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ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is an epidemic
metabolic condition driven by an underlying lipid
homeostasis disorder. The lipid droplet (LD), the main
organelle involved in neutral lipid storage and hydroly-
sis, is a potential target for NAFLD therapeutic treat-
ment. In this review, we summarize recent progress
elucidating the connections between LD-associated
proteins and NAFLD found by genome-wide association
studies (GWAS), genomic and proteomic studies.
Finally, we discuss a possible mechanism by which the
protein 17β-hydroxysteroid dehydrogenase 13 (17β-
HSD13) may promote the development of NAFLD.

KEYWORDS non-alcoholic fatty liver disease, lipid
droplets, genome-wide association study, proteomics,
PNPLA3, 17β-HSD13

INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) is characterized by
a pathological accumulation of triacylglycerol (TAG) in hep-
atocytes (i.e. hepatic steatosis) without excessive alcohol
consumption (Cohen et al., 2011; Hardy et al., 2016).
Although the prevalence of NAFLD varies among studies
due to the different sensitivities of the instruments used and
the ethnic makeup of the populations studied, there is no
doubt that the incidence of NAFLD is increasing to epidemic
proportions, especially in developing countries. As the inci-
dence of viral infections such as Hepatitis B virus (HBV) and
Hepatitis C virus (HCV) is decreasing, NAFLD is becoming
the most prevalent liver disease (Wang et al., 2014; Younossi

et al., 2015; Rinella and Charlton, 2016). NAFLD encompasses
a spectrum of diseases ranging from simple hepatic steatosis,
to non-alcoholic steatohepatitis (NASH), to cirrhosis. Severe
forms of NAFLD increase the risk of other liver diseases and a
portion of patients will ultimately develop hepatocellular carci-
noma (HCC) (Cohen et al., 2011; Michelotti et al., 2013). Even
though only a small fraction of HCC patients will progress to
late stage disease, the increasing prevalence of NAFLD and its
sequelae commands attention. In addition to diseases of the
liver, NAFLD increases mortality through cardiovascular dis-
ease, placing a great burden on public health care systems
(Targher et al., 2010; Anstee et al., 2013; Gaggini et al., 2013).

NAFLD is regarded as a manifestation of metabolic syn-
drome which is influenced by multiple factors (Cohen et al.,
2011; Hardy et al., 2016). Genetics play a vital role in the
development and progression of the disease, a conclusion
which is supported by family cohort studies and ethnic based
variations in its incidence and presentation (Anstee and Day,
2013). Increased food intake and a sedentary life style
strongly contribute to the establishment of the disease (An-
stee et al., 2013). Other metabolic conditions like obesity,
insulin resistance, hypertension, and dyslipidemia are also
risk factors associated with NAFLD (Smith and Adams,
2011). There are no medications specifically intended to
treat NAFLD, but drugs for related conditions including
insulin sensitizing agents, antioxidants and lipid-lowering
agents are often used in its treatment (Musso et al., 2012;
Dowman et al., 2011). It is still unknown why a fraction of
NAFLD patients develop NASH or cirrhosis. Therefore, it is
vital to uncover the pathogenic mechanisms driving the
development of this disease and its sequelae.

Hydrophobic neutral lipids (primarily TAG and cholesteryl
ester (CE) in eukaryotic organisms) are mainly stored in an
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organelle termed the lipid droplet (LD) (Murphy, 2001). The
LD consists of a neutral lipid core covered by a monolayer of
phospholipids and associated proteins (Tauchi-Sato et al.,
2002). Rather than inert energy reservoirs, LDs are actively
associated with other organelles and play vital roles in lipid
metabolism, membrane trafficking and signal transduction
(Martin and Parton, 2006; Zehmer et al., 2009). Dysfunction
in this organelle can result in disorders of lipid metabolism,
which makes the LD a promising target for research into the
pathogenic mechanisms of NAFLD (Greenberg et al., 2011;
Krahmer and Farese, 2013; Carr and Ahima, 2016).

The protein complement on LDs which drive the orga-
nelle’s functions also likely underlie the metabolic pathology
that leads to NAFLD. The Perilipin family (Plin1–5) are the
major LD proteins in mammalian cells (Kimmel et al., 2010).
Plin1 is hardly detected in normal liver LDs, but its expres-
sion is prominently up-regulated in fatty liver LDs (Straub
et al., 2008; Fujii et al., 2009). Similarly, Plin2 expression is
increased in NAFLD, both in human and rodents, and is
associated with oxidative damage (Fujii et al., 2009).
Knocking out Plin5 in mice results in reduced hepatic lipid
content due to elevated lipolysis and fatty acid oxidation, but
also induces lipotoxic injury (Wang et al., 2015). The cell
death-inducing DFFA-like effector (CIDE) proteins are loca-
ted on LDs and the endoplasmic reticulum (ER) and are also
involved in fatty liver progression. Cidea and Fsp27 (Cidec)
mRNA levels are significantly increased in fatty liver dys-
trophic mice (Hall et al., 2010). The CIDEB protein is pre-
dominately expressed in the liver. Cideb-null mice are
resistant to diet-induced obesity and show decreased lipo-
genesis and increased fatty acid oxidation (Li et al., 2007).

Lipolysis-related proteins, like CGI-58, might also be
involved in the pathogenesis of fatty liver. The liver specific
ablation of CGI-58 causes NASH and fibrosis (Guo et al.,
2013), which is consistent with the clinical presentation of the
CGI-58 mutation induced Chanarin-Dorfman syndrome
(Srinivasan et al., 2004; Ronchetti et al., 2008). Hypoxia-
inducible gene 2 (Hig2), which is primarily localized on LDs,
impairs TAG hydrolysis in liver, thereby promoting hepatic
lipid accumulation (DiStefano et al., 2015). The loss of LDs
and retinoid content in hepatic stellate cell (HSC) is a hall-
mark of NASH. Blockage of lipolysis by lipases like ATGL in
HSC may prevent or alleviate the development of fibrosis
(Blaner et al., 2009).

In this review, we focus on LD proteins that may be
involved in the pathogenesis of NAFLD as determined by
Genome-wide Association Studies (GWAS), genomic and
proteomic research. As the mechanisms are still unknown,
we also propose a hypothesis based on recent studies.

GWAS REVEAL PATHOGENIC PROTEINS ON LIPID
DROPLETS LIKE PNPLA3

With the completion of the Human Genome Project, scien-
tists focused on variable regions in the genome, especially

single nucleotide polymorphisms (SNPs) associated with
diseases. Under the HapMap project, haplotype maps were
established using tag SNPs. Disease associations with
novel genes can be established by GWAS using a non-
candidate driven method (Hardy and Singleton, 2009;
Manolio, 2010). GWAS is especially useful in parsing com-
plicated traits not caused by a single genetic mutation but by
complex contributions from environmental factors and poly-
genic components, which describes NAFLD (Anstee and
Day, 2013). GWAS studies focused on NAFLD were sum-
marized by Anstee and Day (2013), Sookoian and Pirola
(2015). The SNPs involved in NAFLD include PNPLA3
(rs738409), GCKR (rs780094), NCAN (rs2228603),
LYPLAL1 (rs12137855), PPP1R3B (rs4240624), CPN1-
ERLIN1-CHUK gene cluster, as well as others. These gene
polymorphisms may influence NAFLD via hepatic carbohy-
drate and lipid metabolism, protein modification or signaling
pathways (Anstee and Day, 2013; Sookoian and Pirola,
2015).

Patatin-like phospholipid domain containing protein 3
(PNPLA3) is a LD-associated protein that is also distributed
on other membranes (He et al., 2010). A GWAS performed
as part of the Dallas Heart Study was the first to find an
association between PNPLA3 and NAFLD (Romeo et al.,
2008). PNPLA3 has the strongest linkage disequilibrium of
all hits and has consistently been identified in multiple
GWAS using different diagnostic criteria (Anstee and Day,
2013). Moreover, it has been demonstrated by numerous
independent candidate-driven and histology-based studies
that the I148M polymorphism is associated with and
increased risk of NASH, fibrosis, and NAFLD-related HCC
(Kotronen et al., 2009; Sookoian et al., 2009; Rotman et al.,
2010; Dongiovanni et al., 2013). PNPLA3-I148M may pro-
mote liver injury as detected by elevated serum ALT levels
(Kollerits et al., 2010). PNPLA3-I148M is proportionally
overrepresented in the Hispanic population (0.49 in His-
panics, 0.23 in European-Americans and 0.17 in African-
Americans), which may partially explain the higher suscep-
tibility Hispanic people to NAFLD (Romeo et al., 2008).

The PNPLA3 gene is located on chromosome 22 and
encodes a 53-kDa protein with 481 amino acids. PNPLA3 in
humans is predominantly expressed in the liver, with sub-
stantially lower expression level in skin and adipose tissue
(Huang et al., 2010). PNPLA3 belongs to the patatin-like
phospholipid domain containing (PNPLA) protein family. It is
most closely related to PNPLA2, which is also known as
adipose triglyceride lipase (ATGL), the major cellular TAG
lipase. PNPLA3 has TAG hydrolase activity which is mark-
edly reduced in the I148M variant. Structural analysis of
PNPLA3 has demonstrated that the mutation does not affect
the catalytic center but rather the groove of the substrate
binding domain. Therefore the I148M substitution possibly
blocks access of substrate to the catalytic site (Huang et al.,
2011).

Much work has been conducted on the physiological and
pathological functions of PNPLA3 and the I148M variant.
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However, the mechanism underlying its association with
disease remains enigmatic. PNPLA3 expression is very low
in a fasted state, and is strongly induced with feeding. The
expression of PNPLA3 is up-regulated by insulin through
LXR/RXR signaling to SREBP-1c. This synthesis of fatty
acids, which is stimulated by SREBP-1c, increases the half-
life of PNPLA3 (Huang et al., 2010). These results indicate
that PNPLA3 is regulated by both lipid and carbohydrate
metabolism in response to the nutrition environment (Huang
et al., 2010). However, the disease associated genetic
variants of PNPLA3 are not linked with risk factors such as
insulin sensitivity or body mass index (BMI) and do not affect
related metabolic syndromes such as dyslipidemia or type 2
diabetes (Romeo et al., 2008; Speliotes et al., 2010).
Besides TAG lipase activity, PNPLA3 is also reported as
possessing lysophosphatic acid acyltransferase (LPAAT)
activity in vitro and retinyl-palmitate lipase activity in human
HSCs (Kumari et al., 2012; Pirazzi et al., 2014). Since the
development of NASH is accompanied by a loss of retinoid
content in HSCs, PNPLA3 may play a role in the hepatic
inflammatory process.

Although TAG hydrolysis activity of PNPLA3-I148M is
decreased, the association between the genetic variant and
NAFLD seems not to be due to the loss of function. The
Pnpla3 deletion in mice does not affect liver TAG content
even under high-sucrose or high-fat diet conditions (Chen
et al., 2010; Basantani et al., 2011) and human PNPLA3
overexpression in mice does not decrease liver steatosis (Li
et al., 2012). On the contrary, overexpression of PNPLA3-
I148M in mice leads to liver steatosis with elevated lipoge-
nesis and impaired TAG hydrolysis (Li et al., 2012). TAG
content and LD size are increased in high-sucrose diet fed
Pnpla3-I148M knock-in mice without a significant change of
lipogenic genes. However, CGI-58, which facilitates ATGL in
hydrolyzing TAG, is increased dramatically on LDs (Smagris
et al., 2015). This result suggests that PNPLA3 may alter
lipolysis, not by the hydrolysis activity itself, but by inhibition
of other lipases. Moreover, PNPLA3-I148M affects VLDL
secretion in rat hepatoma McA-RH7777 cells, possibly due
to a decreased ability to mobilize TAG in LDs (Pirazzi et al.,
2012). PNPLA3-I148M may also enhance TAG synthesis by
elevating LPAAT activity (Kumari et al., 2012). A disadvan-
tage of the mouse model in the study of the I148M variant
function is the different tissue distribution, compared with
humans. PNPLA3 is primarily expressed in liver in humans,
while it is mainly expressed in adipose tissue in the mouse
(Huang et al., 2010; Hoekstra et al., 2010). Further studies
will be required to determine how PNPLA3 is associated with
NASH and fibrosis.

There are 21 other SNPs in PNPLA3 identified in the
Dallas study which are potentially linked to NAFLD. Among
them is PNPLA3-S47A, in which the catalytic serine is sub-
stituted by alanine, which results in decreased lipolytic
activity and increased hepatic lipid content (He et al., 2010;
Huang et al., 2011; Smagris et al., 2015). Variant S543I is
more common in African-Americans than in European-

Americans or Hispanics and is associated with decreased
lipid content in the liver (Romeo et al., 2008). The 434K allele
attenuates PNPLA3 protein expression by decreasing
PNPLA3 mRNA levels and also attenuates the association
of I148M with liver damage (Donati et al., 2016).

PROTEOMIC STUDIES ON ISOLATED LIPID
DROPLETS REVEAL 17Β-HSD13 IS INVOLVED
IN THE PATHOGENESIS OF NAFLD

Metabolic syndromes like NAFLD are affected not only by
genomic alterations but also by complicated factors like
environment. As a result, genomic analysis alone is insuffi-
cient as it is removed from the actual expression of proteins
(Gregorich and Ge, 2014). Chronic diseases always mani-
fest as continuous processes with evolving stages. There
are often biomarkers which shift with the development of the
disease and identification of diagnostic biomarkers is espe-
cially important for detecting early stage disease. Proteomics
can be used to identify alterations in protein expression and
post translational modifications characteristic of diseases
during different stages of their development at the level of
tissue, cell, organelle or other subcellular structures. In
addition, proteomic analyses of disease states can also
identify novel drug targets for drug development (Hanash,
2003). Proteomics can also help reveal protein complexes
and signaling networks (Gregorich and Ge, 2014). Tremen-
dous improvements in the sensitivity and throughput of
modern mass spectrum technologies have led to a dramatic
expansion in protein research in the past decade. Many
studies of NAFLD have been conducted at various disease
stages, revealing 34 candidate biomarkers in proteomic
studies of liver and serum (Lim et al., 2014; Ladaru et al.,
2016).

Dozens of proteomic analyses have been performed on
isolated LDs in many types of cells and tissues from various
organisms (Yang et al., 2012), including liver tissue and
hepatocytes from humans and rodents (Yang et al., 2012;
Crunk et al., 2013; Su et al., 2014; Khan et al., 2015).
Structural proteins, like those of the perilipin family, are
prominent in most LD proteomes. Other LD proteins can be
categorized into groups including proteins of lipid synthesis
and hydrolysis, membrane trafficking, and cell signaling. The
presence of these functional classes of proteins on LDs
speaks to their central role in lipid metabolism. Apolipopro-
teins are present on liver LDs suggesting an association
between LDs and lipid secretion. Moreover, large numbers of
mitochondrial and ER proteins are also found in the liver LD
proteome. This suggests the existence of close physical and
functional interactions among these organelles, likely
involving fatty acid oxidation and steroid metabolism (Crunk
et al., 2013; Su et al., 2014; Khan et al., 2015).

Comparative LD proteomic studies reveal that 54 proteins
are up-regulated and 35 proteins down-regulated in human
livers with simple hepatic steatosis. The up-regulated
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proteins are involved in the metabolism of retinol, linoleic
acid, xenobiotics and drugs (Su et al., 2014). The liver LD
proteome of mice with diet-induced hepatic steatosis has
also quantitatively analyzed using iTRAQ. As with human
liver, the up-regulated proteins included those involved in
fatty acid catabolism and xenobiotic metabolism, and also
included some ribosomal and ER proteins. Among the down-
regulated proteins were the liver X receptor, retinoid X
receptor, and proteins involved in glucose metabolism.
(Khan et al., 2015). These results provide new insights into
the metabolic pathways of hepatic steatosis and may point to
possible drug targets for the treatment of NAFLD.

Of the proteins of potential clinical interest identified in
proteomic studies, 17β-hydroxysteroid dehydrogenase 13
(17β-HSD13) is possibly the most important. A comparative,
quantitative proteomic study in humans detected a dramatic
elevation of 17β-HSD13 in patients with NAFLD, compared
with healthy controls (Su et al., 2014). Another independent
study confirmed this result and also found a slight upregu-
lation of 17β-HSD13 in patients with NASH without fatty liver
(Kampf et al., 2014). In a study of fasted and refed mice,
17β-HSD13 was increased markedly on hepatic LDs of mice
in the high-fat diet group compared with the low fat group
(Crunk et al., 2013).

In parallel, a GWAS study revealed that an intergenic
SNP (rs6834314) near HSD17B13 (encoding 17β-HSD13)
and MAPK10 (encoding mitogen-activated protein kinase
10, MAPK10) is strongly associated with the concentration of
plasma alanine transaminase (ALT) (P = 3.1 × 10−9), the
main marker of hepatocellular injury (possibly representing
fatty liver disease) (Chambers et al., 2011). Overexpression
of 17β-HSD13 in a mouse hepatocyte cell line induced liver
steatosis and lipid accumulation. It also lead to increased
expression of proteins involved in lipid synthesis such as
mature SREBP-1 and FAS, suggesting that 17β-HSD13 is
implicated in NAFLD development by promoting lipogenesis
(Su et al., 2014). 17β-HSD13 is expressed primarily in the
liver, with far less found in the gastrointestinal tract, muscle,
spleen and uterus, making 17β-HSD13 an excellent poten-
tial therapeutic target for treating fatty liver disease (Hor-
iguchi et al., 2008).

17β-HSD13 was first cloned from a human liver cDNA
library in 2007 and was named short-chain dehydrogenase/
reductase 9 (SCDR9) (Liu et al., 2007). Now the protein has
been grouped with the 17β-hydroxysteroid dehydrogenase
(17β-HSD) family, which plays a key role in the final step of
estrogen and androgen steroid metabolism. As with the
other members of 17β-HSD family (except 17β-HSD5), 17β-
HSD13 contains a NAD(P)+/NAD(P)H binding domain
(TGxxxGxG) and an enzymatic activation site (YxxxK) at the
N-terminus. The 17β-HSDs are regarded as potential ther-
apeutic targets for diseases such as breast cancer,
endometriosis, osteoporosis, prostate cancer and even
Alzheimer’s disease. All 17β-HSDs can modify the keto and
hydroxy groups of steroids at the position C17 in vitro.
However, the real physiological function of 17β-HSD13

in vivo is still unknown (Moeller and Adamski, 2006; Mar-
chais-Oberwinkler et al., 2011).

17β-HSD13 is located at the same locus with 17β-HSD11
on chromosome 4q22. Moreover, 17β-HSD13 shares a high
sequence similarity (65% identity and 78% similarity) with
17β-HSD11 (Liu et al., 2007). The 1–28 amino acid region of
the N-terminus of 17β-HSD11 is necessary and sufficient to
target the protein to ER and LD, while similar targeting
activity is located in the first 35 amino acids of the N-termi-
nus of 17β-HSD13 (Horiguchi et al., 2008). These results
indicate that these two proteins may share features of their
function and regulation.

However, the mRNA expression of 17β-HSD11 is strongly
induced in liver and intestine by PPARα agonist Wy14643,
while 17β-HSD13 is not induced. On the contrary, the 17β-
HSD13 expression level is significantly elevated in PPARα
knockout mice, which suggests that PPARα may suppress
the expression of 17β-HSD13 (Horiguchi et al., 2008). 17β-
HSD13 has two putative C/EBP binding sites while 17β-
HSD11 has four. Expression of both proteins was induced by
overexpression of C/EBPβ in HepG2 cells while only 17β-
HSD11 expression was induced by overexpression of
C/EBPα (Rotinen et al., 2010). These results suggest 17β-
HSD13 and 17β-HSD11 may play different roles under
physiological and pathological conditions in liver.

A ROLE FOR 17Β-HSD13 ON LIPID DROPLETS
IN THE PATHOGENSIS OF NAFLD?

Sex hormones play important roles in maintaining energy
homeostasis and imbalances in their levels can lead to
metabolic syndromes like type 2 diabetes (Varlamov et al.,
2014). Epidemiological studies have revealed a higher
prevalence of NAFLD in men than in women. However, the
incidence of NAFLD increases rapidly in postmenopausal
women, ultimately erasing the gender difference. This
implicates estrogen in regulating hepatic lipid metabolism
(Hashimoto and Tokushige, 2011; Brady, 2015; Shen and
Shi, 2015). The metabolic protective effect of estrogen in
preventing liver steatosis has also been detected in animal
models. Female mice treated with ovariectomy (OVX), and a
resulting depletion of the majority of circulating estrogens,
have increased fat accumulation in the liver than the pair-fed
sham operation mice (Shen and Shi, 2015).

Tamoxifen is an estrogen inhibitor that is widely used in
the treatment of hormone-sensitive breast cancer. Approxi-
mately 43% of the patients treated with this drug develop
hepatic steatosis, likely due, primarily, to increased de novo
fatty acid synthesis in the liver (Cole et al., 2010). All sub-
types of estrogen receptors are expressed in hepatocytes
and estrogen receptor-α predominantates (Shen and Shi,
2015). Treatment with the estrogen receptor-α agonist propyl
pyrazole triol (PPT) decreases fat content in the liver.
Estrogen receptor-α knockout mice display liver steatosis
with lipid biosynthesis genes, including SREBP-1c, up-
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regulated and the lipid transport genes downregulated (Shen
and Shi, 2015; Barros and Gustafsson, 2011).

Unlike what has been seen with estrogens, studies
examining androgen signaling have found complex effects
with inconsistent results and significant variation between
genders (Ma et al., 2014). An inverse relationship between
circulating testosterone levels and hepatic steatosis has
been found in men (Volzke et al., 2010; Kim et al., 2012).
However, other studies found that anabolic-androgenic
steroids induce hepatotoxicity and result in NAFLD (Sch-
wingel et al., 2011; Awai et al., 2014). These conflicting
results may arise from the steroid dose (ranging from
physiological to supra-physiological levels) or the type or
ratio of androgens studied.

A low plasma level of dehydroepiandrosterone sulfate
(DHEA-S), a kind of proandrogen, is associated with advanced
NAFLD (Charlton et al., 2008) Dehydroepiandrosterone
(DHEA) supplementation of a high-fat plus fructose diet
reduced the induction of SREBP-1c and insulin resistance in
mice, and protected against steatosis (Aragno et al., 2009). In
females, an abnormally high level of androgens is associated

with polycystic ovary syndrome (PCOS) with a high risk of
NAFLD (Brzozowska et al., 2009; Kelley et al., 2014). Male, but
not female, androgen receptor (AR) knockout mice fed a high-
fat diet develop hepatic steatosis and insulin resistance with an
increased expression of lipogenic genes and a decreased
expressionof fatty acidoxidationgenes (Linet al., 2008). These
results indicate that androgen deficiency is associated with
hepatic lipid deposition and theARmay have greater impact on
lipid homeostasis in males than in females.

A significant fraction of estrogens and androgens are
synthesized locally inside of target peripheral tissue cells, a
process described as intracrine regulation. Almost all sex
steroids in postmenopausal women and half of androgens in
adult men are synthesized in peripheral intracrine tissues
(Labrie et al., 2000). Tumor cells adapt the intracrine system
to produce high level of estrogens or androgens to stimulate
cell proliferation in sex steroid sensitive diseases like breast
and prostate cancer (McNamara and Sasano, 2015; Mos-
taghel, 2013).

Circulating DHEA and DHEA-S originating from the
adrenal gland are the major substrates for intracrine sex

Cytoplasm

Nucleus

Lipid synthesis

Hormone X
receptor

Hormone X

Hormone X
receptor

Transcription factor

Signal transduction

Figure 1. Hypothetical mechanism of 17β-HSD13-mediated lipid accumulations. Increased 17β-HSD13 on LDs produces

hormone X that binds to a cytosolic receptor by intracrine regulation. The hormone X may also be secreted to extracellular space and

bind to a membrane-bound receptor or crosses the plasma membrane and binds to a cytosolic receptor by autocrine or paracrine

regulation. The cytosolic ligand-bound receptors thus enter the nucleus and bind to regulate elements. The activated membrane-

bound receptors may transduce signals to promote transcription factors enter nucleus. Hence, the expression of genes related to lipid

synthesis are eventually up-regulated leading to lipid accumulation and LD expansion in hepatic cells.
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hormone synthesis and the conversion involves enzymes
belonging to 3β-HSD, 17β-HSD, 5α-reductase and aro-
matase families (Labrie, 2015). Members of the 17β-HSD
family are the key enzymes required for synthesizing all
active estrogens and androgens. The 17β-HSD proteins are
distributed broadly in most tissues where they play a vital
role in intracrine sex steroid homeostais (Luu-The and Lab-
rie, 2010). Hepatic progenitor cells in humans and hepato-
cytes in rats have the ability to activate TGF-β signaling by
intracrine signaling, which supports that liver is an intracrine
organ (Gressner et al., 2008; Ding et al., 2013). Since more
than half of all known types of 17β-HSDs have been found in
the liver (Moeller and Adamski, 2009), it is reasonable to
speculate that the liver can also generate intracrine sex
steroid signaling.

We propose a hypothesis to explain how increased 17β-
HSD13 promotes lipid synthesis and expands LDs in hepa-
tocytes (Fig. 1). Excessive expression of 17β-HSD13 pro-
teins results in the production of increased sex steroid
hormone intermediates (or possible other, unknown hor-
mones). The locally produced hormones drive intracrine
signaling and may also be secreted to the extracellular
space signaling to local tissues in a paracrine fashion. This
enhanced signaling drives the expression of lipid synthetic
genes, driving fat accumulation in LDs.

The mechanisms involved may be more complicated.
17β-HSD enzymes interconvert estrogens in both directions.
Therefore, 17β-HSD13 might convert E2 to E1, thereby
reducing the E2 concentration in the cellular microenviron-
ment, resulting in a decrease in metabolic protection affor-
ded by E2 and activating lipid anabolic genes. Besides
steroid metabolism, some subtypes of 17β-HSDs also play
roles in fatty acid elongation and β-oxidation, synthesis of
prostaglandin and retinol metabolism. These other activities
of 17β-HSD13 may influence fatty liver development via
distinct metabolic pathways. In addition, 17β-HSD13 is also
present as a major protein on hepatic LDs. Thus it may also
act as a structural protein, protecting lipids from hydrolysis
by preventing lipases from gaining access to the interior
lipids. The mechanisms regulating 17β-HSD13 and its
involvement in the progression of NAFLD still need to be
elucidated.

CONCLUSION

The LD is the central organelle regulating lipid homeostasis
and disorders of LD-associated proteins induce metabolic
diseases like NAFLD. GWAS studies reveal that SNPs
linked with PNPLA3 are strongly associated with NAFLD,
especially the PNPLA3-I148M variant. PNPLA3-I148M
seems to be a loss-of-function mutation, but its pathogenic
effect appears to be mediated through a gain in function
resulting in a suppression of lipase activity. The 17β-HSD13
enzyme was identified by a comparative proteomic study of
patients with normal and simple hepatic steatosis liver.
Increased 17β-HSD13 on LDs greatly elevates lipid content

in both hepatocytes and mouse liver. Since 17β-HSD family
proteins catalyze the key step in sex hormone synthesis, we
speculate that 17β-HSD13 may promote lipid synthesis by
producing hormones which regulate lipogenic gene expres-
sion. However, the detailed underlying mechanisms by
which LDs and LD-associated proteins induce NAFLD
remain to be elucidated.
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