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Abstract

Background: Leishmania (Viannia) parasites present particular challenges, as human and murine immune responses to
infection are distinct from other Leishmania species, indicating a unique interaction with the host. Further, vaccination
studies utilizing small animal models indicate that modalities and antigens that prevent infection by other Leishmania
species are generally not protective.

Methodology: Using a newly developed mouse model of chronic L. (Viannia) panamensis infection and the heterologous
DNA prime – modified vaccinia virus Ankara (MVA) boost vaccination modality, we examined whether the conserved
vaccine candidate antigen tryparedoxin peroxidase (TRYP) could provide protection against infection/disease.

Results: Heterologous prime – boost (DNA/MVA) vaccination utilizing TRYP antigen can provide protection against disease
caused by L. (V.) panamensis. However, protection is dependent on modulating the innate immune response using the
TLR1/2 agonist Pam3CSK4 during DNA priming. Prime-boost vaccination using DNA alone fails to protect. Prior to infection
protectively vaccinated mice exhibit augmented CD4 and CD8 IFNc and memory responses as well as decreased IL-10 and
IL-13 responses. IL-13 and IL-10 have been shown to be independently critical for disease in this model. CD8 T cells have an
essential role in mediating host defense, as CD8 depletion reversed protection in the vaccinated mice; vaccinated mice
depleted of CD4 T cells remained protected. Hence, vaccine-induced protection is dependent upon TLR1/2 activation
instructing the generation of antigen specific CD8 cells and restricting IL-13 and IL-10 responses.

Conclusions: Given the general effectiveness of prime-boost vaccination, the recalcitrance of Leishmania (Viannia) to
vaccine approaches effective against other species of Leishmania is again evident. However, prime-boost vaccination
modality can with modulation induce protective responses, indicating that the delivery system is critical. Moreover, these
results suggest that CD8 T cells should be targeted for the development of a vaccine against infection caused by Leishmania
(Viannia) parasites. Further, TLR1/2 modulation may be useful in vaccines where CD8 T cell responses are critical.
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Introduction

Traditionally, vaccination against cutaneous leishmaniasis (CL)

has involved leishmanization (inoculation of live Leishmania), which

has been practiced throughout the Middle East and was employed

in government sponsored vaccination programs both in Israel and

Russia. However, safety and standardization issues discouraged

further use of live vaccination [1,2]. Subsequently, killed Leishmania

promastigotes have been examined with some but limited efficacy

in clinical trials [3,4]. Consequently, leishmaniasis vaccine efforts

have focused on the use of live attenuated vaccines [5,6] and also

defined molecular vaccines and delivery systems [7].

An optimal vaccine against cutaneous leishmaniasis would

consistently provide protection against the various disease-causing

species. However, studies indicate that distinct Leishmania species

elicit different responses in their hosts, suggesting that a uniform

approach might be challenging. Although a Th1-like response is

considered to lead to disease resolution, the mechanisms contrib-

uting to protection across the species are not well characterized/

understood. In particular, the Leishmania (Viannia) subgenus is

phylogenetically divergent from the Leishmania (Leishmania) subgenus

[8,9,10]. Members of the L. (Viannia) subgenus can generate a

hyperinflammatory response that fails to resolve [11,12,13,14,

15,16]. L. (V).panamensis elicits a mixed Th1/Th2 and non-resolving

hyperinflammatory response to infection in humans [17,18].

Consistent with this, vaccine studies attempting to demonstrate

immunological protection against L. (Viannia) parasites [19,20,21]

using a murine model, have met with limited success. Salay et al.
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[19] tested four different highly conserved leishmanial antigens

(DNA or recombinant protein) along with adjuvants that have

protected against infection with other species causing CL (L.

mexicana, L. amazonensis, L. major). However, strong antigen-specific

IFNc production by immunized mice failed to translate into

protection against L. (Viannia) braziliensis infection. As a result this

study suggested investigation of alternate immunization strategies

to protect against L. (Viannia) parasites. Similarly, antigens

demonstrated to protect against visceral leishmaniasis [21] failed

to protect against L. (Viannia) braziliensis. Recently, partial

protection was [20] demonstrated against L.(V.) braziliensis by

utilizing an attenuated centrin-deficient L. donovani strain. Taken as

a whole these studies might suggest that defined antigens may not

provide protection against L. (Viannia). However, vaccine delivery

systems are critical to determining the elicited immune response

and therefore can determine protection provided for an antigen.

In particular, as the mechanisms involved in disease resolution for

L. (Viannia) are not well understood, further investigation of

delivery systems/antigens is warranted and may ultimately provide

insight into immune mechanisms leading to healing. Hence we

explored other immunization methods to induce protection

against L. (V.) panamensis, using a newly developed murine model

for chronic disease [22].

Herein we report for the first time that heterologous prime

(DNA) -boost (modified vaccinia virus Ankara = MVA) modality

using the single antigen tryparedoxin peroxidase (TRYP) and

including the TLR1/2 agonist N-palmitoyl-S-[2,3-bis(palmitoy-

loxy)-(2RS)-propyl]-[R]-cysteinyl-[S]-seryl-[S]-lysyl-[S]-lysyl-[S]-

lysyl-[S]-lysine (Pam3CSK4) as adjuvant during DNA priming is

effective in achieving protection against L.(V.) panamensis. Mark-

edly, prime boost immunization in the absence of Pam3CSK4 did

not elicit protection thereby implicating a strategic role for

Pam3CSK4 in achieving protection. Pam3CSK4 appears to direct

heightened CD4 and CD8 T memory cell responses and reduced

levels of IL-10 and IL-13, which ultimately results in significant

protection against L.(V.) panamensis. Furthermore CD8 cells, but

interestingly not CD4 T cells, are crucial in mediating the

protection induced, indicating that CD8 T cell responses may be

critical for vaccine development against L. (Viannia) parasites.

Materials and Methods

Leishmania culture and infection
L. (V.) panamensis was grown and cultured into infective stage

parasites as described previously [22]. Briefly L. (V.) panamensis was

grown in Schneider’s Medium supplemented with 20% heat

inactivated FCS and 17.5 mg/mL gentamycin (GIBCO BRL).

Promastigotes were grown at 22uC. Live late stationary phase (15–

21 days in culture) promastigotes were harvested for infection

using a step percoll gradient (Sigma Chemical Co.) in PBS

containing 20 mM EDTA. Washed parasites (56104) were used to

infect mice in the top of the right hind foot.

Animals
Female BALB/c mice (5 to 6 weeks old) were purchased from

the NCI. All mice were housed in Yale University School of

Medicine facilities, which are American Association for Accred-

itation of Laboratory Animal Care (AAALAC) accredited and

USDA registered animal facilities. The experiments were

approved by Yale University Committee on Use and Care of

Animals (Assurance number A3230-01).

Plasmids, recombinant proteins, and vaccinia virus
TRYP and p36 (LACK) genes were cloned into pVAX

(Invitrogen, CA) and pCI-neo (Promega, WI) vectors respectively.

Plasmids were purified using Qiagen Endofree Plasmid Giga kit

(Qiagen, CA). Empty plasmid was used for the controls. Plasmid

preparations were tested for endotoxin by Limulus Amebocyte

Lysate test (Lonza, MD); less than 0.1 ng LPS per 100 mg of

plasmid was present in preparations employed for vaccination.

The p36 and TRYP recombinant proteins were expressed using a

histidine-tag construct that was cloned into pRSET A vector

kindly provided by Dr. Larraga (Centro de Investigaciones

Biológicas, Spain) and pET-15b vector, respectively. Recombinant

protein was purified using PrepEase Histidine-Tagged Protein

Purification kit (USB, OH) and endotoxin was removed as

described [23]. Coomassie blue staining of SDS-PAGE analysis

of recombinant antigen was used to determine protein purity.

Vaccinia virus Ankara (MVA) expressing TRYP and LACK were

prepared as previously described [24,25].

Vaccination and immunodepletion studies
For adjuvant evaluation, mice (3/group) received two intra

dermal injections of p36 DNA (100 ug in 100 ul) per vaccination

with or without adjuvants (a-GalCer (1 ug), LPS (10 ug), CpG

(50 ug), Pam3CSK4 (10 ug), MALP-2 (0.5 ug)). After an interval

of 3 weeks, mice were boosted using the same DNA-adjuvant

combination. Splenocytes from the vaccinated mice were evalu-

ated by in vitro cytokine production 4 weeks after the final

immunization. This experiment was done twice and 3 mice per

group were sufficient to achieve statistical significance and evalu-

ation of data.

In the case of DNA-vaccinia virus (MVA) prime-boost vacci-

nation, 2 weeks after the priming immunization with TRY-

P(100 ug/100 ul) 6 Pam3CSK4, mice (8 to 10/group) were

boosted intraperitoneally with 36106 PFU per mouse of MVA-

TRYP. This was followed by infection with 56104 late stationary

phase L. (V.) panamensis promastigotes 6 weeks after the MVA

boost. Lesion development was monitored by measuring the

thickness of the infected and uninfected feet using a dial gauge

Author Summary

Leishmania (Viannia) are the predominant agents of
leishmaniasis in Latin America. Given the fact that
leishmaniasis is a zoonosis, eradication is unlikely; a
vaccine could provide effective prevention of disease.
However, these parasites present a challenge and we do
not fully understand what elements of the host immune
defense prevent disease. We examined the ability of
vaccination to protect against L. (Viannia) infection using
the highly immunogenic heterologous prime-boost (DNA-
modified vaccinia virus) modality and a single Leishmania
antigen (TRYP). Although this mode of vaccination can
induce protection against other leishmaniases (cutaneous,
visceral), no protection was observed against L. (V.)
panamensis. However, we found that if the vaccination
was modified and the innate immune response was
activated through Toll-like receptor1/2(TLR1/2) during
the DNA priming, vaccinated mice were protected.
Protection was dependent on CD8 T cells. Vaccinated
mice had higher CD8 T cell responses and decreased levels
of cytokines known to promote infection. Given the long-
term persistence of CD8 T cell memory, these findings are
encouraging for vaccine development. Further, these
results suggest that modulation of TLR1/2 signaling could
improve the efficacy of DNA-based vaccines, especially
where CD8 T cell activation is critical, thereby contributing
to effective and affordable anti parasitic vaccines.

Vaccine Induced Defense against L. (V.) panamensis
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caliper (Starrett Thickness Gauge). Parasite burdens in the infected

foot and draining lymph node (DLN) were determined by limiting

dilution analysis as described previously [26,27]. As parasite

burden changes in the infected foot and associated DLN were

comparable comparative in initial experiments, parasite burdens

were determined only in the infected feet of the immunodepleted

mice. For depletion of CD4 or CD8 cells, immunized mice were

injected intraperitoneally with 100 mg of anti-CD4 (GK1.5) or

anti-CD8 (53-5-43) antibody (eBioscience, CA) at -3 and -1 day

before infection. Flow cytometry indicated that more than 95% of

the target cell population was depleted. Pre-challenge immunoas-

says were carried out 12 weeks after the MVA boost in TRYP

immunized mice.

Cytokine, and proliferation analysis
DLN cells and splenocytes were plated at 56106/ml in RPMI

(10% fetal bovine serum, 2 mM L-glutamine, 100 units/ml peni-

cillin, 100 mg/ml streptomycin, and 50 mM b-mercaptoethanol) in

96 or 24 well plates. The cells were then stimulated with recom-

fbinant TRYP (5 mg/ml), recombinant LACK/p36 (5 mg/ml), solu-

ble leishmania antigen (SLA; equivalent to 56106 parasites/ml) or

left unstimulated for 72 hours. Supernatants were collected and

analyzed for IFNc, IL-10, and IL-13 using paired antibodies from

BD Biosciences (CA) and R&D systems (MN). For flow cytometry,

brefeldin A (BD Biosciences, CA) at 1 ug/ml was added to

stimulated splenocytes during the last 4 hours, cells were surface

stained with T cell markers, fixed with 2% paraformaldehyde and

permeabilized with 0.05% saponin followed by intracellular

staining. Isotype control antibodies were IgG1-PE-Cy7 and IgG1-

PE. Forward and side scatter were used to determine lymphocytes

followed by gating on CD4+ or CD8+ cells. Integrated mean

fluorescence intensity (iMFI) was calculated by the following

formula: iMFI = MFI x frequency [28]. Data were acquired using

an LSRll (BD Biosciences, CA) and analyzed using FlowJo (Treestar

Inc., Oregon).

For proliferation analyses to evaluate memory responses, splenic

lymphocytes were labeled with 5 mM carboxyfluorescein succini-

midyl ester (CFSE) at 3 months/12 weeks after the final MVA

boost; cells were then placed in 96 well plates at 56106/ml in

RPMI (10% fetal bovine serum, L-glutamine, penicillin/strepto-

mycin, and b-mercaptoethanol), and stimulated with recombinant

TRYP (5 mg/ml) for 3 days. Following surface staining with CD4

and CD8 antibodies, FACS analysis was done as described above

to measure proliferation by dilution of CFSE dye. Unlabeled cells

and unstimulated CFSE-labeled cells were used as controls.

Antibodies and reagents
Antibodies (CD4-Pacific blue, CD8-APC, IFNc-PE-Cy7, IL-13-

PE, IgG1-PE-Cy7, IgG1-PE, affinity purified CD4 (L3T4), and

CD8 (Ly-2)) were purchased from BD Biosciences (CA) and

eBiosciences (CA). Pam3CSK4, CpG (ODN1826), ultra pure E.

coli lipopolysaccharide (LPS), and MALP-2 were purchased from

Invivogen Inc (CA). a-galactosyl-ceramide was obtained from

Biomol International (PA).

Ethics Statement
All experiments were approved Yale University Committee on

Use and Care of Animals (Assurance number A3230-01).

Statistics
Student’s t test was used to determine p values indicating

statistical differences for all experiments and p,0.05 was con-

sidered statistically significant.

Results

Adjuvant modulation of the immune response to antigen
induced by DNA vaccination

Initially, we sought to examine the effects of adjuvants on the

immune response induced during DNA vaccination, as it is known

that priming is critical [29,30,31,32], to the overall response

induced in heterologous prime-boost vaccination. Compounds

known to activate NK-T cells (alpha-galactosyl ceramide

(a-Galcer)) [33], as well as TLR ligands TLR9 (CpG [34]),

TLR2/6 (MALP-2 [35]), TLR4 (LPS [36]), and TLR2/

1(Pam3CSK4 [37]) were chosen as potential adjuvants for DNA

vaccination, using the Leishmania homologue of receptors for

activated C-kinases (LACK)/p36 antigen. The adjuvants (Figure

S1A) were evaluated on the basis of their ability to enhance the

production of antigen specific IFNc relative to IL-10 in DNA

immunized mice, as better protection against cutaneous leishman-

iasis has been associated with a higher ratio of IFNc to IL-10 [24]

and disease exacerbation of L. (Viannia) has been related to IL-10

levels [38]. High IL-10 production was observed for MALP-2 and

LPS. The IFNc/IL-10 ranking was Pam3CSK4$ a-Gal-

Cer.CpG..LPS...MALP-2. Consequently, amongst the

adjuvants, Pam3CSK4 and a-GalCer appeared to induce a

potentially useful immune response.

Based on these results, Pam3CSK4 and a-GalCer were selected

to determine if a combination of Pam3CSK4 and/or a-GalCer,

which have distinct cellular targets, could act synergistically to

further enhance the immunogenicity of DNA-p36. In these

experiments (Figures S1B and S1C), IFNc, IL-13, and IL-10

responses to p36 were determined. Although a considerable

increase in the IFNc to IL-10 ratio was seen in response to

immunization with DNA-p36+ a-GalCer +Pam3CSK4, a-GalCer

alone induced increased levels of IL-13 (Figure S1C). As IL-13 has

been shown to play a critical role in determining progression of

non-healing pathogenesis of L. (V.) panamensis [22], Pam3CSK4

was selected as a potential adjuvant for use in a prime (DNA) boost

(vaccinia) immunization against murine L. (V.) panamensis infection.

To further evaluate the potential of Pam3CSK4 in DNA

priming, heterologous prime-boost immunization (Figure 1) using

the TRYP antigen was examined. Mice were immunized

intradermally with DNA-TRYP or DNA-TRYP together with

Pam3CSK4. Control mice received empty vector DNA. Two

weeks later, groups of the immunized mice were boosted with

vaccinia virus expressing the TRYP antigen (MVA-TRYP) or with

control vaccinia virus (MVA). Twelve weeks after the final

immunization, the immune responses of splenocytes from

immunized and non-immunized mice were analyzed. Mice

immunized with DNA-TRYP(Pam3CSK4)+MVA-TRYP pro-

duced increased levels of IFNc and granzyme B in response to

both TRYP and SLA when compared to mice immunized with

DNA- TRYP+MVA-TRYP or DNA-TRYP (Figure 1). Further-

more, mice receiving Pam3CSK4 during priming also produced

significantly lower levels of antigen specific IL-13 and IL-10 when

compared to mice immunized with DNA-TRYP+MVA-TRYP.

Thus, DNA-TRYP(Pam3CSK4)+MVA-TRYP immunized mice

generated higher amounts of IFNc as well as reduced levels of IL-

13 and IL-10 in response to either TRYP or SLA antigen when

compared to mice immunized with DNA-TRYP alone. Hence the

activation of TLR1/2(Pam3CSK4) during DNA priming (as found

for DNA vaccination alone) appears to promote the down-

regulation of IL-13 and IL-10 responses and concurrent up-

regulation of Th1 cytokines in heterologous prime-boost vaccina-

tion, leading to higher IFNc to IL-13 and IFNc to IL-10 ratios.

Vaccine Induced Defense against L. (V.) panamensis
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Pam3CSK4 during priming leads to increased antigen
specific CD8 and CD4 T cells in immunized mice

To further evaluate the effects of Pam3CSK4 on the deve-

lopment of specific long-term CD4 and CD8 T cell memory, the

proliferative responses to TRYP antigen were examined 12 weeks

after the MVA-TRYP boost. Splenic lymphocytes from immu-

nized mice were labeled with CFSE and then stimulated for 3 days

with recombinant TRYP protein. Increased proliferation of both

CD4 and CD8 cells (Figure 2A) was observed in DNA-

TRYP(Pam3CSK4)+MVA-TRYP immunized mice when com-

pared to the other vaccinated groups. Overall, the responses

observed (10–15% proliferating cells) were comparable to other

studies examining long-term memory [39,40,41]. The kinetics

indicated a heightened response (CD4 and CD8 T cells) after 3

days of stimulation for the cells from mice immunized with DNA-

TRYP(Pam3CSK4)+MVA-TRYP. As the number of proliferating

cells is expected to be in proportion to memory populations, these

results clearly indicate increased levels of both CD4 and CD8

memory cells as a consequence of vaccination using Pam3CSK4.

In particular, a higher increase in antigen specific CD8 cell

proliferation (5.4-fold) was observed in mice receiving DNA-

TRYP(Pam3CSK4)+MVA-TRYP in comparison to CD4 cells

(1.5-fold). These data suggest that although both CD4 and CD8

memory populations expand as a result of TLR1/2 ligation, a

selective effect on CD8 T cell populations occurs. Overall, these

data point to a more rapid and robust response and higher levels of

memory populations (CD4+ and CD8+) in mice receiving

Pam3CSK4 in comparison to those immunized with DNA-TRYP

alone.

The immunization with DNA-TRYP(Pam3CSK4)+ MVA-

TRYP resulted in a polarized Th1 immune response 12 weeks

after the final booster dose (Figure 1). Given that expansion of

both CD4 and CD8 memory cells (Figure 2A) was observed, it was

of interest to investigate the precise cellular components of this

immune response. FACS analysis of cells stimulated with

recombinant TRYP was carried out at twelve weeks after the

final immunization (Figure 2B). These results, consistent with

ELISA results, indicated that the frequency of CD4 and CD8 cells

producing IFNc were increased in DNA-TRYP(Pam3CSK4)

+MVA-TRYP immunized mice in comparison to the DNA-

TRYP+MVA-TRYP immunized mice. Notably a significantly

lower level of CD4 and CD8 T cells producing IL-13 was found.

Overall, the increased frequency of IFNc producing CD4 and

CD8 cells in DNA-TRYP(Pam3CSK4)+MVA-TRYP immunized

mice in comparison to the DNA-TRYP+MVA-TRYP immunized

mice or control groups were statistically different (Figure 2C).

Overall, these results suggest that TLR1/2 activation drives the

development of Th1/TC1-like responding T (CD4 and CD8)

cells. Consequently, the ligation of TLR9 (by bacterial CpG

sequences) together with TLR1/2 during priming appears to

preferentially enhance the generation of TRYP-specific memory T

cells, producing IFNc but also significantly less IL-13.

Protection against L.(V).panamensis infection requires
TLR1/2 activation during priming

Given the fact that mice immunized with DNA-TRYP(-

Pam3CSK4)+MVA-TRYP exhibit enhanced levels of memory T

cells together with an overall reduction in IL-13 and increased

IFNc production in comparison to DNA-TRYP+MVA-TRYP or

DNA-TRYP vaccinated mice, we asked whether these responses

might be useful in directing protection against infection. Mice

were vaccinated as indicated above. Control mice were immu-

nized with control plasmid and control MVA. Six weeks after the

final immunization, all mice were infected with 56104 L. (V).

panamensis promastigotes and lesion development was monitored.

As shown in Figure 3A, mice immunized with DNA-

TRYP(Pam3CSK4)+MVA-TRYP exhibited significantly smaller

lesions when compared to control mice (control plasmid and

MVA) and all other vaccine groups. Furthermore, significantly

lower parasite burden levels were found at the both the site of

Figure 1. Up regulation of Th1 cytokines and down regulation of Th2 cytokines in DNA-TRYP(Pam)+MVA-TRYP immunization.
Twelve weeks after the final immunization, cells from individual spleens of immunized (DNA-TRYP+DNA-TRYP, DNA-TRYP+MVA-TRYP, DNA-
TRYP(Pam)+MVA-TRYP) and control mice (DNA-pVAX(Pam)+MVA-Luc) were re-stimulated in vitro with recombinant TRYP or SLA for 72 hours
followed by analysis of supernatants obtained for IFNc, granzyme B, IL-13 and IL-10. Data are representative of 2 experiments; n = 3 mice/group.
Mean6SE. *p,0.05, **p,.005.
doi:10.1371/journal.pntd.0001204.g001
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Figure 2. TLR2 activation leads to increased CD4+ and CD8+ memory populations. CD4 and CD8 T cell memory responses to TRYP antigen
were examined 12 weeks after the MVA-TRYP boost A. Splenocytes from immunized and control groups of mice (3 mice/group) were CFSE labeled
followed by in vitro stimulation with TRYP protein for 3 days to track proliferation of antigen specific cells. CD4 – Vector or DNA-TRYP+DNA-TRYP or
DNA-TRYP+MVA-TRYP compared to DNA-TRYP(Pam)+MVA-TRYP is p,0.05. CD8 – Vector or DNA-TRYP+DNA-TRYP or DNA-TRYP+MVA-TRYP
compared to DNA-TRYP(Pam)+MVA-TRYP is p,0.009. B. The cytokine responses of memory CD4 and CD8 cells in TRYP(Pam)+MVA-TRYP immunized
mice (3 mice/group) were evaluated by FACS analysis of splenocytes stimulated in vitro with recombinant TRYP. Forward and side scatter were used
to determine lymphocytes followed by gating on CD4+ or CD8+ cells. C. Overall frequency of antigen specific CD4 and CD8 cells producing IFNc or IL-
13 in different groups of vaccinated mice as determined by FACS analysis. Data are representative of two independent experiments. n = 3 mice/
group.
doi:10.1371/journal.pntd.0001204.g002
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infection and DLN of the DNA-TRYP(Pam3CSK4)+MVA-

TRYP vaccinated mice, when compared to control immunized

mice (574-fold) or mice immunized with DNA-TRYP (267-fold) or

TRYP+MVA-TRYP (314-fold) (Figure 3B). Consistent with

previously reported results [19], DNA-TRYP immunization alone

failed to protect against L.(V). panamensis infection. Notably,

heterologous prime-boost vaccination alone also does not induce

protection as seen from lesion size measurement and parasite load

at the site of infection. However, parasite numbers in DLN in

DNA-TRYP+MVA-TRYP immunized mice are significantly

lower (11-fold) than that of control mice. Therefore Pam3CSK4

plays a critical role in achieving protection against murine L.(V).

panamensis infection using heterologous prime-boost vaccination.

Negative role of IL-13 or IL-10 in protection against L. (V.)
panamensis infection in mice immunized with DNA-
TRYP(Pam3CSK4)+MVA-TRYP

To evaluate mechanisms underlying the protection selectively

induced by DNA-TRYP(Pam3CSK4)+MVA-TRYP immuniza-

tion, the immune responses in DLN cells from the L.(V). panamensis

infected mice (control and immunized) were examined. In the

control group of mice, as found for chronic infection with L. (V.)

panamensis a mixed cytokine response was observed (IFN, IL-13,

IL-10). This demonstrated an ongoing inflammatory-anti-inflam-

matory immune response concomitant with parasite persistence.

In general, all TRYP vaccinated groups of mice produced lower

levels of cytokines than the control group of mice (vector).

Although a reduction in IFNc, as well as in IL-13 and IL-10 was

observed in the DLNs of L.(V).panamensis infected mice immunized

with DNA-TRYP(with or without Pam3CSK4)+MVA-TRYP in

comparison to control mice (Table 1), the predominant effect was

on the levels of IL-13 and IL-10. Interestingly the levels of IFNc
observed for vaccine groups boosted with MVA-TRYP (DNA-

TRYP and DNA-TRYP(Pam3CSK4)) were comparable. Howev-

er, reductions in both IL-13 and IL-10 occurred for the mice

vaccinated with DNA-TRYP(6Pam3CSK4)+MVA-TRYP in

comparison to those receiving DNA-TRYP alone, with the

principal decrease being in IL-10 for the mice immunized with

DNA-TRYP(Pam3CSK4)+MVA-TRYP.

Although the infected vaccinated mice produced lower levels of

cytokines than the control mice, it is notable that the relative levels

of the cytokines differ between the various groups, with the highest

IFNc/IL-10 or IFNc/IL-13 ratios observed for the DNA-

TRYP(Pam3CSK4) +MVA-TRYP group of mice. The down-

regulation of IL-10 as well as IL-13 is consistent with the memory

responses observed prior to infectious challenge (Figures 1 and 2)

and suggests that lower levels of these cytokines are critical to

parasite containment. These results are consistent with the roles of

these cytokines in pathogenesis [22]. Further, these findings are

similar to vaccine studies of L. major utilizing MVA vaccination

[24] where IFNc/IL-10 was found to be predictive of protection.

CD8+ T cells are critical to the protection induced by
TLR1/2 (TRYP (Pam3CSK4)) modulation of DNA priming

The cytokine responses clearly changed with the mode of

vaccination; however, it was unclear what the role of specific T cell

populations might be in this process. The IFNc responses and

memory populations of both CD4 and CD8 T cells appeared to

increase with TLR1/2 activation (Figure 2). To examine the

specific contribution of effector CD8 and CD4 T cells to

protection, vaccinated mice (DNA-TRYP(Pam3CSK4)+MVA-

TRYP) were immunodepleted immediately prior to infection with

L.(V.) panamensis. As seen in Figure 4A, CD8 T cell depletion

significantly reversed protection and lesion development. Intrigu-

ingly, although lesion development was still somewhat restrained

in the CD8 T cell depleted group in comparison to the vector

control group, the parasite burdens in these two groups were

comparable (Figure 4B), indicating no control on parasite growth

occurred in the absence of CD8 T cells. The importance of CD8 T

cells to protection is consistent with the heightened in vitro

memory CD8 T cell expansion in response to antigen observed

(Figure 2) of the mice primed with DNA-TRYP(Pam3CSK4) in

comparison to mice receiving DNA-TRYP alone.

Interestingly based upon lesion development, the DNA-

TRYP(Pam3CSK4)+MVA-TRYP immunized mice depleted of

CD4 T cells are significantly resistant to infection. These data are

confirmed by parasite burden levels at the site of infection

(Figure 4B), which indicate significantly lower levels of parasites in

the vaccinated mice deleted of CD4 T cells when compared to

DNA-TRYP(Pam3CSK4)+MVA-TRYP immunized mice. Over-

all, it appears that CD8 T cell effectors in the absence of CD4 T

cells can provide significant protection against L. (V.) panamensis

infection. Furthermore, CD4 T cell effector populations do not

appear to significantly contribute to protection in the vaccinated

mice.

Figure 3. TRYP(Pam3CSK4)-MVA-TRYP protects against L(V.)
panamensis infection. A. Lesion development in the control and
groups of TRYP-immunized mice infected with 56104L (V.) panamensis.
n = 8/group For statistical significance comparison was made between
DNA-TRYP(PAM3CSK4)+MVA-TRYP immunized mice and other groups
of mice. B. Parasite burden at the site of infection and draining lymph
node were determined by limiting dilution analysis at 6 weeks after
infection. n = 4/group, * = p,0.05, ** = p,0.008. Results are represen-
tative of 2 independent experiments.
doi:10.1371/journal.pntd.0001204.g003
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Analysis of cytokine production by DLN cells of the various

groups of infected vaccinated mice indicated that the groups

of protected mice (DNA-TRYP(Pam3CSK4)+MVA-TRYP and

DNA-TRYP(Pam3CSK4)+MVA-TRYP–CD4 depleted) produ-

ced significantly lower levels of IFNc, IL-13 and IL-10 (Figure 5),

when compared to infected control mice. Mice immunized with

DNA-TRYP+MVA-TRYP and notably mice immunized with

DNA-TRYP(Pam3CSK4)+MVA-TRYP and depleted of CD8

cells had elevated levels of all three cytokines. Interestingly DNA-

TRYP(Pam3CSK4)+MVA-TRYP immunized mice depleted of

CD4 cells produced lower levels of IL-13 and IL-10 when

compared to DNA-TRYP(Pam3CSK4)+MVA-TRYP immunized

mice. However, no difference in IFNc levels was observed bet-

ween these two groups. Reduced levels of IL-10 and IL-13 have

been found to lead to control of L. (V.) panamensis infection [22].

Consequently, it appears that healing and resolution of

infection is dependent upon effector CD8 T cells; overall

activation of CD8 T cells results in lower levels of IL-13 and

IL-10 as well as IFNc produced in response to infection.

Interestingly, the depletion of CD4 T cells leads to a further

reduction of both IL-10 and IL-13, whereas no change in the

IFNc response occurs. Together, these data demonstrate the

essential role of CD8 cells in mediating protection induced by

DNA-TRYP(Pam3CSK4)+MVA-TRYP against L.(V.) panamensis

infection. Moreover, these results suggest that CD8 T cells may

perform this function through the regulation of IL-13 and IL-10

production. However, further experiments are required to

determine this point.

Discussion

The Leishmania (Viannia) subgenus is phylogenetically divergent

from other Leishmania [8,9,10]. Reflected in this is the fact that

infection by members of this subgenus generates a hyperinflam-

matory and mixed Th1/Th2 response (and high levels of IFNc)

that can fail to resolve [11,12,13,14,15]. Furthermore vaccination

against infection in the murine model has been challenging, as

approaches utilizing conserved antigens previously shown to

induce substantial protection against other Leishmania sp. have

failed to provide protection [19,21] implying that novel immuni-

zation strategies are required. Recent studies [20] indicate that

immunization with replication defective Leishmania can provide

partial protection against L. (V.) braziliensis infection; but the

protective mechanisms involved were not explored. Our results in

part are consistent with these studies, as neither DNA vaccination

alone nor heterologous prime-boost vaccination (DNA+MVA)

(using the conserved TRYP antigen) leads to significant protection

against L. (V.) panamensis infection/disease. Nonetheless, the prime-

boost modality has been shown to provide protection against

Table 1. Cytokine production of vaccinated mice 6 weeks post-infection with L.(V.) panamensis.

Groups IFNcpg/ml IL-13 pg/ml 1L-10 pg/ml Ratio IFNc/IL-13 Ratio IFNc/IL-10

Vector Control 7312642 71865.1 105766.1 10.2 6.9

DNA-TryP + DNA-TryP 5262630 37662.7 65663.8 14.0 8.0

DNA-TryP + MVA-TryP 4797628 17761.3* 38562.2* 27.2 12.4

DNA-TryP(Pam3CSK4) + MVA-TryP 4603627 15261.1*+ 16060.9*+ 30.2 28.9

Pooled DLN cells from immunized and control mice (n = 4 mice) infected with L.(V.) panamensis were stimulated in vitro with SLA for 72 hours (duplicatè) and
supernatants were analyzed for indicated cytokines by ELISA. Mean6SD. Results are representative of 2 independent experiments.
*p,0.05 DNA-TryP+DNA-TryP vs DNA-TryP+MVA-TryP or DNA-TryP(Pam)+MVA-TryP;
+p,0.05 DNA-TryP+ MVA-TryP vs DNA-TryP(Pam)+MVA-TryP.
doi:10.1371/journal.pntd.0001204.t001

Figure 4. CD8 cells contribute to TLR1/2 mediated protection.
A. Lesion size (mean6SE) progression in L.(V).panamensis infected mice
that were protectively immunized with DNA-TRYP(Pam)+MVA-TRYP and
depleted of CD4 (-CD4) or CD8 cells (-CD8) prior to infection. ND,
indicates not depleted or intact vaccinated mice. Controls include mice
immunized vector plasmid and MVA. n = 10 mice per group. * p,0.05
Vector vs. DNA-TRYP(Pam)+MVA-TRYP; + p,0.05 DNA-TRYP(-
Pam)+MVA-TRYP CD4 depleted vs. DNA-TRYP(Pam)+MVA-TRYP; ++
p,0.005 DNA-TRYP(Pam)+MVA-TRYP CD4 depleted vs. DNA-TRYP
(Pam)+MVA-TRYP; # p,0.005 Vector vs. DNA-TRYP(Pam)+MVA-TRYP
CD8 depleted. B. Parasite burden (mean6 SE) at the site of infection
was determined by limiting dilution assay at 8 weeks after infection.
(n = 4 mice per group). * p,0.05.
doi:10.1371/journal.pntd.0001204.g004
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cutaneous leishmaniasis and even the more recalcitrant visceral

leishmaniasis, when DNA vaccination alone failed [42,43]. In this

report we demonstrate that significant protection against chronic

L. (V). panamensis infection can be achieved using a heterologous

prime-boost (DNA -MVA) modality using aTLR2/1 ligand

(Pam3CSK4) as the adjuvant and a single defined antigen, TRYP.

As expected in response to heterologous prime-boost vaccina-

tion, groups of mice boosted with MVA-TRYP produced high

levels of IFNc. However mice immunized with DNA-TRYP(-

Pam3CSK4) +MVA-TRYP produced higher levels of IFNc as

well as significantly reduced levels of IL-13 and IL-10 when

compared to mice immunized with DNA-TRYP+MVA-TRYP.

This effect of Pam3CSK4 is consistent with initial experiments

using the Pam3CSK4 adjuvant for DNA vaccination alone,

thereby indicating the striking capacity of Pam3CSK4 during

priming to down-regulate IL-13 and IL-10 responses, leading to a

Th1 biased immune response. Interestingly Pam3CSK4 has been

shown to induce a mixed cytokine response (IL-12, IL-10, TNFa)

in mouse bone marrow derived dendritic cells [44]. However

evidence indicates that during allergic inflammation, that

enhanced Th1 responses are observed [45] in response to

Pam3CSK4 stimulation. Consequently, the tissue site and context

(presence of other immunomodulators) can impact the effect of an

adjuvant on the developing immune response. Within the dermal

compartment (site of DNA vaccination) skin resident DCs [46,47]

are the probable target population of intradermally delivered

DNA-TRYP and Pam3CSK4 [48] and TLR9 (bacterial DNA-

CpG)/TLR2 activation. Costimulation (TLR, NOD or TCR of

NK-T cells [32,49,50]) of dendritic, macrophage, and early

responding cells may further cooperate and selectively drive/

amplify specific responses [44,51]. DNA immunization and

activation of TLR9 results in strong IL-12 production, leading

to a predominant Th1 immune response [52]. Interestingly, both

synergy and co-operation between TLR2 and TLR9 have been

observed in response to infection [51,53,54] resulting in height-

ened Th1-like responses. Joint TLR9 and TLR2 engagement has

also been shown to result in the production of MCP-1 and

synergistic production of RANTES [55], which would lead to

increased recruitment of macrophages/monocytes, T cells, and

dendritic cells [56]. This increased cellular recruitment could

potentially lead to enhanced T cell expansion, as observed herein

for both CD4+ and CD8+ T cells. Further, TLR2 receptors are

present on T cells and therefore TLR2 activation could also

modulate the developing adaptive immune response. TLR2

activation of Tregs has been shown to mitigate (at least temporally)

their suppressive quality [57,58,59], which could lead to increased

proliferation and expansion of antigen specific T effector cells.

CD8 T cell activation has been related to both healing and

pathogenesis in leishmaniasis (reviewed in [60]). In the human

immune response to Leishmania (Viannia) infection, studies implicate

CD8 T cells in disease resolution [61,62] as well as pathology

[63,64]. The variation in the observed effects found for CD8+ T

cells may reflect the functional heterogeneity of these cells

[65,66,67]. CD8 T cells have been shown to exert a curative

role in murine models of leishmaniasis, which has been attributed

to the production of IFNc [60,68,69,70] as well as a potential role

for perforin (CTL function)[71]. Further, other mediators

produced by CD8 T cells (granzymes, chemokines, cytokines)

may also contribute to the host defense. Although murine studies

have unambiguously demonstrated that CD8 cells participate in

vaccine-induced protection against infection [32,68,72] caused by

other Leishmania species, the contributions to host defense against

Leishmania (Viannia) have not been previously determined.

While both CD4 and CD8 T cell responses (memory and IFNc)

were increased in response to vaccination using TLR1/2,

protection was largely due to the CD8 T effector cell response,

as protection was reversed in mice depleted of CD8 cells, but not

upon CD4 cell depletion. These results differ from heterologous

Figure 5. Modulation of cytokine production in TRYP(Pam)+MVA-TRYP protectively vaccinated mice depleted of CD8 or CD8 T
cells. At 8 weeks post-infection with L.(V).panamensis, the IFNc, IL-13 or IL-10 responses were determined in DLNs of non-immunized and TRYP
immunized mice (n = 4 per group). Cells from individual mice were pooled and then stimulated for 72 hours with SLA (in duplicate) and cytokine
levels determined as indicated in the Materials and Methods Section. Mean6SD. *p,0.05, ** p,0.005; -CD4, CD4 depleted; -CD8, CD8 depleted; ND –
Not Depleted.
doi:10.1371/journal.pntd.0001204.g005
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prime-boost vaccination studies utilizing NK-T activation during

DNA priming [32], where CD4 T responses appeared responsible

for anti-leishmanial response [32]. The overall reason that CD8 T

cell were the primary effectors of protection is not clear and may

be due to the antigen and/or adjuvant utilized for these studies as

well as the specific modes of action/effector mechanisms of the

CD8 T cells elicited. It is of interest that TryP has been found in

the leishmanial exosome [73,74]. Consequently, it may be that the

preferential mode of action found by CD8 T (in spite of a clear

CD4 T cell response) is biased by the release and subcellular

localization of this antigen during infection. However, further

work is required to determine this point and the potential of

exosomal antigens as CD8 vaccine candidates. Alternately, other

studies employing Pam3CSK4 as an adjuvant clearly demonstrate

its ability to enhance CD8 responses [75,76,77]. Our findings are

consistent with these observations. Long-term memory (12 weeks

after the vaccinia boost) development in immunized mice was

heightened in mice receiving Pam3CSK4, with a marked

expansion of the CD8 T cell population. Although the precise

mechanism by which Pam3CSK4 augments the CD8 T cell

response is not completely understood, Pam3CSK4 has been

shown to enhance dendritic cell cross presentation to CD8 T cells

[78]. Further, reports show that Pam3CSK4 engages TLR2 on

CD8 cells [79], prolonging their survival and increasing

proliferation that may contribute to increased frequency of

antigen-specific CD8 cells. Furthermore, TLR2 engagement on

DC subsets has been reported to lead to enhanced trafficking of

these cells to the draining lymph nodes [80,81], which would

further contribute to the development of enhanced CD8 response.

We have recently shown a role for IL-13 and IL-10 in

determining disease progression in the murine model of L.(V).pa-

namensis [22] infection. Results presented here are consistent with

this finding and further demonstrate a correlation between

parasite load and levels of these cytokines. Unexpectedly, depletion

of effector CD4 T cells did not appear to influence resistance. CD4

cells appear to be a source of IL-13 and IL-10 in the vaccinated

mice, as observed in FACS analyses and the fact that CD4 cellular

depletion results in further reduction of IL-13 and IL-10. In

contrast, CD8 T effector cell depletion reversed protection and led

to the production of higher levels of both IL-10 and IL-13.

Overall, the consequence of CD8 cell activation was to modulate

protection by limiting IL-10 and IL-13. CD8 T cells have been

shown to modulate Th2 CD4 T cell function both through direct

T-T interaction [82] or the indirect consequence of CD8

activation on other cell populations [83,84]. Similarly CD8 T cell

have been observed in the case of L. major [69] to direct increase

levels of CD4-IFNc production. Our results are consistent with the

possibility that CD8 T cells are involved in the immune

‘‘deviation’’ of CD4 T cells and that this is involved in the

development of protection against infection. However, further

work is required to determine this point. An understanding of the

mechanisms by which CD8 T cells promote host defense and

mediate protection is of obvious interest for vaccine development

against L. (Viannia).

This is the first report of successful protection against L.(V.)

panamensis using a single antigen. By utilizing a TLR2 agonist

(Pam3CSK4) in a heterologous prime boost immunization method

we have demonstrated protection against L.(V.) panamensis in a

murine model. This protection was achieved specifically through

the expansion of antigen-specific effector CD8 T cells. These

findings suggest that the modulation of TLR1/2 signaling may

dramatically improve the efficacy of DNA-based vaccine modal-

ities, especially where CD8 T cell activation is critical, thereby

contributing to effective and affordable anti parasitic vaccines.

Supporting Information

Figure S1 Adjuvant Modification of Cytokine Response
to p36 (LACK) Antigen. A) Mice (n = 3 per group) were

immunized twice intradermally at biweekly intervals with either

PBS (Control) or DNAp36 in combination with a-GalCer, CpG,

LPS, MALP-2 or Pam3CSK4. IFN-c and IL-10 production by

splenocytes from immunized mice (stimulated in vitro with

recombinant p36 three to four weeks after the last immunization)

was determined. B and C) Mice were immunized as above using

DNAp36 together with a-GalCer or/and Pam3CSK4. IFN-c, IL-

10 and IL-13 production were evaluated 3 to 4 weeks after the

final immunization. Control mice received PBS alone(n = 3 per

group). Results are representative of 2 experiments. Mean 6 SE.

The values above the bars indicate the IFN-c/IL-10 or IFN-c/IL-

13 ratio for the specific adjuvant.

(TIF)
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