagram, the top 20 driver genes exhibiting the 
highest mutation frequency were plotted. It was therefore 
suggested that the mutation frequency of these genes in HSG 
was generally higher than that in LSG (Fig. 6E and F). As 
revealed from the analysis of the mutation annotation files, 
the mutation frequency of many genes, including TP53 (i.e., 
tumor suppressor gene) and MSH6 (i.e., mismatch repair-
associated genes), was significantly different in HSG and 
LSG (Supplementary Table 10). The mentioned results 
might provide novel ideas for investigating targeted therapy 
and immunotherapy from the aspects of ICI composition 
and gene mutation.

Identification of key genes based on ICI score

To screen out key genes from the DEGs, a gene co-expres-
sion network was built by using WCGNA to identify impor-
tant gene modules related to ICI score. By selecting number 
4 as the appropriate soft threshold (Supplementary Fig. 3A 
and 3B), a scale-free co-expression network was built, and 
5 modules were obtained (Supplementary Fig. 3C). It was 
indicated that gray module has the highest correlation with 
ICI score (Correlation coefficient = − 0.45, p < 0.001) (Sup-
plementary Fig. 3D). Thus, we selected the genes in gray 
module for prognostic analysis. According to the mentioned 
results, groups with high expressions of CA2, CXCL1, 
DUOX2, DUOXA2, IER3, PLAC8, TSPAN1 and XDH 
were related to better prognosis (all p < 0.05) (Supplemen-
tary Fig. 4A-4H).

To verify the prognostic capabilities of the mentioned 8 
genes identified by ICI score, multivariate COX analysis was 
conducted, and a prognostic model was built (model 1). In 
existing studies, CD3 and CD8 acted as indicators to carry 
out the prognosis of colon cancer [18]. Accordingly, the 
expressions of CD3D, CD3E, CD3G and CD8 were used to 
build another prognostic model (model 2). Lastly, the ROC 
curves were plotted for 3 years (Supplementary Fig. 3E) and 
5 years (Supplementary Fig. 3F), respectively, based on the 
two models. As indicated from the results, model 1 exhibited 
the better prognostic capability than model 2.

Moreover, we searched for the first neighbor of these 
genes in the DisNor database. The database consisted of 
two genes (i.e., CXCL1 and IER3), as well as their direct 
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targets (Supplementary Fig. 5A). The upstream regulators of 
CXCL1 included SMO, CEBPD, MTA1 and FZD3, and the 
downstream regulators involved PLCE1, PRKACA, GLI1, 
GLI2 and GLI3. HNRNPU and MAPK1 were the upstream 
regulators of IER3, and PPP2R5C was the downstream regu-
lator. The PPI analysis revealed that the complex interaction 
between genes above and the other 6 genes (Supplementary 
Fig. 5B).

We explored the expression pattern of these genes in 
single-cell level based on the single-cell sequencing data-
set (E-MTAB-8410) in SCEA database [41] (Fig.  7A) 

(Supplementary Fig. 6A-6E). The detailed characteristics 
of 9 samples in the dataset were provided in supplementary 
table 11. By setting the suitable parameters (t-SNE perplex-
ity score = 25, k value = 94), we found that the three genes 
had specific expression characteristics in single-cell level, 
including CA2, PLAC8 and TSPAN1 (Fig. 7B–D). After the 
cells were isolated into 94 subpopulations, they could act as 
the marker genes in cluster 9 based on the analysis results 
(Supplementary Table 12) (Supplementary Fig. 7) [46]. 
According to the results provided in the SCEA database, 
1153 cells of the total 60,383 cells belong to cluster 9. Cells 
were colored according to clusters, marker genes, inferred 
cell types, individual and sampling sites (Supplementary 
Fig. 8A-C). For the novel cell subpopulation (cluster 9) we 
discovered, we searched for the cell markers in CellMarker 
database (http:// biocc. hrbmu. edu. cn/ CellM arker/) [47] and 
inferred that they belonged to a subpopulation of intestine 
epithelial cells. Among the top 20 ranked marker genes in 
cluster 9, cell markers belonging to epithelial cells included 
GUCA2A, GUCA2B, CEACAM7, CDHR5 and AQP8 [48]. 

Fig. 4  | A–F The sensitivity difference of multiple targeted inhibitors 
in HSG and LSG. In Lapatinib (A) and AKT inhibitor VIII (B), the 
median IC50 of LSG was significantly lower than that of HSG (all 
p < 0.05). In Sunitinib (C), Cyclopamine (D), Mitomycin.C (A) and 
JNK Inhibitor VIII (F), HSG had the significantly lower median IC50 
than LSG (all p < 0.05). (G–I) The difference of the expression of 
immunosuppressive checkpoints in HSG and LSG. The expressions 
of PDCD1 (G), PDCD1LG2 (H), HAVCR2 (I) and LAG3 (J) were 
higher in HSG than those in LSG (all p < 0.05). The statistical differ-
ence of HSG and LSG was compared by the Wilcoxon test

◂

Fig. 5  | (A–D) The relationship between IPS and ICI score groups in 
LCCs and RCCs patients. The IPS (A), IPS-PD1/PD-L1/PD-L2 (B) 
and IPS-CTLA4 (C) were significantly different within ICI score 
groups (all p < 0.05). E Kaplan–Meier curves of overall survival in 
the IMvigor210 cohort. The log rank test showed an overall p = 0.031. 

F The difference of ICI score between treatment outcome groups 
(p < 0.001). G Proportion of patients with different treatment out-
comes in HSG and LSG. The proportion of CR/PR patients in HSG 
was significantly higher than that in LSG (p < 0.05). The statistical 
difference above was compared by the Wilcoxon test

http://biocc.hrbmu.edu.cn/CellMarker/
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The GO and KEGG analysis revealed that maker genes in 
cluster 9 were mainly enriched in cell adhesion, transport 
of substance related processes, leucocyte transendothelial 
migration (Supplementary Fig. 9A and 9B). Intestinal epi-
thelial cells can secrete various cytokines and chemokines to 
modulate host immune responses [49]. To date, a number of 
studies have found that the immune response at the intestinal 
epithelium was involved in the origin and development of 
CC. Cytokines released by epithelial and immune cells play 
a role in the pathogenesis of colitis-associated cancer [50]. 
These findings suggest that novel subpopulation of intestine 
epithelial cells may have a special effect on tumor develop-
ment and prognosis.

Lastly, we analyzed the expression of mentioned 8 genes 
in the immunotherapy cohort. The results showed that 
the expressions of CA2, IER3 and TSPAN1 were signifi-
cantly different in treatment outcome groups (all p < 0.05) 
(Fig. 8A–C). Meanwhile, we found that the expression of 
CA2 (Fig. 8I–M) and TSPAN1 (Fig. 8N–R) was signifi-
cantly different between cancer tissues and normal tissues 
at protein level (all p < 0.05). After a series of screening 

processes, CA2 and TSPAN1 could be used as potential 
markers to predict the sensitivity of immunotherapy.

Discussion

The inhibitory TAIM, characterized by specific immune cell 
infiltration, has been increasingly proven to be the culprit of 
immunotherapy resistance and tumor progression [51]. In 
this study, ICI subtypes and gene subtypes related to prog-
nosis were identified in LCC and RCC. After the intersection 
of immune cells was taken, this study reported that the ICI 
features with a better prognosis were marked by high plasma 
cells, DCs and MCs, low activated memory CD4 + T cells, 
M0 macrophages, M1 macrophages, as well as M2 mac-
rophages. Specific to colorectal cancer, Maartje indicated 
that tumor-infiltrating B cells and plasma cells were signifi-
cantly correlated with a better prognosis [52]. In a multiple 
cancer analysis, in the presence of both B cells and plasma 
cells, the prognostic effect of T cells tended to increase 
[53]. DCs considered to be professional antigen presenting 

Fig. 6  A The TMB of HSG was significantly higher than that of LSG. 
Wilcoxon test, Wilcoxon test, p = 0.027. B The scatterplots depicted 
the positive correlation between ICI scores and TMB. The Spearman 
correlation between ICI scores and TMB was 0.16 (p = 0.0089). C 
Kaplan–Meier curves of overall survival in different TMB subgroups. 

Log rank test, p = 0.021. D Kaplan–Meier curves of overall survival 
stratified by both TMB and ICI scores. Log rank test, p = 0.014. E–F 
The waterfall diagram showed the top 20 driver genes exhibiting the 
highest mutation frequency in HSG (E) and LSG (F)



1325Cancer Immunology, Immunotherapy (2022) 71:1313–1330 

1 3

cells are capable of performing powerful immune responses 
against tumor cells [54]. In addition, DC vaccines combined 
with other cancer therapies can contribute to efficient cancer 
therapeutics [55]. MCs, a type of innate immune cells, exert 
a pro-tumorigenic or anti-tumorigenic effect, which is deter-
mined by the type of cancer [56]. In CC, MCs were reported 
to be able to be recruited by IL-17 produced by regulatory 
T cells (Tregs), which further facilitates the infiltration of 
immune cells [57]. However, its impact on the development 
and prognosis of CC requires in-depth studies. Salman found 
that CD4 + T cells were highly expressed in CC tissues. The 
mentioned CD4 + T cells highly expressed the markers of 

activated Tregs (i.e., Helios and Foxp3). Moreover, the 
intratumoral CD4 + T cells can up-regulate various inhibi-
tory immune checkpoints (e.g., PD1, CTLA-4, TIM-3 and 
LAG-3) [58]. Accordingly, activated CD4 + T cells may pro-
mote inhibitory TAIM in CC. M2 macrophages suppress the 
anti-tumor immune response in various manners [59], and 
M0 macrophages may be related to the distant metastasis 
and poor prognosis of COAD [60]. In this study, low mac-
rophages infiltrated subtypes were related to a better prog-
nosis. The mentioned ICI features are unique in LCC and 
RCC and could be applied for predicting prognosis. These 

Fig. 7  A In SCEA database, after setting the suitable parameters 
(t-SNE perplexity score = 25, k value = 94), all colon cancer single 
cells were clustered into 94 subpopulations according to their expres-

sion patterns. B–D The key genes with specific expression patterns 
in single-cell level, including CA2 (B), PLAC8 (c) and TSPAN1 (D). 
They could act as the marker genes in cluster 9
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immune cells may disturb the balance between immune tol-
erance and activity via intercellular communication.

By complying with the individual differences in TAIM, 
the ICI score was set to quantify the ICI landscape. The 
DEGs related to ICI subtypes were found to be signifi-
cantly enriched in immune regulation, cell cycle, as well as 
DNA damage repair pathways. Besides, the identical result 
was identified in the GSEA of HSG and LSG. As reported 
by recent studies, the genomic instability could produce 
immune-responsive phenotypes that impact the immune 
response and immunotherapy [61]. In LCC and RCC, how-
ever, the relationship between them has been rarely clari-
fied. Thus, the correlation between TMB and ICI scores was 
analyzed in depth, and significant differences were identi-
fied in the mutation frequency of multiple genes between 
HSG and LSG. In addition, a significant positive correla-
tion was found between the ICI score and TMB. For this 
reason, the genomic instability could induce the difference 
of ICI. A wide range of Tis were reported to show signifi-
cant differences in sensitivity between HSG and LSG (e.g., 
VEGFR2 and HH inhibitors). HH have been confirmed as 
the stemness-related signals of cancer stem cells (CSCs) 
[62, 63]. CSCs could induce tumor recurrence and trigger 
low responses to immunotherapy and drug resistance [64]. 
Accordingly, it has great potential to develop TIs, and the 
ICI scores here can be referenced for their applications in 
colon cancer. Moreover, the gene expression of immunosup-
pressive checkpoints was found to be significantly different 

in two groups. In cancers with overexpression of immuno-
suppressive checkpoints, immune checkpoint inhibitors were 
suggested to be effective to enhance anti-tumor effect and 
clinical impact of T cell [65]. Thus, this study speculated 
that patients in the HSG can benefit from immunotherapy. 
However, the effect of immunotherapy in patients with 
colon cancer still needs further study. Furthermore, strati-
fied prognostic analysis revealed that the value of ICI scores 
on prognosis was independent of TMB in LCC and RCC, 
indicating that ICI scores and TMB influence the prognosis 
from distinct aspects of immunobiology.

Limitations are as follows: we require additional experi-
ments to investigate the specific function of these prognostic 
key genes. And more independent immunotherapy cohorts 
are required for validation to ensure the accuracy and robust-
ness of the ICI scores.

In summary, the ICI landscape of LCC and RCC was 
comprehensively stratified and quantified, and a novel and 
effective method was developed to evaluate the prognosis 
and assess treatment sensitivity. The identification of ICI 
subtypes will help gain insights into the heterogeneity in 
LCC and RCC. The ICI scores and the key genes CA2 and 
TSPAN1 could serve as an effective biomarker to predict 
prognosis and immunotherapy response. Moreover, CA2 
and TSPAN1 were found to act as marker genes in a novel 
subpopulation. The findings of the present study should be 
validated based on clinical trials in a larger cohort.
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