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Identification of a novel human 
deoxynivalenol metabolite 
enhancing proliferation of 
intestinal and urinary bladder cells
Benedikt Warth1,2,†, Giorgia Del Favero1, Gerlinde Wiesenberger3, Hannes Puntscher1, 
Lydia Woelflingseder1, Philipp Fruhmann3,4, Bojan Sarkanj2,5, Rudolf Krska2, 
Rainer Schuhmacher2, Gerhard Adam3 & Doris Marko1

The mycotoxin deoxynivalenol (DON) is an abundant contaminant of cereal based food and a severe 
issue for global food safety. We report the discovery of DON-3-sulfate as a novel human metabolite 
and potential new biomarker of DON exposure. The conjugate was detectable in 70% of urine samples 
obtained from pregnant women in Croatia. For the measurement of urinary metabolites, a highly 
sensitive and selective LC-MS/MS method was developed and validated. The method was also used to 
investigate samples from a duplicate diet survey for studying the toxicokinetics of DON-3-sulfate. To 
get a preliminary insight into the biological relevance of the newly discovered DON-sulfates, in vitro 
experiments were performed. In contrast to DON, sulfate conjugates lacked potency to suppress 
protein translation. However, surprisingly we found that DON-sulfates enhanced proliferation of human 
HT-29 colon carcinoma cells, primary human colon epithelial cells (HCEC-1CT) and, to some extent, 
also T24 bladder cancer cells. A proliferative stimulus, especially in tumorigenic cells raises concern 
on the potential impact of DON-sulfates on consumer health. Thus, a further characterization of their 
toxicological relevance should be of high priority.

The trichothecene deoxynivalenol (DON, vomitoxin) is a frequent contaminant of grains and cereal products 
world-wide. Since DON constitutes a major issue for food and feed safety, different international expert bodies,  
including those of the FAO/WHO and EFSA, extensively evaluated its occurrence, exposure, metabolism, and 
toxicity1–3. As a result, regulatory limits were introduced in many countries to manage the concentration of DON 
in food and feed4 and a provisional maximum tolerable daily intake (PMTDI) for DON and its acetylated metab-
olites of 1 μ g/kg body weight was established1. Exposure to DON was clearly associated with the consumption 
of cereals5. Recent surveys, applying innovative LC-MS/MS based biomarker approaches, revealed that signif-
icant parts of several European populations exceeded the PMTDI in various years6–10. In humans, DON has 
been associated with gastroenteritis, whereas in animal models acute DON intoxication causes emesis and 
chronic low-dose exposure elicits anorexia, growth retardation, immunotoxicity as well as impaired reproduc-
tion11. Although chronic exposure is evident globally, the effects of low-dose DON exposure on humans are still 
unknown.

The primary mode of DON action is the efficient inhibition of protein synthesis by binding to eukaryotic ribo-
somes12. Thereby, the synthesis of macromolecules as well as cell signaling, differentiation, and proliferation are 
impaired. However, DON also activates intracellular protein kinases which mediate selective gene expression and 
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apoptosis11. DON has been reported to inhibit several intestinal transporters in the human epithelial intestinal 
cell line HT-29-D4 while in Caco-2 cells it was found to induce IL-8 secretion13. In the human Jurkat T-cell line 
the induction of oxidative stress was recently confirmed by studying the nuclear translocation of the transcription 
factor NRF2 and its binding protein KEAP1 as well as by changes in cell levels of reduced glutathione14.

It is known since a long time that DON is extensively metabolized to glucuronide conjugates (DON-GlcA) 
as the predominant products of phase II metabolism in animals15. However, the first assay to measure DON and 
its glucuronides indirectly using enzymatic hydrolysis in human urine was developed by Meky et al.16 only a 
decade ago. During the last years, the structures of these conjugates in human urine have been identified with 
DON-15-GlcA as the major metabolite and minor contributions of DON-3-GlcA and DON-7-GlcA6,7,17. The 
overall 24 h urinary excretion rate of total DON (i.e. the sum of DON and its glucuronides) was estimated to be 
on average 72% in a moderately exposed UK population18. In the cited study β -glucuronidase from E. coli (Type 
IX-A), which is typically free of sulfatase activity, was employed. This estimate was confirmed in other studies 
either utilizing direct quantification of glucuronides by LC-MS/MS19 or enzymatic hydrolysis and GC-MS instru-
mentation20. Also the bacterial detoxification product deepoxy-DON (DOM-1) was found in lower numbers 
and concentrations in some studies after enzymatic hydrolysis21,22 or via a direct approach10,23. To the best of 
our knowledge, a DON-sulfate conjugate has not been reported as a human metabolite before. However, lit-
erature reports of a tentatively identified DON-sulfate conjugate in sheep urine based on an indirect approach 
using enzymatic de-conjugation with sulfatase15 and samples obtained from chicken tissues24 were published. 
Furthermore, Schwartz-Zimmermann et al.25 demonstrated DON-3-sulfate as the major DON metabolite in dif-
ferent poultry species and the formation of DOM-3-sulfate. Very recently, DON-3-sulfate and DON-15-sulfate 
were also unambiguously identified as plant metabolites formed in DON treated wheat26 utilizing chemically 
synthetized reference standards27 for structure confirmation and absolute quantitation.

Based on the formation of DON-sulfates as phase II metabolites in animals, we tested the hypothesis that 
DON may be converted into a sulfate conjugate in humans as well. Hence, we developed a highly sensitive 
LC-MS/MS method for the direct quantification of DON and its urinary metabolites including DON-sulfates and 
applied it to two sets of urine samples which have been well-characterized before. We present experimental evi-
dence for the existence of DON-3-sulfate in human urine, which has not been described as a human metabolite 
of the major trichothecene DON before. Furthermore, we performed a preliminary toxicological characterization 
of the DON-sulfates which unraveled potential implications on cellular growth.

Results
Identification of DON-3-sulfate as novel human metabolite and potential biomarker. As illus-
trated in Fig. 1, DON-3-sulfate was detected in human urine and identified based on comparison with authentic 
reference standards which have been chemically synthetized and confirmed by NMR before27. The retention 
time as well as the intensity ratio of the selected reaction monitoring (SRM) transitions and the MS/MS spectra 
identified the detected metabolite as DON-3-sulfate. Whereas glucuronide formation in humans mainly occurs at 
C-15, sulfates are bound predominantly to the C-3 carbon. Interestingly, no DON-15-sulfate was identified in any 
of the investigated samples in this study. This means that the unknown human sulfotransferases28, mediating con-
jugation of DON, seem to follow a different stereoselectivity than the involved UDP-glucuronosyltransferases29. 
This is to the best of our knowledge the first report of a DON-sulfate metabolite in any human sample material. 
Since DON-3-sulfate was only determined in artificially DON-treated wheat but not in any naturally contami-
nated food sample intended for human consumption and the transfer via chicken meat or eggs24,25 seems highly 
unlikely, we propose that the identified conjugate is an endogenous human metabolite produced in the intestine 
or liver.

Natural occurrence and excretion rate of DON-3-sulfate in human urine. To investigate the natural 
occurrence of DON-sulfates, first morning urine samples obtained from Croatian women (n =  40) were analyzed 
by the newly developed LC-MS/MS based method. DON-3-sulfate was quantified in 28 out of the 40 urine sam-
ples (70%). The maximum concentration was 58 μ g/L while the average concentration was 4.5 μ g/L (0.012 μ M),  
when for samples below the limit of detection (LOD) the half LOD was deployed for average calculation. As men-
tioned above no DON-15-sulfate was detected in any sample.

Besides the investigation of the natural occurrence of DON-sulfates in human urine, the method was also 
utilized to re-investigate urine samples from an eight-day duplicate diet survey19. This study has been designed 
initially to unravel the toxicokinetics of DON in vivo especially focusing on the formation of glucuronide con-
jugates. The DON-3-sulfate metabolite was determined in this set of samples frequently as well and its urinary 
24 h excretion rate was estimated to be approximately 4% of the DON quantity ingested through the contami-
nated food (Table 1). The fast elimination of the sulfate conjugate was verified by its absence in the urine sample 
obtained on day seven, the first day after the consumption of DON contaminated food was stopped.

LC-MS/MS method development and validation. The MS/MS parameters of DON-sulfates as well 
as the other analytes (Table 2) included in the method were optimized in both, the positive and the negative ESI 
mode. All analytes investigated in this study yielded higher absolute signals and better signal to noise ratios in the 
negative ionization mode. To differentiate between the two isomers the fragment ion at m/z 345 (− 30 amu) was 
used. This corresponds to [M-CH2O-H]− with a loss of CH2O from the -CH2OH group attached to the carbon at 
the C-6 position of the DON-3-sulfate as described before26.

The eluents were optimized in order to maximize the retention, recovery and signal to noise ratio of all ana-
lytes, however, DON-sulfates were regarded as the most relevant targets. One important objective was to chro-
matographically baseline separate the DON-sulfate and DON-glucuronide isomers. This task was successfully 
accomplished by careful optimization of the mobile and stationary phases. Acidified methanolic eluents and the 



www.nature.com/scientificreports/

3Scientific RepoRts | 6:33854 | DOI: 10.1038/srep33854

same stationary phase with biphenyl chemistry have been reported recently to exhibit excellent separation of 
DON and its polar conjugates25. Since higher concentrations of acetic acid resulted in decreased signal intensities 
only a low concentration (0.05%) was chosen for the final method.

The proposed method was validated thoroughly to estimate the linear range, matrix effects, intra- and interday 
precision, selectivity, as well as the LOD and limit of quantification (LOQ) values. Detailed results are presented 
in Supplementary Table 1. The method proved to be linear over three orders of magnitude when measuring 
reference standards in pure solvent. It has been reported before that DON and its polar conjugates are prone to 
severe matrix effects in biological samples23,30,31. Interestingly, DON-sulfates have been described being suscep-
tible to signal enhancement rather than ion suppression during electrospray ionization in samples derived from 
animal material25 and wheat samples26. This behavior was confirmed in human urine in this work albeit in a less 
pronounced manner with acceptable and very stable apparent recoveries ranging from 107–111% and 114–117% 
for DON-3-sulfate and DON-15-sulfate, respectively. Also the intra- and interday precision with relative standard 
deviations of 6–15% and 5–12%, respectively can be regarded as acceptable when taking the fast and effective 
sample preparation and the challenging biological matrix into account. The obtained LODs (DON-3-sulfate: 0.45 
μg/L; DON-15-sulfate: 0.35 μg/L; see Supplementary Table 1) were judged to be applicable to quantify even low 
DON exposures. The retention times were stable with a maximum shift of less than 1.2% for DON-sulfates which 
is typically regarded as acceptable for LC separations. Overall, the results clearly indicated that the chosen ‘dilute 
and shoot’ approach was feasible and did not require any further sample clean-up or enrichment step.

Effect of DON and its sulfates on the translation efficiency in mammalian cells. Since the primary 
mode of DON and trichothecene action is the inhibition of protein biosynthesis by eukaryotic ribosomes, we tested 

Figure 1. Chemical structures of DON and its sulfates and LC-MS/MS identification of DON-3-sulfate. 
Structures (a) of deoxynivalenol (1), DON-3-sulfate (2) and DON-15-sulfate (3) as well as SRM-chromatograms 
and MS/MS spectra of authentic reference standards (b) and a naturally contaminated urine sample (c). The 
reference (b) contains a mixture of DON-3-sulfate and DON-15-sulfate, whereas in the naturally contaminated 
urine sample (c) only DON-3-sulfate is present. Based on a comparison of the retention time and the observed 
fragments with the standard substance the isomer in the urine sample was identified as DON-3-sulfate. MS/MS 
scans were recorded at a collision energy of − 20 eV.
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whether a rabbit reticulocyte based in vitro translation assay was affected by either sulfate conjugate (Fig. 2). While 
1.5 μ M DON reduced production of the reporter protein to 50% and translation was completely inhibited in the 
presence of 20 μ M DON, DON-3-sulfate did not inhibit in vitro translation at concentrations of up to 100 μ M. DON-
15-sulfate was shown to be a moderate inhibitor of mammalian ribosomes with an IC50 of about 47 μ M.

Effect of DON and its sulfates on cell growth (sulforhodamine B assay). Incubation of intestinal 
(Fig. 3a,b,c) and bladder cells (Fig. 3d) with DON in vitro resulted in a concentration dependent cytotoxicity. A 
significant decrease of cell viability was detectable starting from the concentration of 1 μ M for HCEC-1CT and 
T24 cells (Fig. 3b,d) and starting from 10 μ M in HT-29 and Caco-2 cells (Fig. 3a,c). In addition, in a limited and 
low concentration range, DON triggered the proliferation of the tumor cells tested in the present study (HT-29: 
0.1 μ M; Caco-2: 10 nM; T24: 0.1–10 nM) but not in the non-transformed human colonic epithelial cells HCEC-
1CT. In line with the data of the translation inhibition assay, DON-3-sulfate did not exert cytotoxic effects in any 
of the test systems, while DON-15-sulfate induced a slight decrease of cell viability in T24 cells when incubated at 
low concentrations of 10 nM and 0.1 μ M.

Interestingly, the two sulfate conjugates demonstrated a marked proliferative stimulus on HT-29 colon carci-
noma cells in a concentration range between 0.1 and 25 μ M (Fig. 3a). This effect was confirmed in HCEC-1CT 
and T24 cells albeit less pronounced (Fig. 3b,d) while it was not significant in Caco-2 cells (Fig. 3c). For the 
primary human colon epithelial cells HCEC-1CT the increase was present at concentrations of 0.1 and 10 nM as 
well as 0.1 μ M in cells incubated with DON-3-sulfate. For DON-15-sulfate the effect was found at concentrations 
of 0.1 and 1 μ M. In agreement with the data obtained in intestinal HT-29 and HCEC-1CT cells, DON-3-sulfate 
triggered a proliferative stimulus also in urinary bladder T24 cells at concentrations of 0.1 and 1 nM.

Cellular metabolism. To evaluate if potential effects of DON-sulfates may arise from hydrolysis to the parent  
compound under the chosen in vitro conditions, the cellular metabolism of the compounds was preliminarily 
studied in the intestinal cell line showing the most potent effect. Since free DON was neither detected in the 
supernatant nor in the cell lysate of HT-29 cells incubated with 10 μ M of DON-3-sulfate or DON-15-sulfate, we 
concluded that all effects observed in the applied in vitro toxicity assays are caused predominantly by the conju-
gate itself. Hydrolysis of sulfates did not occur and the sulfates seemed to be stable compounds in general.

Discussion
This is to the best of our knowledge the first report of a DON-sulfate metabolite in any human sample. Based 
on the chromatographic retention behavior and the MS/MS spectra displayed in Fig. 1, the isomer occurring in 
human urine was identified as DON-3-sulfate. In principle, also the formation of DON-7-sulfate might be pos-
sible. However, the unreactivity of the C7 position to chemical sulfation has been demonstrated before27 and it 

Analyte RT [min] Precursor ion [m/z] Ion species Product ionsa [m/z] Relative intensityb CEa,c [eV] S-lens

DON 9.4 355.1 [M +  Ac]− 265.2/247.2 29% − 17/− 19 75

DON-3-sulfate 8.5 375.0 [M− H]− 345.0/247.0 59% − 21/− 24 100

DON-15-sulfate 8.2 375.0 [M− H]− 97.0/163.1 22% − 35/− 40 100

DON-3-glucuronide 8.8 471.1 [M− H]− 265.0/175.0/441.0 93%/37% − 27/− 30/− 23 150

DON-15-glucuronide 9.0 471.1 [M− H]− 265.0/175.0/441.0 27%/3% − 27/− 30/− 23 150

Deepoxy-DON 12.6 339.1 [M +  Ac]− 249.0/59.0 106% − 15/− 23 62

Table 2.  Optimized ESI-MS and ESI-MS/MS parameters as obtained during method optimization. aValues 
are given in the order quantifier ion/qualifier ion/qualifier ion 2 (in case of glucuronides). bSignal intensity of 
the qualifier transition in relation to the quantifier (qualifier/quantifier × 100). cCollision energy.

DON intakea in  
μg/d and (μmol/d)

Urine 
excretion [L]

DON-3-
sulfateb [μg/L]

DON-3-sulfateb in 
μg/d and (μmol/d)

D3S excretion 
rate [%]c

Day 1 — 2.2 n.d. n.d. n.d.

Day 2 — 1.8 n.d. n.d. n.d.

Day 3 138 (0.47) 2.2 2.8 6.0 (0.02) 4.3

Day 4 138 (0.47) 2.7 1.0 2.8 (0.01) 2.1

Day 5 138 (0.47) 2.3 2.2 4.8 (0.02) 3.5

Day 6 138 (0.47) 2.5 2.3 5.9 (0.02) 4.3

Day 7 — 2.4 n.d. n.d. n.d.

Day 8 — 1.6 n.d. n.d. n.d.

Average 138 (0.47) 2.4 2.1 4.9 (0.02) 3.5

Table 1. In vivo metabolism of DON to DON-3-sulfate in an eight-day duplicate diet case study19. A ‘high 
DON diet’ predominantly consisting of contaminated cereals was consumed during days 3–6 while days 1–2 
and 7–8 were clearing periods. aDaily DON intake without taking masked forms (3-acetyl DON, 15-acetyl-
DON, DON-3-glucoside) into account. bExpressed as DON equivalents. cExcretion rate was calculated as 
follows: Excreted quantity DON-3-sulfate in μ mol/DON intake in μ mol * 100.
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is unlikely that a potentially occurring DON-7-sulfate, for which no reference standard is available yet, co-elutes 
with DON-3-sulfate under the tailored chromatographic conditions and shows the same MS/MS spectrum.

DON-3-sulfate was found to be present in 70% of the investigated samples obtained from Croatian women 
with a high maximum concentration of 58 μ g/L, corresponding to 0.15 μ M. In addition, it was detected frequently 
in a set of samples from an in vivo toxicokinetics study utilizing urine samples obtained from a male Austrian 
volunteer. Thereby, the urinary 24 h excretion rate was estimated to be approximately 4% of the DON quantity 
ingested through the consumption of contaminated food (Table 2). This likely indicates that sulfation is a minor 
metabolic pathway compared to glucuronidation19,32, although the fraction of DON-3-sulfate excreted in the bile 
was not estimated. However, the contribution in human urine is higher than the 2% reported for sheep15. Besides, 
it might be possible that sulfates but not glucuronides are transferred through the cell membrane by specific 
transporters. In the investigated population sulfation was more relevant than de-epoxidation as no DOM-1 was 
detected in any sample. DOM-1 was first demonstrated in the urine of French farmers, representing on average  
< 5% of the total urinary DON in individuals with detectable DOM-1 levels21. Since then it was demonstrated in 
a limited number of studies mainly in its glucuronide form10,22,23.

The sulfotransferases responsible for mammalian xenobiotic metabolism are cytosolic enzymes forming a 
gene superfamily. Differences in substrate specificity between the different sulfotransferases can be relevant for 
tissue-specific toxicological effects28. Ten distinct human sulfotransferase forms are known, however, currently 
it is unknown which gene product is mediating the conjugation with DON. This information would also be of 
relevance since the distribution of sulfotransferases may strongly differ between tissues. As one example hP-PST 
(human phenol sulfotransferases) exhibit high expression levels in the liver while it is detected typically in lower 
levels in other tissues.

Meky et al.16 reported that rat urine incubated with sulfatase resulted in no change of DON related chro-
matographic peaks. Hence, in the past most bio-monitoring studies focusing on the indirect quantification of 
DON employed β -glucuronidase from E. coli, which is essentially free of sulfatase activity7,18,33. Based on the 
identification of DON-3-sulfate in this study the use of β -glucuronidase/sulfatase from from Helix pomatia is 
recommended for future studies as already described by some groups34–36.

While DON-3-sulfate does not inhibit in vitro protein synthesis at concentrations up to 100 μ M (Fig. 2) DON-
15-sulfate was found to be a moderate inhibitor of mammalian ribosomes with an IC50 of about 47 μ M. The 
inhibition observed in this experiment is slightly lower than that observed on wheat ribosomes, where the IC50 of 
DON-15-sulfate was about 66 μ M26. When compared to DON, these figures demonstrate that DON-sulfates can 
be regarded as detoxification products with respect to their effect on protein translation.

In order to enable a preliminary characterization of the biological activity of the DON-sulfates in comparison 
to the parent compound DON, additional cytotoxicity experiments were performed. Four cell lines derived from 
the intestinal tract (HT-29, HCEC-1CT, Caco-2) and from the urinary bladder (T24) were selected to give a com-
prehensive overview. In agreement with the effect of the three compounds on mammalian ribosomes (Fig. 2), 
DON was cytotoxic in all the tested cell types while DON-3-sulfate did not exert any toxic effect and DON-
15-sulfate showed only a limited effect in T24 cells. Intriguingly, when incubated in the nanomolar range DON 
triggered a proliferative stimulus in the cells of cancerous origin used in the present study.

In addition, the two sulfate metabolites demonstrated a distinct proliferative stimulus on human colorectal 
adenocarcinoma HT-29 cells over a concentration range between 0.1 and 25 μ M. This effect was present, even if 

Figure 2. Effects of DON, DON-3-sulfate and DON-15-sulfate on translation by mammalian ribosomes. 
All data were tested on normality by the Shapiro Wilk test. Effects of different concentrations of DON and 
DON-sulfates were tested on significant differences to the water control by One-Way ANOVA and are indicated 
by ***(p <  0.001) and **(p <  0.01). Significant differences of effects between DON-sulfates and 5 μ M (a), 10 μ M  
(b) and 20 μ M (c) DON (p <  0.001) were tested by Student’s t-test. Results represent the mean ±  SE of six 
independent experiments.
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more limited, also in the non-transformed HCEC-1CT and, for the DON-3-sulfate, also in the urinary bladder  
carcinoma cells T24. The effect was present at very low concentrations, starting from 0.1 μ M in HT-29 cells and 
even lower for the T24 cells (from 0.1 nM in the cells incubated with DON and DON-3-sulfate) and HCEC-1CT 
(from 0.1 nM in the cells incubated with DON-3-sulfate). This is of particular interest since this concentration 
range seems to be coherent with the concentration of the urinary DON metabolites that can be found also in the 
bladder in vivo as suggested by the urinary concentrations reported in this paper. Taking into account that several 
recent bio-monitoring studies reported on individuals exceeding the proposed PMTDI established for DON6–10,37 
and the frequent occurrence of DON-3-sulfate in the urine of exposed individuals in the study at hand, this high-
lights the urgent need for further studies and a deeper toxicological characterization of DON-sulfates. It should 
also be considered that we were able to demonstrate the capacity of wheat plants to form both, DON-3-sulfate 
and DON-15-sulfate conjugates in a previous study26. In a wheat suspension culture additionally 15-acetyl-DON-
3-sulfate was reported very recently38. Hence, it seems plausible that this new class of masked/modified myco-
toxins might enter the body via contaminated food in addition to the proposed endogenous production of 
DON-3-sulfate in the human body.

A proliferative effect of DON on tumor cells at very low concentrations has been reported for the parent 
compound DON in recent experiments as well39,40. However, according to literature and confirmed by our data 
this effect disappears once the cytotoxicity of DON outstrips the growth stimulus at a concentration of 1 μ M. The 
sulforhodamine B (SRB) assay applied in this work measures the cellular protein content and is a standard assay of 
the National Cancer Institute for in vitro anticancer-drug screening. It provides a sensitive measure of cytotoxicity 
induced by drugs or xenobiotics and is frequently used to quantify clonogenicity41.

DON has been considered to be non-carcinogenic (Group 3) by the International Agency for Research on 
Cancer for a long time42. Even though the impact of DON and its metabolites on the growth of different cells types 
remains to be clarified with respect to the mechanisms sustaining it and future risk assessment, this is the first 
report on DON metabolites which potentially promote the cellular growth at concentrations occurring in vivo 
due to widespread chronic exposure.

In summary, we demonstrated for the first time that DON-3-sulfate is a human metabolite of the abundant 
food contaminant DON. Using a newly developed, highly sensitive and selective LC-MS/MS method this new 
potential biomarker was quantified in the majority of tested urine samples. To evaluate the potential consequences 
of this unexpected finding for consumers of mycotoxin contaminated food, preliminary toxicological testing was 
performed. Interestingly, and maybe of high importance for public health and future DON risk assessment, it was 
found that the DON-sulfates can trigger cellular proliferation in vitro in a concentrations range that seems to be 
relevant in vivo as suggested by the obtained urinary concentrations of DON-3-sulfate.

Figure 3. Effects of DON (black bars), DON-3-sulfate (dark grey bars) and DON-15-sulfate (light grey bars) 
on HT-29 (a), HCEC-1CT (b), Caco-2 (c) and T24 (d) cells in the sulforhodamine B (SRB assay). *Indicates 
significant differences compared to negative control (NC (H2O 1:100)); *p <  0.05; **p <  0.01; ***p <  0.001). 
#Indicates significant differences in comparison to the values of DON at the same concentration (#p <  0.05; 
##p <  0.01; ###p <  0.001). Values are expressed as mean of at least 3 independent experiments performed in 
quadruplicate ±  SE PC: positive control.
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Methods
Chemicals and reagents. Methanol, acetonitrile, acetic acid and water were all purchased from Sigma 
(Fluka; Vienna, Austria) and of LC-MS grade. DON-3-sulfate and DON-15-sulfate were synthesized using a 
sulfuryl imidazolium salt as described by Fruhmann et al.27 whereas DON-3-glucuronide (DON-3-GlcA) was 
synthesized by an optimised Königs-Knorr procedure using acetobromo-α -D-glucuronic acid methyl ester as 
glucuronyl-donor43. DON and DOM-1 were purchased from Romer Labs Diagnostic GmbH (Tulln, Austria). 
Solid substances were dissolved in water for in vitro experiments and in pure methanol (DON-3-sulfate, DON-15-
sulfate, DON-3-GlcA) or acetonitrile (DON, DOM-1) for analytical purpose and stored at − 20 °C. A combined 
multi standard working solution for preparation of calibrants and spiking experiments was prepared in acetoni-
trile containing 2 mg/L of DON-3-sulfate, DON-15-sulfate, DON, and DOM-1 as well as 4 mg/L DON-3-GlcA.

Urine samples. The samples used in this study originated from two different experiments. To generally inves-
tigate the occurrence of DON-sulfates in a population exposed to high levels of DON, first morning urine sam-
ples obtained from Croatian women (n =  40) were utilized. Volunteers were all healthy, non-smoking pregnant 
women in their final trimester of gestation who resided in the eastern area of Croatia (from and around the city 
of Osijek; age: 26–33 years old). These samples have previously been tested on multiple mycotoxin biomarkers 
using an advanced LC-MS/MS method6 as well as on ochratoxin A and ochratoxin alpha using HPLC-FLD44. 
They partly exhibited high concentrations of DON (max. 275 μ g/L), DON-3-GlcA (max. 298 μ g/L), and DON-
15-GlcA (max. 1238 μ g/L) and are thus ideally suited to screen for novel metabolic products of DON. Samples 
were taken in February 2011 and stored at − 20 °C until analysis. Informed consent was obtained from all partici-
pants. The study was approved by the Ethics Committee of the Faculty of Food Technology, University Josip Juraj 
Strossmayer Osijek and the measurements were carried out in accordance with the approved guidelines.

The second set of samples originated from an in vivo case study which investigated human DON and zearale-
none (ZEN) metabolism in detail through the analysis of urine samples obtained from one Austrian volunteer 
following a naturally contaminated diet containing 138 μ g DON and 10 μ g ZEN over a period of four days19. 
Sulfate conjugates were not included in the original study due to a lack of an authentic reference standard at that 
time. The study was conducted on a 27 year old, healthy male volunteer whose diet consisted of cereals with wheat 
bran for breakfast, maize porridge (including maize flour) for lunch and bread, beer and pop-corn in the evening 
as described in detail before19. For calculating average DON-sulfate excretion rates 24 h urine samples were used 
in the study at hand. Samples were taken in July 2011 and stored at − 20 °C until analysis. This study was approved 
by the ethics commission of the government of Lower Austria. Measurements were carried out in accordance with 
the approved guidelines after informed consent was obtained.

Sample preparation. The time- and cost-effective sample preparation procedure chosen was based on a 
protocol for the simultaneous quantification of multiple mycotoxins and metabolites45. In brief, samples were 
allowed to reach room temperature, centrifuged for 3 min at 10.000 rpm, and diluted 1:10 with a neat dilution 
solvent (ACN/H2O: 10/90).

LC-MS/MS instrumentation. Method development, validation, and sample analysis was carried out using 
a Thermo TSQ Vantage LC-MS/MS triple quadrupole system (Thermo, San Jose, CA, USA) coupled to an Accela 
1250 LC system. Data acquisition was performed using the Xcalibur software (version 3.0) whereas the evaluation 
of data was done using LCquan (version 2.9). The mass spectrometer was equipped with a heated electrospray 
(hESI) interface which was operated in negative ionization mode. Nitrogen was used as drying and argon as col-
lision gas. The parameters of the ion source are reported in Supplementary Table 2.

Analytes were separated on a Kinetex Biphenyl column (3.0 ×  150 mm, Phenomenex, Torrance, CA, US) with 
2.6 μ m particle size and a SecurityGuard ULTRA pre-column (Phenomenex). Gradient elution at 40 °C was per-
formed within 17 min. Eluent A (H2O/MeOH; 9/1) and eluent B (MeOH) both contained 0.05% acetic acid and 
the flow rate was set to 400 μ L/min. After an initial time period of 1.0 min at 100% A, the percentage of B was lin-
early raised to 16% until minute 10.0. Then, eluent B was raised to 95% until minute 12.0 followed by a hold-time 
of 2.0 min and subsequent 3.0 min column re-equilibration at 100% A. A volume of 10 μ L of the diluted samples 
corresponding to 1 μ L undiluted urine was injected. ESI-MS/MS was performed in selected reaction monitoring 
(SRM) mode for all analytes investigated in this study. At least two individual transitions were monitored for 
each analyte. Analyte dependent MS/MS parameters were optimized via direct infusion of reference standards. 
Quantification of all analytes for which reference standards were available was done by external calibration curves 
(1/x weighted) as described in the validation section below and all results were corrected for the apparent recov-
ery of the respective analyte.

Two QC samples were included in each batch of 20 samples within an LC-MS/MS measurement sequence. 
One was the same pooled blank urine used during validation while the other was the blank urine spiked with 
working standard solution. The results of the spiked QC sample required to be within 15% of the assigned values. 
In case of non-accordance the whole sequence was rejected for the affected analyte.

Method validation. In-house validation of the developed method was carried out to determine the param-
eters linear range, precision, recovery, selectivity, and sensitivity. Intra- and interday precision as well as the 
apparent recovery of analytes were evaluated by measurements of a pooled blank urine sample spiked with the 
working solution at three concentration levels: Low (3 μ g/L), middle (30 μ g/L) and high (300 μ g/L). When taking 
the urine dilution into account this corresponds to 0.3, 3, and 30 μ g/L, covering a wide range of concentrations. 
Spiking experiments were performed in triplicate and on three different days. Intra- (n =  9) and interday (n =  27) 
precision were expressed as the relative standard deviation of the obtained recoveries for each metabolite. The 
selectivity of the chosen product ions was evaluated throughout method development and validation and was 
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continued during the application of the method to experimental samples. LOD and LOQ values were calculated 
from chromatograms of spiked blank urine samples based on a signal to noise ratio of 3:1 and 6:1, respectively. 
Calibration curves (1/x weighted) were constructed from peak areas of the reference standards in solvent plotted 
against their concentrations. Each calibration was carried out at seven concentration levels covering three orders 
of magnitude. The calibration range was 0.1–100 μ g/L for all analytes.

Effect of DON and its sulfates on the translation efficiency of mammalian cells. The TnT®  T7 
Coupled Reticulocyte Lysate System (Promega, Madison WI, USA) was used for in vitro translation experiments. 
The assays were performed as described before46 with minor modifications. Six independent experiments were 
performed. All data were tested on normality by the Shapiro Wilk test. Different doses of DON and DON-sulfates 
were tested on significant differences to the water control by One-Way ANOVA. Significant differences between 
selected DON and DON-sulfate concentrations were tested by Student’s t-test.

Cell culture. HT-29, Caco-2 (C2BBe1 clone) and T24 (ATCC®  HTB4™ ) cells were purchased from ATCC. 
HT29 and Caco-2 cells were cultivated in DMEM supplemented with 10% fetal calf serum (FCS) and 1% penicil-
lin/streptomycin (50 U/mL). T24 cells were cultivated in McCoy’s 5A Medium (1X) containing 10% FCS. HCEC-
1CT cells47 were kindly provided by Prof. Jerry W. Shay (UT Southwestern Medical Center, Dallas, TX, USA) and 
cultivated in a basal medium obtained from DMEM high glucose mixed with 10X medium 199 (2%) and sup-
plemented with cosmic calf serum (2%), hepes 20 mM, gentamicin (50 μ g/ml), insulin-transferrin-selenium-G 
supplement (10 μ l/ml), recombinant human EGF (20 ng/ml), and hydrocortisone (1 μ g/ml)48. Cell culture 
media and supplements were purchased from GIBCO Invitrogen (Karlsruhe, Germany), Lonza Group Ltd 
(Basel, Switzerland), Sigma-Aldrich Chemie GmbH (Munich, Germany) and Sarstedt AG & Co (Nuembrecht, 
Germany), VWR International GmbH (Vienna, Austria), Fisher Scientific (Austria) GmbH (Vienna, Austria), 
Szabo-Scandic HandelsgmbH & Co KG (Vienna, Austria). For cell cultivation and incubations humidified incu-
bators at 37 °C and 5% CO2 were used and cells were routinely tested for absence of mycoplasma contamination.

Effect of DON and its sulfates on cell viability (sulforhodamine B assay). In order to provide an 
initial characterization of the biological effects of the DON-sulfates at cellular level SRB experiments were per-
formed as described previously41,49. HT-29, HCEC-1CT, Caco-2 and T24 cells were seeded in 96-wells plates and 
incubated with different concentrations of the parent compound or the metabolites for 24 h. At the end of the 
incubation cells were rinsed twice with PBS (100 μ L) and fixed for 30 min at 4 °C with 50 μ L of 50% trichloroacetic 
acid (TCA) per well. To remove TCA cells were repetitively rinsed with water and 100 μ L of SRB reagent (SRB 0.4% 
in 1% acetic acid) were added to each well. After 1 h of incubation, stained cells were rinsed with acetic acid (1%) 
and water to remove the unbound SRB and, subsequently, the protein-bound SRB was solubilized with 100 μL  
Tris (10 mM). Single wavelength absorbance (570 nm) was read on a Cytation 3 Imaging Multi Mode Reader 
(BioTek, Bad Friedrichshall, Germany). Results are presented as mean of at least three independent experiments 
performed in quadruplicate ±  SE and analyzed applying the Kruskal-Wallis-ANOVA test with OriginPro software 
(version 9.1).

Cellular metabolism. HT-29 cells were seeded in 24-well plates (50.000 cells per well). After 48 h cells were 
incubated in triplicate with 10 μ M of either DON, DON-3-sulfate, or DON-15-sulfate for 0, 3, 24, and 48 h. 
After the respective time the supernatant and the cell lysate were analyzed separately to evaluate if deconju-
gation occurred under cell culture conditions. The supernatant was diluted 1:1 (v/v) with MeOH, centrifuged 
(18.000 rpm, 5 min) and 10 μ L of the diluted supernatant were injected into the LC-MS/MS system. The HT-29 
cells were washed with ice cold PBS and detached from the culture plates with 100 μ L trypsin. After addition of 
100 μ L ice cold MeOH the cells in suspension were disrupted by shock freezing in liquid nitrogen twice. The cell 
lysate was centrifuged (18.000 rpm, 10 min) and 100 μ L of the supernatant were transferred to an autosampler vial 
with micro insert and subsequently analyzed by LC-MS/MS.

Ethics statement. All experiments involving human urine samples were approved by the responsible ethics 
commission. The study involving Croatian samples was approved by the Ethics Committee of the Faculty of Food 
Technology, University Josip Juraj Strossmayer Osijek whereas the Austrian study was permitted by the ethics 
commission of the government of Lower Austria.
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