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Abstract

Invariant natural killer T (iNKT) cells play important roles in bridging innate and adaptive immunity via rapidly
producing a variety of cytokines. A small subset of iNKT cells produces IL-17 and is generated in the thymus during
iNKT-cell ontogeny. The mechanisms that control the development of these IL-17-producing iNKT-17 cells (iNKT-17)
are still not well defined. Diacylglycerol kinase ζ (DGKζ) belongs to a family of enzymes that catalyze the
phosphorylation and conversion of diacylglycerol to phosphatidic acid, two important second messengers involved in
signaling from numerous receptors. We report here that DGKζ plays an important role in iNKT-17 development. A
deficiency of DGKζ in mice causes a significant reduction of iNKT-17 cells, which is correlated with decreased RORγt
and IL-23 receptor expression. Interestingly, iNKT-17 defects caused by DGKζ deficiency can be corrected in
chimeric mice reconstituted with mixed wild-type and DGKζ-deficient bone marrow cells. Taken together, our data
identify DGKζ as an important regulator of iNKT-17 development through iNKT-cell extrinsic mechanisms.
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Introduction

Invariant natural killer T (iNKT) cells represent a unique T-
cell lineage with the ability to bridge innate and adaptive
immune responses [1-4]. iNKT cells express the invariant
Vα14-Jα18 TCR (iVα14TCR) in mice and the Vα24-Jα18 TCR
in humans, with limited TCRVβ usages. iNKT cells are
positively selected in the thymus after the engagement of the
iVα14TCR with glycolipids presented by CD1d expressed on
CD4+CD8+ double-positive (DP) thymocytes [5-8]. Post-
selected iNKT cells undergo defined developmental stages,
including stage 1 (CD44-NK1.1-), stage 2 (CD44+NK1.1-), and
terminally differentiated stage 3 (CD44+NK1.1+) [5,6,9,10].
Different from conventional αβ T cells, iNKT cells rapidly
produce copious amounts of cytokines such as IL-4, IFNγ, and
TNFα following stimulation of the iVα14TCR with agonist
ligands, such as α-galactosylceramide (α-GalCer) and
endogenous and microbial ligands [11-14].

Recently, iNKT cells capable of producing the IL-17 family of
cytokines (iNKT-17), such as IL-17A, IL-17F, and IL-22, have
been identified [15-18]. iNKT cell-derived IL-17-family cytokines
are implicated in both inflammatory responses such as airway
inflammation via recruiting neutrophils and protective roles

such as suppression of liver inflammation [19,20]. iNKT-17
cells are generated in the thymus and are considered to be
developmentally programmed [17,21]. iNKT-17 cells are mainly
restricted to the NK1.1- CD4- population [15] and express the
marker for recent thymic emigrant and nature-regulatory T cells
neuropilin-1 [16]. Additionally, iNKT-17 cells express molecules
that are usually characteristic of Th17 cells such as the orphan
nuclear receptor RORγt, the IL-23 receptor (IL-23R), and the
chemokine receptor CCR6 [17,22,23]. Although it has become
clear that iNKT-17 represents a unique iNKT sublineage with
important functions in the pathogenesis of diseases, the signal
control for the generation/maintenance of this sublineage of
iNKT cells is not well understood.

Diacyglcerol kinase ζ (DGKζ) belongs to a family of 10
enzymes that phosphorylate diacylglycerol (DAG) to produce
phosphatidic acid (PA), two important second messengers
involved in signaling from numerous receptors [24-26]. DGKζ is
expressed in many cell lineages in the immune system, such
as T cells, macrophages, dendritic cells, and mast cells [27-30].
Recent studies have demonstrated that DGK activity plays
important regulatory roles in these immune-cell lineages via
terminating DAG and simultaneously generating PA [28,29,31].
In T cells, DGKζ negatively controls TCR-induced activation of
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the RasGRP1-Ras-Erk1/2 pathway, the PKCθ-NFκB pathway,
and mTOR signaling [27,30,32,33], inhibits T cell activation in
vitro and in vivo [27,30], inhibits primary anti-viral immune
responses but promotes memory CD8 T-cell-mediated anti-
viral immune responses [34], contributes to T-cell anergy and
tumor evasion [31], and, together with DGKα, promotes the
positive selection of conventional αβ T (cαβT) cells [35]. DGKζ
has also been demonstrated to regulate TLR signaling and the
production of proinflammatory cytokines such as IL-12p40 and
TNFα to control innate and adaptive immune responses to
parasite infection [26] and to modulate mast-cell survival and
activation [29]. Recently, we have demonstrated that deficiency
of both DGKζ and α, another isoform expressed in T cells,
causes severe decreases of iNKT cells in mice [33]. However,
deficiency of either DGKα or DGKζ alone does not result in a
noticeable abnormality of iNKT-cell numbers in mice. In this
report, we demonstrate that germline deficiency of DGKζ leads
to decreases of IL-17 producing iNKT cells without an obvious
effect on IL-4- and IFNγ-producing iNKT (iNKT-4 and -1) cells.
The decrease of iNKT-17 cells caused by DGKζ deficiency is
correlated with a reduced expression of RORγt and IL-23R.
Interestingly, in chimeric mice reconstituted with mixed WT and
DGKζ bone marrow (BM) cells, an iNKT-17 defect caused by
DGKζ deficiency can be corrected, suggesting that DGKζ
controls iNKT-17 development via iNKT extrinsic mechanisms.

Methods

Mice and cells
DGKζ-deficient (DGKζKO) mice backcrossed to C57BL/6J

background for at least nine generations were previously
reported [27,31]. C57BL/6J and CD45.1+ congenic mice were
generated by in-house breeding. TCRαKO mice were
purchased from the Jackson Laboratory. All mice were housed
in a pathogen-free facility. This study was carried out in strict
accordance with the recommendations in the Guide for the
Care and Use of Laboratory Animals of the National Institutes
of Health. All mice were used according to protocols approved
by the Institutional Animal Care and Use Committee of Duke
University (Protocol Number: A132-10-5). Splenocytes,
thymocytes, and liver MNCs were made according to
previously published protocols [33,36].

Antibodies and flow cytometry
Iscove’s Modified Dulbecco’s Medium (IMDM) was

supplemented with 10% (vol/vol) FBS, penicillin/streptomycin,
and 50 µM 2-mercaptoethanol (IMDM-10). PE- or APC-
conjugated mouse CD1d tetramers loaded with PBS-57 were
provided by the NIH Tetramer Facility. The Live/Dead® Fixable
Violet Dead Cell Stain Kit was purchased from Invitrogen.
Fluorescence-conjugated anti-mouse TCRβ (H57-597), CD45.1
(A20), Thy1.2 (30-H12), IFNγ (XMG1.2), IL-17A (TC11-18
H10.1), IL-4 (11B11), and RORγt (ATKJS-9) antibodies were
purchased from BioLegend.

Cell-surface staining was performed with 2% FBS-PBS.
Intracellular staining for IFNγ, IL-17A, and IL-4 was performed
using BD Biosciences Cytofix/Cytoperm™ and perm/wash
solutions following the manufacturer’s protocol. All flow

cytometry data were collected using FACS Canto-II (BD
Biosciences) and analyzed with the FlowJo software. A solution
of 0.5% Tween-20-PBS was used to dissolve α-GalCer (Enzo
life science).

Purification of iNKT cells and real-time quantitative
PCR

iNKT cells were enriched with PE-CD1dTet and anti-PE-
MACS-beads according to a previously published protocol
[33,36]. Enriched iNKT cells were stained with anti-TCRβ and
7-AAD and sorted for live CD1dTet + TCRβ+ iNKT cells with
greater than 98% purity using MoFlo. Sorted iNKT cells were
immediately lysed in Trizol for RNA preparation. cDNA was
made using the iScript Select cDNA Synthesis Kit (Biorad).
Real-time quantitative PCR was conducted and analyzed as
previously described [33,36]. Expressed levels of target
mRNAs were normalized with β-actin and calculated using the
2–ΔΔCT method. Primers were as follows: IL-23R, Forward: 5’-
AGCAAAATCATCCCACGAAC-3’, Reverse: 5’-
GAAGACCATTCCCGACAAAA-3’; RORc, Forward: 5’-
CGACTGGAGGACCTTCTACG-3’, Reverse: 5’-
TTGGCAAACTCCACCACATA-3’; IFN-γ, Forward: 5’-
GCGTCATTGAATCACACCTG-3’, Reverse: 5’-
TGAGCTCATTGAATGCTTGG-3’; IL-4, Forward: 5’-
ACAGGAGAAGGGACGCCAT-3’, Reverse: 5’-
GAAGCCCTACAGACGAGCTCA-3’; IL-17A, Forward: 5’-
GCTCCACAAGGCCCTCAGA-3’, Reverse: 5’-
CTTTCCCTCCGCATTGACA-3’; DGK-α, Forward: 5’-
GATGCAGGCACCCTGTACAAT-3’, Reverse: 5’-
GGACCCATAAGCATAGGCATCT-3’; DGK-ζ, Forward: 5’-
CTGAGGAGCAGATCCAGA GC-3’; DGK-δ, Forward: 5’-
GATCCTCGAGCCTCTGCGTTCTCTGC-3’, Reverse: 5’-
GATCGCGGCCGCGGCCAGAACACAT-3’.

In vitro stimulation of iNKT cells
For α-GalCer stimulation, 1 x 107 thymocytes, 5 x 106

splenocytes, or 5 x 106 lymph node (LN) cells were seeded in a
48-well plate in 1 ml IMDM-10 or 5 x 105 liver MNCs were
seeded in a 96-well plate in 200 µl IMDM-10. Cells were left
unstimulated or stimulated with α-GalCer (125 ng/ml) for 72
hours with the addition of PMA (50 ng/ml) and ionomycin (500
ng/ml) and GolgiPlug™ (1ng/ml) in the last 5 hours. For short-
term PMA plus ionomycin stimulation, 0.5-1 x 106 enriched
iNKT cells from thymocytes and splenocytes or density-
enriched liver MNCs were seeded in a 96-well V-bottom plate
in 200 µl IMDM-10. Cells were stimulated with PMA plus
ionomycin for 5 hours in the presence of GolgiPlug™. After
stimulation, cells were first stained with CD1dTet, anti-TCRβ,
anti-Lin (B220, Gr1, CD1b, CD11c, and CD8), and Live/Dead
followed by intracellular staining for IFNγ, IL-17A, IL-4, and
RORγt. iNKT cells were gated on live B220-, Gr1-, CD11b-,
CD11c-, and CD8- cells.

In vivo stimulation of iNKT cells
Mice were intraperitoneally injected with 150 µg Brefeldin A

in 100 µl. Ninety minutes later, mice were intraperitoneally
injected with 2 µg α-GalCer diluted in 200 µl PBS. Two hours
after the α-GalCer injection, splenocytes and liver MNCs were

DGKζ Controls iNKT-17 Development

PLOS ONE | www.plosone.org 2 September 2013 | Volume 8 | Issue 9 | e75202



intracellularly stained for IFNγ, IL-4, and IL-17A. Total RNA
from splenocytes was also isolated from mice injected with α-
GalCer without a Brefeldin A pretreatment.

Bone marrow chimeric mice
TCRα-/- mice were sublethally irradiated (600 rad) and

intravenously injected with a mixture of WT (CD45.1+) and
DGKζKO (CD45.2+) BM cells at a 1:2 ratio. Thymocytes and
splenocytes from the recipient mice were harvested 8 weeks
later.

Statistical analysis
Data are presented as mean ± SEM and statistical

significance were determined by a Student’s t-test.

Results

DGKζ deficiency does not affect iNKT cell proliferation
in vitro

DGKα, ζ, and δ are the dominant isoforms that expressed in
T cells [25,31]. We compared the expression of these isoforms
between cαβT cells and iNKT cells. As shown in Figure 1A,
both DGKα and δ were expressed at reduced levels in iNKT
cells compared with CD8+ cαβT cells. However, DGKζ was
expressed at a higher level in iNKT cells than in CD8+ T cells.
The reason for the differential expression of DGK isoforms
between cαβT and iNKT cells remains to be defined.

Previously, studies have demonstrated that a deficiency of
DGKζ does not affect iNKT-cell development. The total
numbers and developmental stages of iNKT cells in DGKζKO
mice are not obviously different from WT control mice [33]. To
examine whether DGKζ regulates iNKT-cell activation in vitro,
we labeled WT and DGKζ deficient thymocytes with CFSE and
then stimulated the cells with α-GalCer in vitro for 72 hours. As
shown in Figure 1B, DGKζKO and WT iNKT cells expanded
and proliferated similarly, suggesting that DGKζ deficiency did
not affect TCR-induced iNKT- cell proliferative response in
vitro. It has been demonstrated that DGKζKO cαβT cells are
hyperproliferative in response to TCR stimulation [27]. Thus,
DGKζ differentially controls cαβT and iNKT-cell proliferation in
vitro.

Decreased IL-17 but not IFNγ or IL-4 production by
DGKζ deficient iNKT cells following in vitro stimulation
of the iVα14TCR

iNKT cells produce multiple cytokines to regulate immune
responses. To determine whether DGKζ regulates cytokine
production by iNKT cells during in vitro activation, we
stimulated WT and DGKζKO thymocytes with α-GalCer for 48
and 72 hours; IFNγ, IL-4, and IL-17 levels in culture
supernatants were measured by ELISA. No obvious
differences of IFNγ and IL-4 levels were observed between WT
and DGKζKO iNKT cells. In contrast, IL-17A levels were
considerably decreased in DGKζ iNKT cells (Figure 2A).
Consistent with these ELISA data, intracellular staining of these
cytokines in iNKT cells also showed decreased IL-17A but
similar IFNγ- and IL-4-producing iNKT cells following α-GalCer

stimulation (Figure 2B and 2C). Taken together, these data
indicate that DGKζ plays an important role for IL-17 production
by iNKT cells in vitro.

Impaired iNKT-17 development in the absence of DGKζ
The impaired production of IL-17A by iNKT cells following α-

GalCer stimulation can be caused by a developmental defect
or impaired expansion of iNKT-17 cells. To determine whether
DGKζ deficiency causes a developmental defect in generating
iNKT-17 cells, we enriched iNKT cells from WT and DGKζKO
thymocytes and stimulated enriched iNKT cells with PMA plus
ionomycin in vitro for 5 hours in the presence of GolgiPlug.
Intracellular staining of cytokines showed decreased IL-17A
positive cells within DGKζKO iNKT cells than in WT controls
(Figure 3A and 3B). In contrast, the percentages of IFNγ- and
IL-4-producing cells were similar in WT and DGKζKO iNKT
cells. RORγt and IL-23R signaling is critical for the iNKT-17

Figure 1.  DGKζ is dispensable for iNKT cell activation in
vitro.  (A) Quantitative real-time PCR analysis of DGK-α, ζ and
δ mRNA in sorted CD8 cαβT cells and iNKT cells from wild-
type mice. Data are representative of three independent
experiments. **, P < 0.01, and ***, P < 0.001 determined
unpaired two-tail Student t-test. (B) iNKT cell proliferation
assessed by CFSE-dilution assay. CFSE-labeled WT and
DGKζKO thymoyctes were left unstimulated or stimuated with
α-Galcer in vitro for 72 hours. Overlaid histograms show CFSE
intensity in live gated CD1dTet + TCRβ+ iNKT cells. Data shown
represent three experiments.
doi: 10.1371/journal.pone.0075202.g001
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differentiation [17,22]. We sorted iNKT cells from WT and DGK-
ζKO thymocytes and measured RORγt and IL-23R mRNA
levels by quantitative real-time PCR. Consistent with the
iNKT-17 developmental defect, IL-23R and RORγt mRNA
levels were obviously decreased in DGKζKO iNKT cells
compared with WT iNKT cells (Figure 3C). Consistent with

these observations, DGKζKO thymic iNKT cells contained
much less IL-17A + RORγ+ double positive cells than WT
controls (Figure 3D). Together, these results suggest that
DGKζ at least promotes iNKT-17 differentiation during
development.

Figure 2.  Decreased IL-17A production by DGKζ deficient iNKT cells following α-GalCer stimulation in vitro.  Thymocytes,
splenocytes, and liver mononuclear cells (MNC) from WT, DGKζ-/- mice were stimulated with α-GalCer for 72 hours in vitro. (A) IL-4,
IFNγ, and IL-17A levels in culture supernatants of thymocytes measured by ELISA. (B) Intracellular staining of IL-4, IFNγ, and
IL-17A of thymic, splenic, liver, and lymph node (LN) iNKT cells stimulated with α-GalCer for 72 hours with PMA and ionomycin in
the presence of GolgiPlug during the last 5 hours of culture. (C) Percentages of thymic iNKT cells producing the indicated cytokines.
Bar graphs are mean ± SEM calculated from three experiments.
doi: 10.1371/journal.pone.0075202.g002

DGKζ Controls iNKT-17 Development

PLOS ONE | www.plosone.org 4 September 2013 | Volume 8 | Issue 9 | e75202



Figure 3.  iNKT-17 developmental defect in the absence of DGKζ.  (A,B) iNKT-cells enriched from WT and DGKζKO
thymocytes, splenocytes, liver mononuclear cells, and LN cells were stimulated with PMA and ionomycin for 5 hours in the presence
of Golgi-Plug. Contour plots show intracellular staining of indicated cytokines in gated CD1dTet + TCRβ + Lin-(Gr1-B220-CD8-CD11c-

CD11b-) iNKT cells (A). Bar graph (B) represents mean ± SEM of percentages of indicated cytokines in gated iNKT-cells (n=3). (C)
Decreased RORγt and IL23R expression in DGKζKO iNKT cells. RORγt and IL23R mRNA levels in sorted thymi iNKT cells from
WT and DGKζKO mice were measured by quantitative real-time PCR. *, P<0.05; ***, P < 0.001 (t-test). (D) Co-intracellular staining
of IL-17A and RORγt in thymic WT and DGKζKO iNKT cells following PMA + ionomycin stimulation for 5 hours. Data shown are
representative or calculated from three experiments.
doi: 10.1371/journal.pone.0075202.g003
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Impaired in vivo IL-17 induction in DGKζ deficiency
mice following α-GalCer treatment

The data shown above reveal the important role of DGKζ of
IL-17 production in vitro. We further examined how DGKζ
deficiency may affect iNKT-cell cytokine production in vivo. As
shown in Figure 4A and 4B, intracellular staining showed that
the percentages of IL-4 or IFNγ positive iNKT cells were similar
between WT and DGKζKO mice 2 hours after the α-GalCer
injection. However, the percentage of IL-17-producing iNKT
cells was obviously lower in DGKζKO mice than in WT mice.
Moreover, the IL-17A mRNA level, although not IL-4 or IFNγ
mRNA levels, was decreased in the DGKζKO spleen after the
α-GalCer injection (Figure 4C). Together, these observations
suggest that DGKζ is important for optimal IL-17 expression in
iNKT cells in vivo.

Promotion of iNKT-17 differentiation by DGKζ is not
iNKT cell intrinsic

Because DGKζ was deficient in all cell lineages in DGKζKO
mice, the aforementioned iNKT-17 defect in these mice could
be caused by extrinsic or intrinsic mechanisms. To distinguish
these possibilities, we generated mixed-bone-marrow chimeric
mice by co-injecting CD45.1+ WT and CD45.2+ DGKζKO BM
cells at a 1:2 ratio into sublethally irradiated TCRα-/- mice. Eight
weeks after reconstitution, iNKT cells from thymocytes or
splenocytes of the chimeric mice were enriched and stimulated
with PMA plus ionomycin for 5 hours or stimulated with α-
GalCer for 72 hours to induce IL-17 and IFNγ production. As
shown in Figure 5, similar percentages of DGKζKO and WT
iNKT cells produced IL-17A, suggesting that the impairment of
iNKT-17 differentiation caused by DGKζ deficiency likely
resulted from mechanisms extrinsic to iNKT cells.

Figure 4.  Decreased IL-17A expression following iNKT cell activation in vivo.  WT and DGKζKO mice were intraperitoneally
injected with 150µg brefeldin A. Ninety minutes later, mice were intraperitoneally injected with 2 µg α-GalCer diluted in 200 µl PBS.
Two hours after α-GalCer injection, IFN-γ, IL-4, and IL-17A positive iNKT cells in the spleen and liver were determined by flow-
cytometry. (A) Representative dot plots show intracellularly stained cytokines in gated iNKT cells expression. (B) Mean ± SEM
presentation of iNKT cells expressing the indicated cytokines. (C) Decreased IL-17A mRNA in DGKζKO spleen 4 hours after α-
GalCer injection. Data shown represent two experiments.
doi: 10.1371/journal.pone.0075202.g004
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Discussion

In this report, we demonstrated that DGKζ plays a selective
role in promoting iNKT-17 development. We have shown that a
deficiency of DGKζ resulted in impaired iNKT-17 correlated
with decreased expression of RORγt and IL-23R. In contrast,
IFNγ-producing iNKT-1 or IL-4-producing iNKT-4 cell
development seemed not to be affected by DGKζ activity.

At least three DGK isoforms, α, δ, and ζ, are expressed in
iNKT cells. While sharing common structural features such as
the kinase domain and the cysteine-rich C1 domains, they also
contain distinct structural domains/motifs and belong to
different subtypes of the DGK family [37]. We have
demonstrated that DGKα and ζ function synergistically to
promote iNKT-cell development/homeostasis and cαβ T cell
maturation [33,35]. Additionally, deficiency of either DGKα or ζ
results in enhanced activation of cαβT-cell activation reflected
by hyper-proliferation and elevated cytokine production [27,31].
However, DGKζ deficiency does not obviously impact iNKT cell
activation. DGKζ-deficient iNKT cells proliferate and secrete
IFNγ and IL-4 similarly to WT iNKT cells following TCR
engagement. Thus, iNKT cells and cαβT cells display a
differential requirement of DGKζ for modulating their activation.
At present, we cannot rule out that DGKα or δ may function
redundantly with DGKζ in the control of iNKT cell activation.
The virtual absence of iNKT cells in DGKα and ζ double-
deficient mice prevents us from addressing this issue. Further
generation and analysis of mice with conditional ablation of
multiple DGK isoforms in mature iNKT cells should provide a
solid conclusion regarding the role of DGK activity in iNKT cell
activation.

Our data indicate that DGKζ promotes iNKT-17
differentiation via iNKT-extrinsic mechanisms. Important
questions remain to be addressed about which cell lineage
DGKζ controls iNKT-17 differentiation and how DGKζ exerts
such functions in this cell lineage. iNKT-17 development is
intrinsically dependent on RORγt but is negatively controlled by
Th-POK, a transcript factor critical for CD4 lineage
development [17,21,38,39]. Extracellular factors such as IL-23
and IL-1 are indispensable for iNKT-17 differentiation [22,40].
Interestingly, we have found that DGKζ is important for
IL-12p40 expression in macrophages and dendritic cells [28]. A
decrease of expression of IL-12p40, a subunit for both IL-12
and IL-23, could potentially lead to impaired iNKT-17
differentiation. Additionally, DGK activity inhibits mTOR
activation in T cells [32]. mTOR activity can negatively control
IL-12p40 transcription in dendritic cells and macrophages
[41-44]. Thus, it is possible that a potential elevation of mTOR
activity in dendritic cells may cause down-regulation of IL-23
expression by dendritic cells, leading to impaired iNKT-17
differentiation. Future studies using DGKζ conditional knockout
mice should help to identify the lineage in which, and the
mechanisms by which, DGKζ functions to promote iNKT-17
differentiation.
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