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Abstract
Aims: Phagocytosis is the cellular digestion of extracellular particles, such as patho-
gens and dying cells, and is a key element in the evolution of central nervous system 
(CNS) disorders. Microglia and macrophages are the professional phagocytes of the 
CNS. By clearing toxic cellular debris and reshaping the extracellular matrix, microglia/
macrophages help pilot the brain repair and functional recovery process. However, 
CNS resident and invading immune cells can also magnify tissue damage by igniting 
runaway inflammation and phagocytosing stressed—but viable—neurons.
Discussion: Microglia/macrophages help mediate intercellular communication and 
react quickly to the “find-me” signals expressed by dead/dying neurons. The acti-
vated microglia/macrophages then migrate to the injury site to initiate the phago-
cytic process upon encountering “eat-me” signals on the surfaces of endangered 
cells. Thus, healthy cells attempt to avoid inappropriate engulfment by expressing “do 
not-eat-me” signals. Microglia/macrophages also have the capacity to phagocytose 
immune cells that invade the injured brain (e.g., neutrophils) and to regulate their pro-
inflammatory properties. During brain recovery, microglia/macrophages engulf myelin 
debris, initiate synaptogenesis and neurogenesis, and sculpt a favorable extracellular 
matrix to support network rewiring, among other favorable roles. Here, we review the 
multilayered nature of phagocytotic microglia/macrophages, including the molecular 
and cellular mechanisms that govern microglia/macrophage-induced phagocytosis in 
acute brain injury, and discuss strategies that tap into the therapeutic potential of this 
engulfment process.
Conclusion: Identification of biological targets that can temper neuroinflammation 
after brain injury without hindering the essential phagocytic functions of microglia/
macrophages will expedite better medical management of the stroke recovery stage.

K E Y W O R D S
acute brain injury, brain repair, microglia/macrophage, phagocytosis

www.wileyonlinelibrary.com/journal/cns
https://orcid.org/0000-0003-4317-5698
https://orcid.org/0000-0002-5857-6243
mailto:﻿
http://creativecommons.org/licenses/by/4.0/
mailto:chenj2@upmc.edu


1280  |    YU et al.

1  |  INTRODUC TION

Phagocytosis is an essential biological process involving the engulf-
ment of extracellular particles, such as bacteria or cell debris, into 
the phagocytic cell, where the enveloped particles undergo lyso-
somal degradation.1 Microglia/macrophages are the professional 
phagocytic cell populations of the central nervous system (CNS), 
with critical roles in shaping neurodevelopment, maintaining ho-
meostasis, and regulating pathological processes such as acute brain 
injuries and other neurological disorders.

Acute brain injuries are associated with a high risk of mortal-
ity and disability.2 In addition to the initial site of injury, waves 
of cell dysfunction/death ripple through surrounding tissues and 
interconnected circuits. The buildup of toxic cell debris initiates 
profound inflammatory responses within the brain and sends dis-
tress signals to the body to recruit peripheral immune cells to the 
site of injury, including neutrophils and blood-derived monocytes/
macrophages.3–5 A persistent and exaggerated immune response 
triggered by dead brain cells and cellular debris may trigger self-
amplifying, uncontrolled neuroinflammatory cascades and hinder 
functional recovery after stroke.6 On the contrary, effective clear-
ance of dead cells, myelin debris, and harmful cell components 
mitigates the release of cytotoxic and pro-inflammatory markers, 
a process that is essential for functional recovery following brain 
injuries.7,8 Although peripheral immune cell infiltration is a major 
contributor in the pathogenesis of secondary brain injury,9 mi-
croglia are capable of engulfing infiltrating immune cells and their 
cellular components10 to control the accumulation of peripheral in-
filtrating immune cells in the injured brain.4

Microglia/macrophage phagocytosis is the backbone of a natu-
ral compensatory response to brain injuries.6,11,12 Initially, phago-
cytosis was thought to be only beneficial but mounting evidence 
suggests that aspects of poststroke phagocytosis might also be 
detrimental.7,13–15 For example, peri-infarct stressed brain cells, 
including neurons that have the potential to recover and live, can 
also be phagocytosed by microglia/macrophages, thereby exacer-
bating neuronal loss and contributing to delayed brain atrophy and 
neurodegenerative changes.16 This detrimental aspect of phagocy-
tosis following brain injuries might be further amplified by aging, 
when overactivated phagocytosis is associated with cognitive and 
memory impairments and progressive brain atrophy.4,17 The exis-
tence of both beneficial and detrimental mechanisms illustrates 
the complexity of microglia/macrophage phagocytosis in CNS 
disease. Other factors such as sex, aging, and disease progres-
sion may further complicate the function of phagocytes in brain 
injury.18–20 Thus, understanding microglia/macrophage-associated 
phagocytosis after brain injury at the molecular and cellular levels 
may accelerate the discovery of better therapeutic strategies. In 
this review, we examine the available literature on microglial/mac-
rophage phagocytosis in acute brain injuries, with a focus on the 
underlying mechanisms and therapeutic modalities that offer hope 
for clinical translation.

2  |  MICROGLIA /MACROPHAGE 
PHAGOCY TOSIS SIGNALING IN RESPONSE 
TO CNS PATHOLOGIES

2.1  |  Signals that activate or hinder phagocytosis: 
“Find-me,” “eat-me,” and “do not-eat-me” signals

Dead or stressed neurons are known to release “find-me” injury sig-
nals, such as nucleotides, sphingosine-1-phosphate (S1P), high mobil-
ity group box 1 (HMGB1), lysophosphatidylcholine, and CX3CL1,3 
to recruit neighboring microglia and blood-derived macrophages to 
the brain injury sites. Dead/dying brain cells or cell debris has spe-
cific “eat-me” tags that attract microglia/macrophages and trigger 
an inflammatory response and the phagocytic process.6 However, 
viable neural cells express “do not-eat-me” signals to deter aberrant 
“eat-me” processes and mitigate phagocytic injury7 (Figure 1), as dis-
cussed below.

2.1.1  |  “Find-me” signals

Damaged or stressed-but-viable neurons release nucleotides, such 
as adenosine triphosphate (ATP), adenosine diphosphate (ADP), or 
uridine triphosphate (UTP), as typical “find-me” signals that guide 
microglia/macrophages to move or extend their processes toward 
the injury sites.8,21 During development, neuronally released nu-
cleotides participate in synaptic pruning by activating the P2Y12 
receptor on microglia.22 However, in the context of ischemic brain 
injury, the P2Y2 receptor for nucleotides is upregulated on micro-
glia.3 Indeed, neurons release nucleotides under both physiological 
and pathological conditions, and this response might be associated 
with microglial activation.

Chemokine CX3CL1 (fractalkine) is a strong chemoattractant 
“find-me” signal. Both neurons and synapses release CX3CL1 to 
activate the microglial CX3CR1 receptor.23 In neurological disor-
ders such as stroke and Alzheimer's disease,23,24 downregulation 
of microglial CX3CR1 signaling decreases the activation of CNS 
resident microglia and the recruitment of peripheral macrophages, 
thereby improving neurofunctional outcomes in rodent animal 
models. However, the impact of CX3CR1 is complex, because 
CX3CR1 depletion impairs microglial phagocytosis and causes syn-
aptic dysfunction in the adult hippocampus.25 Furthermore, during 
neurodevelopment, CX3CL1-CX3CR1 interactions and microglial 
phagocytosis are essential in synapse pruning; hence, disabling this 
pathway leads to insufficient or delayed phagocytosis and autism-
like behavior in mice.21

Other “find-me” signals such as sphingosine-1-phosphate (S1P) 
and lysophosphatidylcholine (LPC)3 are related to macrophage re-
cruitment after stroke, and dimerized ribosomal protein S19, en-
dothelial monocyte-activating polypeptide II, or tyrosyl rRNA 
synthetase (TyrRS) serve as broad “find-me” signals that mainly in-
duce macrophage phagocytosis in the periphery.
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2.1.2  |  “Eat-me” signals

Phosphatidylserine (PS) is a major phospholipid in the inner leaflet of 
the neuronal plasma membrane26,27 and an essential “eat-me” signal 
once flipped to the outer leaflet of endangered cells and exposed 
on their cell surface. Dead/dying cells or cell components actively 
display PS on the outer cell surface to induce microglia/macrophage 
phagocytosis.7,15 PS can also reversibly translocate to the surface 
of cells by translocases, thereby exposing the signal to surrounding 
microglia/macrophages.15 Type 4P-typease (P4-ATPase), ATP8A1 
and ATP8A2 are gatekeepers of the “eat-me” signals and prevent 
their exposure on the cell surface to avoid triggering phagocytosis.15 
Oxidative stress, DNA damage, intracellular calcium buildup, ATP 
depletion, and caspase-induced apoptotic cell changes can all cause 
irreversible translocation of PS to the cell surface and induction of 
microglial/macrophage phagocytosis.15,28,29 Although reversible PS 
exposure can occur in response to nontoxic stimuli,15 the persistent 

presence of PS on stressed-but-viable neurons28 might be associ-
ated with delayed neuronal death and long-term neurodegenera-
tive consequences in stroke.16 Thus, blockade of the steps involved 
in PS exposure might rescue endangered neurons and prevent 
neurodegeneration.30

PS is recognized by engulfment receptors on phagocytes. 
Phagocytic PS receptors either directly recognize PS or interact with 
PS through bridging proteins.31 Several receptors such as the phos-
phatidylserine receptor (PSR),32 the T-cell immunoglobulin and mucin 
(TIM) family members,33,34 Stabilin2,35 and brain angiogenesis inhibitor 
I (BAI-I),36 may directly recognize PS. Indirect PS recognition can also 
occur via bridging proteins such as milk fat globule-EGF factor 8 (MFG-
E8) and growth arrest-specific gene 6 (Gas6).37,38 These bridging pro-
teins have two binding domains that cross-link PS with its receptors on 
phagocytes. For example, MFG-E8 binds to PS on apoptotic neurons 
and engages integrin αvβ3 on microglia, resulting in microglial phago-
cytosis of apoptotic neurons. Gas6 bridges the PS on apoptotic cells 

F I G U R E  1  Find-me, Eat-me, and Do not-eat-me signals implicated in microglia/macrophage phagocytosis pathways after brain injury. 
Find-me signals are instrumental in the recognition of chemotactic modulators, such as nucleotides, CX3CL1, and other molecular signals, 
including S1P/LPC and HMGB1 released by dying/dead brain cells. Find-me signals are recognized by microglia/macrophage receptors 
P2Y12, TLR, CX3CR1, and S1PR, resulting in chemotaxis of microglia/macrophages to injured brain areas. Eat-me signals are released 
or expressed by dead/dying brain cells (mostly neurons). When phosphatidylserine (PS) is flipped and exposed on the outer layer of the 
cell membrane, it is recognized by multiple microglia/macrophage receptors that initiate the phagocytosis process. Do not-eat-me signal 
pathways inhibit phagocytosis and involve sialylated glycoproteins and lipids. CD47 interacts with microglial receptor signal-regulatory 
protein alpha (SIRPα) to inhibit phagocytosis
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to the Axl/Mer family of tyrosine kinases (Mer, Axl, and Tyro3) on mi-
croglia, thereby stimulating microglial clearance of apoptotic neurons.

It remains uncertain whether PS exposure alone is suffi-
cient to induce phagocytosis. Some studies suggest that PS by 
itself can elicit phagocytic responses in macrophages; however, 
others show that not all cells with exposed PS are taken up by 
phagocytes.39,40 Thus, a second signal may work synergistically 
with PS.41 Alternatively, PS may have to be modified to induce 
phagocytosis.42

Cell surface calreticulin is an alternative “eat-me” signal and 
interacts with low-density lipoprotein receptor-related protein 1 
(LRP1) on microglia/macrophages to initiate the phagocytic pro-
cess.15,43 The calreticulin/LRP phagocytic signaling pathway is highly 
associated with the elimination of stressed-but-viable neurons and 
long-term neuronal loss in stroke.21,44 In Aβ-induced phagocytosis 
of live neurons in vitro, blocking calreticulin from the neuron surface 
or blocking LRP1 on microglia/macrophages successfully inhibited 
the death of live neurons by phagocytosis.44 In healthy brain cells, 
calreticulin is present predominantly in the endoplasmic reticulum, 
but it is translocated to the cell surface in response to endoplas-
mic reticulum stress, apoptosis, or pro-inflammatory signaling.15,17 
Calreticulin also serves as an opsonin that interacts with galactose 
on the surface of tumor cells and facilitates macrophage phagocyto-
sis.45 However, free calreticulin can also bind to microglia and block 
microglial phagocytosis of neurons,44 offering a potential therapeu-
tic strategy when calreticulin/LRP is overactivated and massive neu-
ronal death ensues.

Complement, galectin-3, and apolipoprotein E are essential op-
sonins that enhance phagocytosis by binding cell components or 
cells that are destined for engulfment. The complement compo-
nent C1q strengthens signal recognition by binding to cell surface 
PS, calreticulin, or a desialylated cell surface, and promotes microg-
lial phagocytosis through the production of C3b.21,46 C1q can also 
directly bind to the functional phagocytic receptor complement 
receptor 3 (CR3) on the microglial cell surface, and induce phagocy-
tosis.47 In the CNS, complement proteins deposit on synapses and 
promote synaptic pruning or elimination during neurodevelopment 
or neurological disease.48,49 The key step in complement-opsonin 
activation is the conversion of C3 to C3a and C3b, where C3a re-
cruits and activates microglia, whereas C3b opsonizes synapses and 
neurons to be captured by microglial CR3.15,21,47,50

Galectin-3 connects galactose residues found on the cell surface 
or cell debris with MER receptor tyrosine kinase (MerTK) on phago-
cytes.15 After ischemic brain injury, galectin-3 is pivotal in mediating 
microglial activation and proliferation; galectin-3 knockout signifi-
cantly increases apoptotic neuron numbers by impairing microglial 
phagocytic ability.51 However, in traumatic brain injury (TBI), the 
release of galectin-3 is associated with greater neuronal loss and 
worse neurological function.52

In human cells, apoliprotein E (ApoE) was recently found to in-
teract with the microglial TREM2 receptor.53 Brain cells that bind to 
ApoE promote microglial migration and enhance phagocytosis by ac-
tivating the TREM2 receptor on microglia.53,54 In neurodevelopment, 

astrocytes express ApoE and regulate its phagocytic ability via inter-
action with ApoE, while participating in homeostatic synapse prun-
ing, clearance, and turnover.55

Do not-eat-me signals
Neuronal transmembrane protein CD47 and sialic acid are recog-
nized “do not-eat-me” signals that counterbalance “eat-me” sig-
nals and temper phagocytosis-induced neuronal injury.15 CD47 
interacts with signal-regulatory protein alpha (SIRPα) on microglia/
macrophages and inhibits phagocytosis. Apart from efferocytosis 
of apoptotic cells, the CD47-SIRPα axis was recently found to par-
ticipate in negative regulation of local membrane excision by mi-
croglia during developmental synaptic pruning.56,57 Synapses also 
express CD47 and escape microglial phagocytosis during develop-
ment. Expression of CD47 on myelin debris may hinder its clear-
ance and contribute to Wallerian degeneration.58 In hemorrhagic 
stroke, downregulation of CD47 expression boosts the number of 
phagocytic microglia/macrophages, enhances erythrocyte phago-
cytosis, and fosters the resolution of hematomas and other blood 
components.59–63 However, activation of CD47 may influence brain 
injury and recovery through other mechanisms. In ischemic stroke, 
the CD47 signaling pathway may contribute to neutrophil extravasa-
tion into the brain parenchyma and amplify neuroinflammation.64,65 
After traumatic brain injury, CD47 is thought to modulate trans-
endothelial migration of neutrophils and cerebrovascular remod-
eling at late injury stages.64,66 The pleiotropic functions of CD47 in 
different brain cell types presents an opportunity to modulate spa-
tially distinct aspects of inflammation by targeting a single molecule.

The cell surface of healthy neurons has sialic acid residues in-
tegrated into glycoproteins and glycolipids. Sialylation of the cell 
surface blocks phagocytosis by interacting with sialic acid-binding 
immunoglobulin-like lectins (SIGLECs) on the microglial cell sur-
face17 and inhibiting the binding of certain opsonins, C1q, C3b, and 
galectins,67 whereas desialylated glycoprotein on neurons amplifies 
the “eat-me” signal and promotes phagocytosis.

Other “do not-eat-me” signals include fractalkine, which is usu-
ally expressed by healthy brain cells. Conversely, stressed or dam-
aged cells may lose fractalkine function and encourage inflammatory 
phagocytosis by microglia.68

2.2  |  Microglia/macrophage receptors in the 
phagocytosis pathway

Specific microglia/macrophage receptors are engaged in different 
phagocytic processes.15,69 After brain injuries, removal of dead/
dying or stressed-but-viable neurons requires the release of Milk Fat 
Globule Factor-E8 (MFG-E8) from microglia/macrophages. MFG-E8 
then recognizes phosphatidylserine “eat-me” signals on neurons.15,70 
Both MerTK and MEF-E8 are transiently upregulated following 
transient brain ischemia.16 Vitronectin receptors (VNR) are also up-
regulated on the microglial surface in brain disorders and bind phos-
phatidylserine on the neuronal surface.70
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As microglia/macrophages engulf invading neutrophils or their 
debris, they are a major determinant of neutrophil accumulation 
after ischemic stroke. Microglial phagocytosis of invading neutro-
phils requires VNR and lectins.5 The physiological removal or remod-
eling of synapses and neurites during development or neuroplastic 
changes usually requires C1q, C3b and CR3, whereas clearance of 
neuronal precursors involves oxidant-associated caspase activation, 
CR3 and DAP12.15,71,72 A comprehensive understanding of these 
distinct receptors and phagocytic pathways is especially important 
under conditions of brain injury.

2.2.1  |  Toll-like receptors (TLRs)

Toll-like receptors (TLRs) belong to the family of pattern recognition 
receptors (PRRs), which recognize pathogen-associated molecular pat-
terns (PAMPs) to activate the innate immune response.73 Microglia/
macrophage TLRs are also strong inflammatory receptors and induce 
production of pro-inflammatory cytokines in the stroke brain.74 The 
observation that inflammatory receptors on microglia/macrophage 
initiate phagocytosis suggests that neuroinflammation and phago-
cytosis can interact and even join forces in various disease phases 
after injury.15,16,30 TLRs play a fundamental role in innate immune 
responses and are exclusively expressed on antigen presenting cells 
(APCs).75 Activation of TLR4 accelerates the clearance of myelin and 
premature engulfment of healthy neurons in Aβ-induced phagocyto-
sis.76 In neuroinflammation, stimulation of microglia with TLR ligands 
in vitro blunts their ability to distinguish between healthy and dead/
dying neurons, thus promoting inappropriate cell phagocytosis.15,44 
TLR-activated microglia may release oxidants that cause target cells 
to expose PS as an “eat-me” signal and upregulation of MFG-E8, po-
tentially magnifying phagocytic injury.7,15,77 Given that microglial TLR 
affects inflammation and phagocytosis, a better understanding of the 
roles of TLR in the brain is warranted, as targeting or modulating its 
effects may be beneficial in models of neurodegenerative disease.78

2.2.2  |  Scavenger receptors

Scavenger receptors (SRs) are involved in the uptake of negatively 
charged macromolecules and low-density lipoprotein (LDL).79 
Microglial SRs include macrophage receptor with collagenous 
structure (MARCO), SR-B3 (CD36), and macrosialin (CD68). The 
activation of MARCO triggers reorganization of the microglial cell 
cytoskeleton, which is critical for phagocytosis.80 Increased expres-
sion of MARCO in mouse cortex following ischemic stroke is con-
sistent with microglial clearance of debris and degenerating cells 
in the stroke brain.81 In addition, stimulation of CD36 signaling can 
promote microglial phagocytic capacity and is an important mecha-
nism underlying blood clearance after intracerebral hemorrhage.82 
Carbon monoxide, a potentially neuroprotective agent at low con-
centrations, was found to control microglial erythrophagocytosis 
by regulating cell surface expression of CD36 and also reduced the 

severity of hemorrhagic injury.83 Pro-inflammatory cytokines such 
as TNF-α downregulate microglial CD36 expression, leading to im-
pairments in microglial engulfment of the hematoma following in-
tracerebral hemorrhage.84

Oxidatively modified lipoproteins are neurotoxic and a rapid 
clearance of oxidized lipoproteins is therefore vital for proper CNS 
function.85 Oxidized lipoproteins in the periphery are effectively re-
moved from the circulation by SR-expressing liver cells; however, the 
mechanism underlying the clearance of modified lipoproteins in the 
stroke brain remains elusive.

In addition to the aforementioned receptors, other receptors may 
also regulate microglial phagocytosis. For example, CD22 (Siglec 2) 
is a negative regulator of phagocytosis and its expression is upregu-
lated on aged microglia.86,87 CD22 also mediates the antiphagocytic 
effect of α2,6-linked sialic acid, and inhibition of CD22 promotes 
clearance of myelin debris, amyloid-β oligomers, and α-synuclein fi-
brils in vivo.86,88 Long-term CNS delivery of an antibody that blocks 
CD22 function reprograms microglia toward a homeostatic tran-
scriptional state and improves cognitive function in aged mice.86

2.2.3  |  Triggering receptor expressed on myeloid 
cells 2 (TREM2)

TREM2 is primarily expressed on myeloid cells and belongs to the 
lectin-like immunoglobulin superfamily.89 TREM2 plays a critical 
role in myelin processing by binding lipids that are components of 
the myelin sheath (e.g., sulfatides and PS) and signaling through its 
co-receptor DAP12 to activate a transcriptional profile.90,91 TREM2 
knockout suppresses microglia/macrophage numbers in ischemic 
brain injury and impairs phagocytic capacity by decreasing expres-
sion of CD68 and interactions with apoptotic cells.89,92 TREM2 also 
regulates microglial cell activation in response to demyelination.92–94 
TREM2 deficiency causes impaired clearance of myelin debris and 
axonal dysfunction in both young and aging mice.89 TREM2 defi-
ciency also exacerbates ischemic damage and worsens neurological 
recovery in ischemic stroke models.95 In intracerebral hemorrhage, 
TREM2 activation attenuates neuroinflammation and neuronal ap-
optosis by activating PI3K/Akt.96 Taken together, microglial TREM2 
may play a neuroprotective role in stroke and is a promising thera-
peutic target for the treatment of acute brain injuries.97,98

2.2.4  |  Purinergic receptors

Following brain damage, injured neurons release uridine diphos-
phate (UDP), which binds to and activates microglia/macrophage 
P2Y6 receptors and induces formation of the phagocytic cup.15,99 
This signaling pathway is important for debris clearance and func-
tional recovery after ischemic stroke.100 Inhibition of the P2Y6/UDP 
complex decreases microglial phagocytosis and protects the brain 
against ischemic stroke and other CNS diseases,16,100–102 perhaps 
by mitigating production of inflammatory cytokines such as IL-1β, 
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TNF-α, and IL-6.100 P2Y6R-mediated phagocytosis may be a thera-
peutic target for ischemic stroke at the acute injury stage. However, 
further studies are warranted to investigate the role of P2Y6R in 
both the acute and chronic stages of stroke.

2.2.5  |  Phosphatidylserine receptor

Asymmetric distribution of phospholipids across the plasma mem-
brane is a unique characteristic of eukaryotic cells.103 As discussed 
above, phosphatidylserine is on the inner leaflet of the plasma mem-
brane under physiological conditions, but it is flipped to the cell surface 
before phagocytosis under apoptotic conditions.27 The recognition of 
phosphatidylserine on apoptotic cells and the subsequent phagocyto-
sis of apoptotic cells by microglia are mediated by a phosphatidylser-
ine receptor (PSR).104 Microglial PSRs include TIM1, TIM4, BAI1, and 
TAM receptor tyrosine kinases (RTKs), Axl and Mer (encoded by Mertk 
gene).105 PSR activation enhances microglial phagocytosis and modu-
lates microglial activation toward an antiinflammatory phenotype.104 
MerTK or MFG-E8, both of which mediate PS-recognition, are upregu-
lated by microglia after brain ischemia and enhance delayed neuronal 
death.16 Blocking this pathway promotes brain recovery by mitigat-
ing delayed neuronal loss and is associated with improved cognitive 
function.7,15 The TAM system is required for microglial recognition, 
response, and phagocytosis of Aβ plaques; TAM-mediated microglial 
phagocytosis promotes the formation of dense-core plaques.106

Phagocytosis of hippocampal axons is a major contributor to de-
mentia progression and appears to be associated with an increased 

expression of the PS receptor BAI1 on microglia and PS exposure on 
hippocampal axons.107 Post-stroke neuroplastic remodeling rewires 
neuronal connections, which is critical for recovery.108 Phagocytic 
engulfment of PS-exposing cells can suppress pro-inflammatory 
signaling but also cause neuronal death.16 Thus, aberrant microg-
lial phagocytosis of neuronal components can occur under various 
pathological conditions, and successful modulation of these pro-
cesses may promote the repair of injured brain tissues.

2.3  |  Transcription factors that modulate microglia/
macrophage phagocytosis

After “eat-me” signals are recognized by phagocytic receptors on mi-
croglia/macrophages, actin polymerization is triggered and forms a 
phagocytic cup prior to the final phagocytotic process.7 Once there 
is closure of the phagocytic cup, the formed phagosome undergoes 
a process of maturation with endosomes and lysosomes before de-
grading the engulfed target.109 Regulation of this process may be 
another therapeutic target in brain disorders (Figure 2).

2.3.1  |  Signal transducer and activator transcription 
6 (STAT6)

Signal transducer and activator transcription 6 (STAT6) belongs to 
the Signal Transducer and Activator of Transcription family of pro-
teins, which is principally activated by two cytokines, interleukin-4 

F I G U R E  2  Microglia/macrophage 
transcription pathways that modulate 
phagocytosis following brain injuries. 
STAT6 signaling pathways might be 
modulated by IL-4/IL-13 or IL-33, thereby 
modifying the phagocytic ability of 
microglia/macrophages. The STAT6 
pathway also interacts with PPARγ 
and enhances microglia/macrophage 
phagocytosis in ischemic stroke. PPARγ, 
Nrf2, and HIF-1α/β signaling induce 
expression of CD36 on the cell surface 
of microglia/macrophages, while HIF-
1α/β signaling may increase cell surface 
presentation of MFG-E8 and magnify 
the phagocytic capability of microglia/
macrophages following stroke
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(IL-4) and interleukin-13 (IL-13).110 STAT6 has multiple functions in 
lymphocytes such as T cells, B cells, and myeloid cells.111 STAT6 is 
also a key enhancer of erythrocyte engulfment after intracerebral 
hemorrhage, and the IL-4/STAT6 axis promotes long-term recovery 
in models of ICH.112 IL-1 receptor-like 1 activation is likely the key 
downstream step in IL-4/STAT6-conferred hematoma clearance. 
Accordingly, intranasal IL-4 treatment or other STAT6 activators may 
be clinically feasible therapeutics for ICH.112 In ischemic stroke mod-
els, the STAT6/arginase1 (STAT6/Arg1) pathway is engaged in phago-
cytic clearance of dead/dying cells by both microglia and infiltrating 
macrophages, and upregulation of STAT6/Arg1 signaling ameliorates 
brain infarction and enhances long-term neurofunctional recovery.6 
The expression of STAT6 and the activity of its related signaling 
are increased after both ischemic and hemorrhagic strokes and are 
mechanistically linked to microglial/macrophage phagocytosis and 
superior neurofunctional outcomes. Treatment options targeting 
phagocytic STAT6 may therefore alleviate neurofunctional deficits 
associated with brain injuries. In particular, IL-4-enhanced microglia/
macrophage phagocytosis may have good translational potential, 
given that IL-4 has shown excellent safety profiles in multiple phase 
II clinical trials.113

2.3.2  |  Peroxisome proliferator-activated receptor-γ 
(PPARγ)

Peroxisome proliferator-activated receptor-γ (PPARγ) has multiple 
functional roles in health and disease, such as regulating fatty acid 
synthesis, glucose metabolism, and adipocyte differentiation.114 
PPARγ induces monocyte differentiation into distinct macrophages 
with more efficient phagocytic capacities and promotes the an-
tiinflammatory response.114,115 In neurological disorders, PPARγ 
enhances microglia/macrophage-afforded elimination of Aβ and de-
creases oxidative stress in preclinical Alzheimer's disease.116 PPARγ 
activation increases phagocytic CD36 expression and promotes the 
clearance of blood deposits by microglia/macrophages, thereby im-
proving neurofunctional recovery in animal models of ICH.115,117 In 
animal models of ischemic stroke, PPARγ activation with rosiglita-
zone treatment increases phagocytic CD36 expression in microglia 
and enhances the clearance of invading neutrophils.118

2.3.3  |  Nuclear factor-erythroid 2 p45-related 
factor 2

The transcription factor nuclear factor erythroid 2-related factor 
(Nrf2) is a regulator of cytoprotective antioxidant and antiinflam-
matory signaling pathways.119 The Nrf2 agonist sulforaphane up-
regulates the scavenger receptor CD36 and promotes phagocytosis 
of red blood cells (RBCs) by microglia after ICH.119 As microglia are 
the primary phagocytic effector cells responsible for hematoma 
resolution after ICH, effective clearance of RBCs and RBC-derived 
toxins represents a promising therapeutic option.112 Treatment 

with 2-cyano-3, 12-dioxooleana-1, 9-dien-28-oic acid (CDDO)-
ethylamide (CDDO-EA), a novel Nrf2 activator, can confer neuro-
protection against ischemic injury by augmenting HO-1 expression 
and microglial polarization toward the M2 phenotype in a murine 
stroke model.120

2.3.4  |  Hypoxia-inducible factor-1α

Hypoxia-inducible factor (HIF) is a heterodimer composed of 
oxygen-sensitive α (HIF-α) and oxygen-insensitive β subunits. Under 
hypoxic conditions, instead of being hydroxylated, HIF-α inter-
acts with HIF-1β in the cytoplasm and then translocates into the 
nucleus, where it binds to hypoxia-responsive elements (HREs) of 
HIF-targeting genes.121 HIF-1α facilitates microglial phagocytosis 
by upregulating expression of CD36 and/or MFG-E8, both of which 
contain HREs and promote stroke recovery during the acute stage.122 
HIF-1α also engages in the metabolic regulation of microglia.123 HIF 
increases glycolytic enzymes involved in energy metabolism and bal-
ances energy supply and demand.124 The mTOR-HIF-1α axis is also 
implicated in microglial metabolic reprogramming in AD, resulting in 
diminishment of microglial phagocytosis of Aβ.125 Further investiga-
tion of HIF-1α is warranted to assess the beneficial aspects of micro-
glial metabolic regulation by HIF-1α in brain disorders.

3  |  MICROGLIA /MACROPHAGE 
PHAGOCY TOSIS IN DEFENSE AGAINST 
BR AIN INJURIES

3.1  |  Microglial phenotype after phagocytosis

Microglia play multifaceted roles in the pathogenesis of secondary 
brain injury at both acute and chronic stages.126 Together with re-
cruited macrophages, microglia are the primary triggers of neuro-
inflammation in the CNS,31 which can be activated within minutes 
after stroke.127 Microglial proliferation reaches a peak at 48–72 h 
after stroke and can last for several weeks.128 Microglia are mainly 
detected in the area of ischemic core and then extend to the peri-
infarct region over time.129 Microglia assume distinct (sometimes 
polarized) phenotypes as an important warmup process before they 
join the battle, including transitioning between pro-inflammatory 
and antiinflammatory profiles.130 Signaling pathways such as IFN-γ 
and STAT1 promote a phenotype designated as “M1,” which is as-
sociated with secretion of pro-inflammatory cytokines such as TNF-
α, IL-1β, and IL-12131,132 to present antigens and kill pathogens.133 
Conversely, IL-4, IL-10, or IL-13 can mediate “M2” polarization and 
the secretion of neuroprotective factors, such as GDNF, BDNF, IL-
10, and TGF-β134,135 to facilitate tissue regeneration after injury.136 
Both M1 and M2 microglia/macrophages express phagocytic recep-
tors, but the M2 phenotype is associated with better phagocytic 
abilities and dead neuron clearance than the M1 phenotype.137 
Phagocytosis mediated by the M1 phenotype may encourage 
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inappropriate phagocytosis of viable neurons,15 while phagocytosis 
mediated by the M2 phenotype may be neuroprotective via antioxi-
dative functions.

3.2  |  Does phagocytosis promote or hinder CNS 
function?

In the acute and subacute stages following brain injury, microglia/
macrophages may exacerbate tissue damage by releasing pro-
inflammatory cytokines, and yet, these versatile cells also assist in 
tissue repair and vascular remodeling.138 Bulk RNA sequencing data 
suggest that macrophages in the mouse brain are subject to repro-
gramming after experimental stroke and transform into a phenotype 
with enhanced efferocytotic activity.3,139 Resident microglia are re-
sponsible for more phagocytic activity after stroke compared with 
hematogenous macrophages, but both cell types can contribute to 
debris clearance.140

One important phagocytic function for microglia is the engulf-
ment of apoptotic cells and debris from broken myelin, which pre-
vents the release of cytotoxic intracellular contents.141 Similarly, 
microglia eliminate neurotoxic blood products by phagocytosing 
and processing extravasated erythrocytes in ICH, preventing their 
lysis and the ensuing neurotoxicity.142 The infiltration of other 
myeloid cells such as neutrophils contributes to pro-inflammatory 
neuronal damage at the acute phase of stroke.143 Microglia also 
have the power to remove infiltrating neutrophils via phagocy-
tosis, thereby mitigating neutrophil-mediated neurovascular de-
struction after brain injury.10,144 Notably, neutrophils can escape 
from microglial engulfment via plasminogen activator inhibitor 
type 1 (PAI1)-dependent downregulation of vitronectin receptor 
(VNR) after brain injury.145 On the contrary, microglia also directly 
engulf endothelial cells and may facilitate disintegration of blood 
vessels and breakdown of the blood brain barrier (BBB), which 
would accelerate further infiltration of circulating immune cells 
into brain parenchyma.146 After ischemia, neurons expose PS on 
their outer plasma membrane via the calcium-activated phosphati-
dylserine scramblase TMEM16F. This process may allow microglia 
to phagocytose stressed (but still viable) neurons in the penum-
bra and exacerbate functional deficits after ischemia and reper-
fusion.28 On the contrary, the impact of microglial phagocytotic 
actions toward live cells upon long-term stroke outcomes remains 
unknown, and the clearance of stressed-but-viable cells may or 
may not facilitate long-term rewiring.

In the chronic stages of brain injury, microglia/macrophages have 
a multipronged impact on neurogenesis, angiogenesis, and neuro-
plasticity in brain tissues.147,148 Microglia may modulate neuronal 
and synaptic functions after stroke by stimulating the proliferation 
of neural progenitor cells (NPCs).149 Indeed, neurogenesis is accel-
erated after brain damage.150 Microglia in the ipsilateral subven-
tricular zone (SVZ) promote neurogenesis through upregulation of 
TGF-α,151 while those in the peri-infarct areas exert the opposite 
effects. In the ischemic penumbra, perivascular microglia promote 

blood vessel disintegration via upregulation of CD68 expression146 
but in the contralateral nonischemic hemisphere, microglia release 
enhance angiogenesis via VEGF.152 Some of the synapses within the 
ischemic areas display enhanced turnover rates after contacting mi-
croglia, suggesting that microglia are involved in synaptic pruning 
after stroke.153

Excessive phagocytosis of myelin sheaths can accelerate de-
myelination with detrimental consequences. Microglia selectively 
phagocytose myelin sheaths to sculpt myelination in homeostatic 
conditions,154 but they can also cause myelin damage by excessively 
engulfing myelin sheaths 14 days after stroke.14 On the contrary, 
when microglia/macrophages internalize cholesterol-rich myelin 
debris, they can then synthesize sterols to reinforce remyelination 
by oligodendrocytes in multiple sclerosis (MS).155 Whether or not 
similar mechanisms exist in post-stroke remodeling remains to be 
investigated.

In summary, microglia/macrophages play dynamic roles in brain 
injuries. They engulf dead/dying neurons and neuronal debris to re-
duce inflammation but may also phagocytose injured yet salvageable 
neurons in the ischemic penumbra. Although both brain resident mi-
croglia and infiltrating macrophages are involved in phagocytic ac-
tivities following acute brain injury, most studies do not distinguish 
these two cell populations. However, microglia and macrophages 
may exhibit distinctive characteristics after brain damage.112 A thor-
ough understanding of the molecular and cellular mechanisms un-
derlying the regulation of microglia/macrophage phagocytosis after 
brain injury and the causal link between the temporospatial charac-
teristics of phagocytosis and disease progression/recovery is war-
ranted. The latter information may be leveraged in novel therapeutic 
strategies to promote the beneficial effects of phagocytosis while 
avoiding its detrimental effects.

4  |  MICROGLIA /MACROPHAGES TOIL IN 
SUPPORT OF BR AIN REPAIR

The brain is a lipid-rich organ. A large proportion of lipid is found 
within the myelin sheath.156 Lipid uptake or phagocytosis by micro-
glia/macrophages clears the lipidic myelin debris after brain injury. 
Subsequent lipid metabolism by microglia/macrophage supports 
axon regeneration, neurogenesis, and rewiring of the neuronal 
network. Microglia directly interact with synapses during develop-
ment and under disease conditions. Furthermore, they help to clear 
disorganized synapse structures, enhance synaptic pruning, and 
create a favorable extracellular matrix environment for restoration 
of the anatomical structure and physiological function of the brain 
after injury.157

4.1  |  Fat processing after myelin phagocytosis

Persistent demyelination following brain injury impairs neurofunc-
tional recovery. A successful remyelination process following brain 
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injury involves the clearance of myelin debris, the recycling of lipids by 
microglia and macrophages, and the regeneration of oligodendrocytes, 
all of which rebuilds the myelin sheath and rewires functional neu-
ronal circuits.155,156 A recent single-cell RNA sequencing study sug-
gests that microglia/macrophages upregulate genes coding for ApoE 
and Lpl, as well as other phagocytic signature genes associated with 
lipid clearance and metabolism and extracellular matrix reshaping.156 
Because the CNS cannot use lipids from non-brain sources, microglia/
macrophage-afforded recycling of lipid debris from broken myelin is of 
great importance in neuroplastic recovery after brain injury. A timely 
activation of the pro-inflammatory program in microglia/macrophages 
appears to be required for myelin clearance, oligodendrogenesis, and 
remyelination.158 Microglia/macrophages that actively participate in 
myelin repair (myelin clearance and remyelination) exhibit increased 
lipid droplet accumulation and pro-inflammatory characteristics, in-
cluding increased TREM2 expression.93,159 Microglia/macrophages ap-
pear to facilitate myelin repair through sequential actions involving the 
engulfment of myelin debris and synthesis and production of desmos-
terol, the precursor of cholesterol.155 Thus, pharmacological manipu-
lations that enhance myelin repair by regulating lipid metabolism in 
microglia/macrophages may have clinical potential against brain injury.

4.2  |  Synaptic pruning and remodeling

Synaptic pruning and remodeling are pivotal in neuroplastic recovery 
after injury. During neural development, microglia help shape the neu-
ral network by phagocytosing excess synapses, dendrites, and axons, 
and refining the neural circuitry. Microglia also regulate myelination 
during developmental myelin sheath formation, contributing to neu-
ral circuit refinement and adaptation.160 Synaptic pruning and remod-
eling are activated during the recovery phase following brain injuries. 
The successful rewiring of surviving neural networks and the recruit-
ment of functional synapses after injury are positively correlated with 
neurofunctional recovery.108 Several mechanisms are believed to 
underlie regulation of synaptic pruning and remodeling by microglia/
macrophages, such as the complement opsonin C3 and CR3.17 Finally, 
microglia support synaptogenesis and pruning after brain injury by reg-
ulating the extracellular matrix. Upon activation by the cytokine IL-33 
following brain injury, microglia upregulate expression of extracellular 
matrix proteases that promote turnover of pathological extracellular 
matrix proteins to create a more favorable microenvironment for syn-
apse plasticity and neuronal network rewiring.161

5  |  SUMMARY

In this review, we have summarized the molecular mechanisms that 
are engaged during microglia/macrophage phagocytosis after brain 
injury and their potential roles in functional outcomes. We have also 
described phagocytic pathways that play both detrimental and ben-
eficial roles in brain injury and recovery. However, there are impor-
tant knowledge gaps in our understanding of the role of microglia/

macrophage phagocytosis in acute brain injury. First, most studies 
on microglia/macrophage phagocytosis do not distinguish between 
microglia and macrophages. CNS resident microglia and infiltrating 
bone marrow-derived macrophages may display distinctive phago-
cytotic profiles under different brain injury conditions. For example, 
infiltrating bone marrow-derived macrophages appear to dominate 
over microglia in the phagocytosis of red blood cells and hematoma 
resolution after ICH.112,162 A similar trend has been reported in ani-
mal models of ischemic stroke,163 where resident microglia might 
themselves be susceptible to an ischemic insult, thus impairing their 
phagocytic capabilities, while peripheral macrophages could be fully 
activated by damage signals from the brain. A better understanding 
of the diverse roles of CNS resident microglia and peripherally origi-
nating macrophages in phagocytosis may have important implica-
tions in fine-tuning novel therapeutic strategies against brain injuries.

Second, border-associated macrophages (BAMs) residing in the 
dura mater, subdural meninges, and choroid plexus represent an-
other myeloid cell population with unique transcriptomes, cellular 
compositions, and phagocytic abilities compared with microglia and 
bone marrow-derived macrophages.3,164 Following stroke, both 
BAMs and bone marrow-derived macrophages are recruited to the 
brain lesion site. Post-stroke BAMs are more similar to microglia 
than bone-derived macrophages in multiple aspects, including gene 
expression.165 However, in AD, a downregulation of phagocytosis-
related genes is observed in BAMs compared with microglia.164 
Furthermore, a non-negligible proportion of BAMs can be replaced 
by infiltrating monocyte/macrophages during brain injury, after 
BAMs have infiltrated the ischemic brain parenchyma.166

Third, most studies on ischemic or hemorrhagic stroke or on 
traumatic brain injury have used rodent models. However, there 
exist substantial differences in rodent versus human microglial bi-
ology. A recent single-cell RNA sequencing study shows that non-
diseased human brain microglia express elevated levels of CCL2, 
CCL4, EGR2, and EGR3, suggesting that human microglia may have 
a chronic pro-inflammatory baseline compared with rodent mi-
croglia.167 TGF-β1 is an important cytokine expressed in mouse mi-
croglia but less is known about its function in human microglia.168 
Furthermore, mouse microglia are robustly activated via TLR4 upon 
lipopolysaccharide stimulation, whereas human brain microglia are 
less responsive to TLR4 ligand binding.167

Fourth, aging and sex differences add on extra layers of complex-
ity to microglia/macrophage phagocytosis in brain injuries, although 
these topics are under active investigation.139,169 In aged individuals, 
the expression of phagocytosis receptors is altered,170 and phago-
cytic clearance of cell debris by microglia is impaired due to an over-
load of misfolded proteins, inadequate responses to stimuli such as 
systemic inflammation, and microglial overactivation in secondary 
brain injury.20,171,172 Sex differences are also a major but understud-
ied factor impacting brain function and disease profiles. Male and 
female rodents are known to display distinct microglia distributions, 
motility, and functional activities at baseline and under disease con-
ditions.20 Thus, further investigations of the impact of aging and sex 
differences on microglia/macrophage phagocytosis are warranted.
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Fifth, the majority of stroke patients have at least one comorbid-
ity, most of which are also independent risk factors for stroke.173,174 
Aging is a robust disease modifier that worsens stroke recovery.115 
Aside from age-related pathologies, almost all types of comorbid-
ities, including hypertension and diabetes, are associated with 
chronic inflammation, microvascular dysfunction, metabolic disor-
ders, and microglia/macrophage deregulation.25,77,158,175 Mounting 
evidence demonstrates that aging and stroke comorbidities exert a 
significant impact on the phagocytic actions of microglia and mac-
rophages. For example, diabetic conditions and resulting cerebral 
microbleeds encourage the infiltration and aggregation of phago-
cytic, galectin 3-expressing macrophages from blood, to assist in 
the clearance of dysfunctional micro-vessels.176 Type 2 diabetes is 
also a potent trigger of enhanced microglia/macrophage prolifera-
tion and shifts microglia/macrophages toward pro-inflammatory 
phenotypes associated with unfavorable long-term neurofunctional 
outcomes.177,178 In addition, macrophages are key arbitrators in the 
pathophysiology of hypertension.179 Macrophages display abnormal 
activation and phenotype switching in hypertension; thus, further 
study is warranted on the phagocytic activities of macrophages in 
brain injury under conditions of preexisting hypertension.180–182

In conclusion, a better mechanistic understanding of phagocyto-
sis may help us selectively target and manipulate microglia/macro-
phage function and hasten the safe and effective treatment of brain 
disorders in the clinic.
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