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Summary
Endocytosis of amyloid-b precursor protein (APP) is thought

to represent the major source of substrate for the production

of the amyloidogenic Ab peptide by the b-secretase BACE1.

The irreversible nature of proteolytic cleavage implies the

existence of an efficient replenishment route for APP from its

sites of synthesis to the cell surface. We recently found that

APP exits the trans-Golgi network in intimate association

with calsyntenin-1, a transmembrane cargo-docking protein

for Kinesin-1-mediated vesicular transport. Here we

characterized the function of calsyntenin-1 in neuronal APP

transport using selective immunoisolation of intracellular

trafficking organelles, immunocytochemistry, live-imaging,

and RNAi. We found that APP is co-transported with

calsyntenin-1 along axons to early endosomes in the central

region of growth cones in carriers that exclude the a-secretase

ADAM10. Intriguingly, calsyntenin-1/APP organelles

contained BACE1, suggesting premature cleavage of APP

along its anterograde path. However, we found that APP

contained in calsyntenin-1/APP organelles was stable. We

further analyzed vesicular trafficking of APP in cultured

hippocampal neurons, in which calsyntenin-1 was reduced by

RNAi. We found a markedly increased co-localization of APP

and ADAM10 in axons and growth cones, along with

increased proteolytic processing of APP and Ab secretion in

these neurons. This suggested that the reduced capacity for

calsyntenin-1-dependent APP transport resulted in mis-

sorting of APP into additional axonal carriers and,

therefore, the premature encounter of unprotected APP

with its ectodomain proteases. In combination, our results

characterize calsyntenin-1/APP organelles as carriers for

sheltered anterograde axonal transport of APP.
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Introduction
Excessive production of pathogenic amyloid-b (Ab) peptide from

amyloid-b precursor protein (APP) is considered as the

biochemical hallmark of Alzheimer’s disease (Haass and

Selkoe, 2007). Ab formation requires proteolytic cleavage of

APP in the juxtamembrane region of its ectodomain by the b-

secretase BACE1, followed by intramembrane cleavage by c-

secretase. Competing ectodomain cleavage within the Ab
segment of APP by a-secretase, followed by intramembrane

cleavage by c-secretase, produces the non-amyloidogenic p3

peptide and, thereby, precludes Ab formation (Sisodia, 1992a).

APP has been found at the plasma membrane and, for a fraction

of it, internalization through endocytosis and recycling back to

the cell surface have been reported (Haass et al., 1992; Koo et al.,

1996; Yamazaki et al., 1996; Marquez-Sterling et al., 1997;

Groemer et al., 2011). Along its recycling itinerary, APP may be

cleaved by a-secretase at the plasma membrane (Sisodia, 1992b;

Kojro and Fahrenholz, 2005) and by b-secretase in the early

endosome (EE) (Koo and Squazzo, 1994; Perez et al., 1999;

Grbovic et al., 2003; Kinoshita et al., 2003; Carey et al., 2005;

Rajendran et al., 2006; Small and Gandy, 2006; He et al., 2007).

Based on these findings it is now widely accepted that EEs are a

major site of b-secretase activity and that APP internalized from

the plasma membrane plays an essential role in Ab generation.

Accordingly, targeted inhibition of endosomal BACE1 through a

transition-state inhibitor linked to a sterol was recently shown to

reduce Ab production in vitro and in vivo (Rajendran et al.,

2008).

In neurons, the presynaptic nerve is a major site for the release

of the soluble ectodomain of APP after proteolytic cleavage by a-

secretase (sAPPa) (Nitsch et al., 1992). The irreversible nature of

proteolytic processing requires continuous replenishment of APP

by anterograde axonal transport. Already two decades ago

kinesin was identified as the main molecular motor required for

the transport of APP-containing vesicles (Koo et al., 1990;

Ferreira et al., 1993; Kaether et al., 2000). Yet, the molecular

components and interactions that mediate the connection between

APP-containing transport vesicles and Kinesin-1 motors are still

controversial. A direct, high-affinity interaction between the

cytoplasmic segment of APP and the tetratricopeptide repeat

region of the light chains of Kinesin-1 was proposed based on

immunoprecipitations (Kamal et al., 2000). An indirect
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connection between APP and Kinesin-1 motors was proposed
based on reports that c-Jun N-terminal kinase-interacting protein

1 (JIP1b) would act as a bridging protein by simultaneously
binding both APP and kinesin light chain-1 (Matsuda et al., 2003;
Inomata et al., 2003). However, both mechanisms were
questioned by subsequent work by several independent labs

that failed to reproduce the direct binding between APP and
Kinesin-1 (Lazarov et al., 2005) and the fact that absence of
JIP1b did not affect transport of APP (Kins et al., 2006). These

objections were backed by a series of reports indicating that APP
variants lacking the cytoplasmic segment were still efficiently
delivered to axons in several distinct model systems of axonal

transport (Tienari et al., 1996; Torroja et al., 1999; Rusu et al.,
2007; Back et al., 2007; Szodorai et al., 2009). These results,
together with the recent observation that distinct forms of APP
are independently transported in separate carrier vesicles

(Muresan et al., 2009), suggest that further scrutiny is required
to resolve the detailed mechanism(s) of anterograde axonal
transport of APP.

We recently found that APP exits the trans-Golgi network
(TGN) in intimate association with calsyntenin-1, a
transmembrane cargo-docking protein for Kinesin-1-mediated

anterograde axonal transport of membrane-bounded organelles
(Vogt et al., 2001; Hintsch et al., 2002; Konecna et al., 2006;
Ludwig et al., 2009). Like APP, calsyntenin-1 is subject to two-

step proteolytic processing. After the first cleavage in the
juxtamembrane region of its ectodomain (Vogt et al., 2001),
the C-terminal fragment of calsyntenin-1 is cleaved within its
transmembrane segment by c-secretase (Araki et al., 2003). A

recent study indicates that the a-secretases ADAM10 and
ADAM17, but not the b-secretase BACE1, are capable of
cleaving calsyntenin-1’s ectodomain (Hata et al., 2009).

Using organelle immunoisolation and proteomics, we recently
demonstrated that calsyntenin-1 organelles contain components
characteristic of vesicles of endosomal pathways (Steuble et al.,

2010). Axons contained at least two distinct, non-overlapping
calsyntenin-1-containing transport packages, one characterized
by the presence of APP and early-endosomal markers (Rab5), the
other with recycling-endosomal markers (Rab11) and no APP

(Steuble et al., 2010). In accordance with the identification of
calsyntenin-1/APP vesicles as a distinctive carrier for anterograde
axonal transport of APP we found that calsyntenin-1 and APP

exit the TGN together in a vesicle with early-endosomal
characteristics (Ludwig et al., 2009) and that all calsyntenin-1
vesicles are transported anterogradely along axons (Konecna et

al., 2006). RNAi studies in cultured neurons indicated that down-
regulation of calsyntenin-1 results in enhanced APP processing
(Ludwig et al., 2009; Vagnoni et al., 2012). Based on the

observation of reduced levels of calsyntenin-1 in brains of
humans affected with Alzheimer’s disease a pathogenic role of
calsyntenin-1 dysfunction and Alzheimer’s disease was
suggested (Vagnoni et al., 2012).

Here we set out to characterize the role of calsyntenin-1 and
calsyntenin-1-containing vesicles in axonal APP transport and
proteolytic processing. Because work of several laboratories

located proteolytic processing of APP by a- and b-secretases in
the axonal periphery, we wondered whether anterograde axonal
transport of full-length APP included mechanisms to protect APP

from its processing proteases during transport to its peripheral
destination. The b-secretase has been unequivocally identified as
the aspartyl protease BACE1 over a decade ago (Vassar, 2004).

In contrast, the molecular identity of a-secretase has long

remained controversial. The most frequently discussed
candidates were members of the ADAM (a disintegrin and
metalloprotease) family, ADAM9, ADAM10, and ADAM17

(Koike et al., 1999; Lammich et al., 1999; Slack et al., 2001).
However, studies over the past decade have accumulated
evidence that the physiologically most relevant a-secretase
responsible for APP processing in the brain is ADAM10 (Kuhn

et al., 2010; Jorissen et al., 2010). The role of ADAM9 in a-
secretase cleavage of APP was discredited mainly by its failure to
cleave an APP-derived peptide at the a-cleavage site in vitro

(Roghani et al., 1999) and the finding that a-secretase-derived
cleavage products of APP were not reduced in mice lacking
ADAM9 (Weskamp et al., 2002). ADAM17 was shown to be

mainly expressed in astrocytes and endothelial cells, but not in
neurons (Goddard et al., 2001) and, in accordance with this
observation, we did not find ADAM17 in immunoisolated

calsyntenin-1 vesicles (supplementary material Fig. S1).

We show here that calsyntenin-1/APP organelles that are
cotransported anterogradely along axons contain BACE1, but no
ADAM10, both at the level of the growth cone and along the

axon. The presence of BACE1 raised speculations about a
premature cleavage of APP along its anterograde axonal path.
However, incubation studies with immunoisolated vesicles

indicated that APP contained in calsyntenin-1/APP organelles
was stable, implying that calsyntenin-1 provides a protective
mechanism for axonal transport of APP. After arrival in
endosomes of the growth cone, APP may be released from its

protective complex via cleavage of calsyntenin-1 by endocytosed
ADAM10.

Results
BACE1, but not ADAM10, is present in calsyntenin-1/
APP organelles

Full-length APP that is lost by proteolytic cleavage during its

local recycling in the growth cone may be replenished by
calsyntenin-1-dependent anterograde delivery of APP to EEs of
growth cones (Steuble et al., 2010). To further characterize
the axonal calsyntenin-1/APP carrier, we immunoisolated

calsyntenin-1, APP, syntaxin13, Rab11, and Rab5 vesicles and
tested them for the presence of ADAM10 and BACE1 (Fig. 1A–
E). Conversely, we immunoisolated ADAM10 and BACE1

organelles with antibodies directed against cytoplasmic epitopes
of ADAM10 and BACE1, respectively, and tested them for their
content of calsyntenin-1, APP, as well as a series of established

organelle markers (Fig. 1F,G). Organelle immunoisolations were
performed with specific antibodies against marker proteins and
magnetic Dynabeads M-280 decorated with anti-IgG (Fig. 1A).
Protocol and specificity of the previously established

immunoisolations of calsyntenin-1, syntaxin13, Rab11, and
Rab5 organelles were reported previously (Steuble et al., 2010).
The specificity of the immunoisolations of APP, ADAM10, and

BACE1 organelles is demonstrated in Fig. 1B. Calsyntenin-1
immunoisolates contained BACE1, but not ADAM10 (Fig. 1C,
boxed). In contrast, APP, syntaxin13, and Rab5 immunoisolates

contained both BACE1 and ADAM10 (Fig. 1D,E, boxed), while
Rab11 immunoisolates were devoid of both (Fig. 1D, boxed).
Because Rab11 immunoisolates did not contain BACE1, we

concluded that BACE1 was selectively associated with early-
endosomal calsyntenin-1/APP carriers. The absence of ADAM10
from calsyntenin-1 immunoisolates indicated separate
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anterograde axonal transport for ADAM10 and calsyntenin-1-

associated APP.

Separate trafficking of ADAM10 and calsyntenin-1-associated

APP was corroborated by the absence of calsyntenin-1 from

ADAM10 immunoisolates (Fig. 1F, black box). Because

ADAM10 immunoisolates did not contain Rab11 (Fig. 1F) and

Rab11 immunoisolates did not contain ADAM10 (Fig. 1D,

boxed), we concluded that ADAM10 was also absent from

early endosomes (REs) of the slow recycling route. Together,

these results indicated that ADAM10 is transported by a

calsyntenin-1-free organelle, presumably on a secretory route.

ADAM10 is a resident of early endosomes

Besides the expected plasma-membrane marker syntaxin4

(Fig. 1F, green box), ADAM10 immunoisolates also contained

the EE marker Rab5 and the pan-endosomal marker syntaxin13

Fig. 1. See next page for legend.
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(Fig. 1F, red box). Conversely, Rab5 immunoisolates contained

active ADAM10 (Fig. 1E, green box), but were devoid of

syntaxin4. The absence of plasma-membrane components from

our Rab5-based preparations of EEs implies that ADAM10 is

present in EEs (Fig. 1E). As Western blots showed active

ADAM10, but not its pro-form in syntaxin 13 and Rab5

immunoisolates (Fig. 1D,E, arrowhead), we further concluded

that ADAM10 reaches EEs upon activation at the plasma

membrane and subsequent endocytosis, rather than by direct

delivery to EEs on an anterograde route.

BACE1 colocalizes with APP in anterogradely transported
axonal calsyntenin-1/APP organelles

BACE1 immunoisolates contained calsyntenin-1, APP, the pan-

endosomal marker syntaxin13, as well as the EE marker Rab5,

but not the RE marker Rab11 (Fig. 1G). Therefore, we concluded

that BACE1 immunoisolates comprised a substantial fraction of

early-endosomal vesicles. This is further supported by the

abundance of BACE1 in Rab5 immunoisolates (Fig. 1E, green

box).

To localize BACE1-containing vesicles in axons and growth

cones, we performed double-staining of dissociated hippocampal

neurons after 4 DIV with antibodies against calsyntenin-1, APP,

syntaxin13, and the RE marker Rip11. We used an antibody

against Rip11, a Rab11-binding protein, as a substitute marker

for Rab11, because we could not find a suitable anti-Rab11

antibody for immunocytochemistry. Axons were distinguished

from dendrites by staining for hypo-phosphorylated Tau-1

(Kempf et al., 1996). As documented in Fig. 2, we found a

strong colocalization of BACE1 with calsyntenin-1, APP, and

syntaxin13 both along axons and in the C-domain of growth

cones, while considerably less overlap was found in the P-domain

of growth cones (Fig. 2A, a1–c4; Fig. 2B, a1–c4; Fig. 2C–E).

The fractions of Rip11 vesicles containing BACE1 were low (2–

5%) in all regions examined (Fig. 2A, d1–d4; Fig. 2B, d1–d4;

Fig. 2C–E).

The reduction of BACE1 from calsyntenin-1, APP, and

syntaxin13 puncta at the transition from the C- to the P-region

is consistent with the notion that axonally transported BACE1

accumulates in EEs and that EEs are the main site of BACE1

action (Koo and Squazzo, 1994; Perez et al., 1999; Kinoshita et

al., 2003; Rajendran et al., 2006; Rajendran et al., 2008; He et al.,

2007). In summary, the distribution pattern of BACE1 along the

axon and in the growth cones strongly resembled that of early-

endosomal calsyntenin-1/APP organelles. In contrast, only very

little colocalization of BACE1 with Rip11 was found.

To corroborate the association of BACE1 with the anterograde

trajectory of axonal calsyntenin-1/APP/BACE1 vesicles we

expressed combinations of fluorescently tagged calsyntenin-1,

APP, BACE1 in cultured hippocampal neurons and tracked their

vesicular migration along axons by live-imaging. Anterograde

tracks clearly outnumbered retrograde tracks for all tested

components and the tagged molecules co-localized in most of

the tracks (Fig. 3A–C). Approximately 73% of calsyntenin-1-

eGFP, 69% of calsyntenin-1-mRFP, 74% of APP-mRFP, and

72% of BACE1-eGFP transport packages moved in anterograde

direction. Likewise, 77% of calsyntenin-1/APP, 69% of

calsyntenin-1/BACE, and 69% of APP/BACE vesicles were

associated with anterograde tracks (Fig. 3D–F). These results

indicated that a substantial fraction of APP and its b-secretase

BACE1 are co-transported anterogradely along axons in

calsyntenin-1/APP-positive carriers to EEs in the C-domain of

growth cones.

Calsyntenin-1 of the anterograde axonal calsyntenin-1/APP
route is proteolytically degraded in early endosomes in the
C-region of the growth cone

We previously speculated that early-endosomal, APP-positive

and Rab11-negative calsyntenin-1 transport packages cease their

anterograde axonal trajectory in EEs of growth cones through

proteolytic cleavage of calsyntenin-1 (Steuble et al., 2010). To

test this hypothesis, we analyzed syntaxin13, APP, and Rab11

immunoisolates for calsyntenin-1 cleavage products before and

after incubation at 37 C̊ for 30 min under conditions that preserve

their luminal pH and analyzed calsyntenin-1 processing using

Western blotting (Fig. 4A–G). Calsyntenin-1 remained unaltered

during incubation of APP immunoisolates (Fig. 4A). The C-

terminal fragment (CTF) of calsyntenin-1, which was abundant in

APP immunoisolates, was also stable during incubation.

Likewise, incubation of Rab11 immunoisolates did not result in

calsyntenin-1 proteolysis (Fig. 4B). In contrast, incubation of

syntaxin13 immunoisolates resulted in the appearance of cleaved

calsyntenin-1 ectodomain (Fig. 4C–F). Concomitantly, the

amount of calsyntenin-1 CTF was reduced after incubation

Fig. 1. Calsyntenin-1/APP vesicles contain BACE1, but no ADAM10. (A) Schematic representation of vesicle immunoisolation. Vesicle immunoisolations were
performed with antibodies against cytosolic epitopes of vesicle-associated proteins and Dynabeads coated with protein A. Captured vesicles were isolated and
washed. Vesicular proteins were eluted by lysis of the captured vesicles with a mild detergent. Note that the vesicular component bearing the antigen targeted for
immunoisolation is not or only partially found in the eluate, because of its strong binding to the antibody/protein A/bead complex. Its complete elution required

harsher conditions, e.g. boiling of the beads in SDS. Therefore, the antigen used for vesicle immunoisolation is not shown on the Western blots of the (mild) eluates.
Examples of antigen elutions under harsh condition from the beads are shown in the panels labeled ‘‘beads’’. (B) Specificity tests of anti-APP, anti-ADAM10, and
anti-BACE1 antibodies, performed by the addition of ,25 mg of recombinant antigen (GST-APPcyto, GST-ADAM10cyto, BACE1[485–501]). Saturation with
recombinant antigen prevented vesicle capture. (C) Calsyntenin-1 organelles contained BACE1, but no ADAM10 (black box). (D) APP and syntaxin13
immunoisolates contain a low level of active ADAM10 and abundant BACE1. Neither BACE1 nor ADAM10 were found in Rab11 immunoisolates. (E) Rab5
immunoisolates contain a small amount of active ADAM10 (arrowhead) and abundant BACE1 (green box). (F) ADAM10 immunoisolates are devoid of calsyntenin-
1, but contain a small amount of full-length APP (black box). They also contain the plasma membrane marker syntaxin4 (green box) and the early-endosomal marker

Rab5 (red box). (G) The composition of BACE1 immunoisolates is very similar to APP immunoisolates. Note that in BACE1 immunoisolates calsyntenin-1 and APP
are predominantly found in full-length forms. As mentioned above, the protein used as ligand was not or only partially found in the eluate, as its elution from the
beads required SDS (boxed bands). (H) Summary of the vesicular components characteristic for the two distinct, non-overlapping types of calsyntenin-1 vesicles.
Axonally transported calsyntenin-1-dependent replenishment vesicles (Cst1-RV) contain the early-endosomal marker Rab5 and are devoid of the recycling-
endosomal marker Rab11. Axonally transported calsyntenin-1-dependent recycling-endosomal vesicles (Cst1-RE) contain Rab11, but no Rab5. The rows below
indicate the components of APP, ADAM10, BACE1, Rab11, and Rab5 immunoisolates that support our conclusions. V1, vesicular fraction 1; Cst1, calsyntenin-1; +,

vesicle immunoisolation using the indicated antibody together with , 25 mg of recombinant antigen; 2, vesicle immunoisolation using the indicated antibody; ctrl,
control vesicle immunoisolation performed without the indicated antibody; f, full-length; ec, ectodomain; CTF, transmembrane stump; pro, pro-form; act, active
form; ER, endoplasmic reticulum; G, Golgi; TGN, trans-Golgi network; SV, secretory vesicle; PM, plasma membrane; Cst1-RV, calsyntenin-1-containing early-
endosomal replenishment vesicles; Cst1-RE, calsyntenin-1-containing recycling-endosomal vesicles.
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Fig. 2. See next page for legend.
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(Fig. 4C,D,G). Blockade of calsyntenin-1 CTF degradation by

DAPT indicated ongoing c-secretase cleavage in these organelles

(Fig. 4D,G). Juxtamembrane ectodomain cleavage of

calsyntenin-1 and production of calsyntenin-1-CTF was

prevented upon blockade of ADAM10 activity by the cell-

permeable Zn2+-chelator TPEN. In contrast, the selective b-

secretase inhibitor IV did not prevent ectodomain cleavage of

calsyntenin-1 and the production of calsyntenin-1-CTF

(Fig. 4C,E). Together, these results are consistent with recent

reports demonstrating calsyntenin-1 cleavage by ADAM10/17,

but not by BACE1 (Hata et al., 2009).

Based on our previous characterizations, we assumed that APP

immunoisolates contained predominantly components of early-

endosomal calsyntenin-1 vesicles that were on anterograde

axonal transport. Rab11 immunoisolates reflected the recycling-

endosomal fraction of calsyntenin-1 vesicles, which was devoid

of APP, while syntaxin13 immunoisolates reflected the sum of

endosomal vesicles. Therefore, our results imply that calsyntenin-

1 is proteolytically degraded in EEs.

Evidence for protection of APP from BACE1 during anterograde

axonal co-transport in calsyntenin-1 organelles

In contrast to calsyntenin-1, the full-length forms of APP

remained unaltered during incubation of syntaxin13 vesicles

(Fig. 4C,D,H–K). To understand the band pattern found in

the various vesicle immunoisolations we also analyzed the

maturational glycosylation pattern by cleaving glycoproteins of

the V1 fraction and syntaxin13 immunoisolates with PNGaseF

and EndoH (Fig. 4L). The single major band of calsyntenin-1

responded to PNGaseF with a clear down-shift, while EndoH

did not induce a change, indicating that calsyntenin-1 was

exclusively represented by its mature, fully glycosylated form in

these samples. Likewise, all three major bands of APP responded

to PNGaseF with a down-shift. EndoH, in contrast, left the upper

two bands of APP unchanged, but induced a down-shift of the

lowest band. In all samples, we found no differences in the band

patterns tested with antibodies against N- and C-terminally

located epitopes of APP. In accordance with previous analyses of

brain tissue samples (Buxbaum et al., 1998) and of cell lysates

from cultured cortical neurons (Hoey et al., 2009), we concluded

that the two upper high-molecular mass bands of APP identified

in the V1 membrane input and in syntaxin13 immunoisolates

(Fig. 4C,D) correspond to glycosylation variants of mature full-

length APP, while the lower band represents immature full-length

APP carrying high-mannose carbohydrate chains. APP in these

samples was not cleaved, as the band patterns obtained with

antibodies against the N- and the C-terminus of APP were

identical. Because the band pattern of APP in syntaxin13

immunoisolates did not change upon vesicle incubation, we

concluded that the bulk of APP is stable in syntaxin13-positive

endosomal compartments, including EEs, fast recycling

endosomes, as well as the calsyntenin-1-dependent anterograde

axonal carriers. The fact that the APP fraction that is degraded in

EEs during its peripheral recycling pathway was not detected in

syntaxin13 immunoisolates indicates that APP of the calsyntenin-

1/APP trafficking route vastly predominates over the amount of

APP contained in the other APP-containing vesicles, including

early-endosomal APP.

In accordance with the notion of a calsyntenin-1-dependent,

protected route for anterograde axonal transport of APP,

calsyntenin-1 immunoisolates contained predominantly full-

length APP and their incubation did not result in APP processing

(Fig. 4M). This is in striking contrast to early-endosomal Rab5 and

Rab4 immunoisolates in which cleaved APP was predominant

(Steuble et al., 2010). Taken together, these results indicate that

APP is not cleaved along its anterograde transport in which it is

accompanied by calsyntenin-1. Degradation of APP takes place

upon arrival in EEs of growth cones and proteolytic degradation of

calsyntenin-1.

Fig. 2. Calsyntenin-1/APP/BACE1 transport packages are found along axons and in growth cones. Immunofluorescence staining of dissociated hippocampal
neurons. Black-and-white masks (a4–d4) were generated to emphasize the colocalization in axons (A) and growth cones (B). Inserts (a4–d4) show stainings of the
axonal marker Tau-1. Note that BACE1 (a1–d1) colocalizes with calsyntenin-1 (a2,a3), APP (b2,b3), and Stx13 (c2,c3), but not with Rip11 (d2,d3). (C) Schematic
representation of the C- and P-region of the growth cone. (D) Fractions of BACE1 puncta that are colocalized with calsyntenin-1, APP, syntaxin13, and Rip11 puncta.

Note that BACE1 colocalizes with calsyntenin-1, APP, and syntaxin13 along axons and in the C-domain of growth cones. (E) Fractions of calsyntenin-1, APP,
syntaxin13, and Rip11 puncta that are colocalized with BACE1 puncta. Note that the colocalization with BACE1 is confined to axons and the C-domain of growth
cones. Values represent mean6s.e.m. (*, P#0.05; **, P#0.005; ***, P#0.001; t-test; n54 growth cones; n58 axons). Ax, axon; C, C-domain of growth cone;
P, P-domain of growth cone. Scale bars, 5 mm in Ad4, 10 mm in Bd4.

Fig. 3. Live-imaging demonstrates anterograde axonal co-transport of

calsyntenin-1, APP, and BACE1. Representative kymographs of axons after

co-infection of primary cultures of hippocampal neurons with adenoviral
expression vectors at DIV7. (A) Cst1-eGFP and APP-mRFP. (B) BACE1-eGFP
and Cst1-mRFP. (C) BACE1-eGFP and APP-mRFP. Note that trajectories are
predominantly in anterograde direction. (D) Pairwise combinations demonstrate
.60% colocalization of calsyntenin-1, APP, and BACE1. (E) Trajectories of
single puncta demonstrate that BACE1, APP and Cst1 are predominantly

moving anterogradely. (F) Over 70% of the colocalized puncta move
anterogradely. Values represent mean6s.e.m. (***, P#0.001; t-test;
n59–10 segments).
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Down-regulation of calsyntenin-1 results in premature
encounter of APP and ADAM10

Because ADAM10 was excluded from calsyntenin-1/APP

vesicles, we assumed that APP and ADAM10 did not encounter

each other until both had reached the plasma membrane via

distinct pathways. We tested whether reduced calsyntenin-1 levels

resulted in altered APP trafficking and premature contact of APP

with ADAM10. To this end we down-regulated calsyntenin-1

in hippocampal neurons by RNAi and performed

immunocytochemical double-staining for ADAM10 and APP

(Fig. 5). The specificity of anti-calsyntenin-1, anti-APP, and anti-

ADAM10 antibodies was demonstrated by the absence of an

immunofluorescence signal after pre-incubation of the antibody

with the corresponding antigen (supplementary material Fig. S2).

Down-regulation of calsyntenin-1 by RNAi was measured in

confocal images of cultured cortical neurons (Fig. 6A,B) and by

Fig. 4. Calsyntenin-1 is cleaved by ADAM10 in early endosomes. Immunoisolated organelles were solubilized immediately or after incubation for 30 minutes at
37 C̊ without or with inhibitors. Full-length calsyntenin-1 and APP, as well as their cleavage products, were assessed by Western blotting. The endosomal markers
Rab11, syntaxin13, and VAMP2 were used as loading controls. (A,B) Calsyntenin-1 is not cleaved in APP and Rab11 organelles. (C) Calsyntenin-1 cleavage in
syntaxin13 organelles is prevented by 20 mM ADAM10 inhibitor TPEN, but not by 10 mM BACE1 inhibitor IV. Note the decrease of the CTFs of both calsyntenin-1
and APP after incubation (asterisks). (D) Addition of 2 mM c-secretase inhibitor DAPT prevented the decrease of calsyntenin-1 and APP CTFs (asterisks).
(E–K) Densitometric quantification of calsyntenin-1 and APP cleavage in syntaxin13 organelles. (E) Ratios of calyntenin-1 ectodomain versus full-length. (F) Sums
of calsyntenin-1 ectodomain and full-length bands demonstrate equal gel loading. (G) Degradation of calsyntenin-1 CTF during incubation is prevented by DAPT.

(H) Full-length APP is stable. (I) APP CTFs are decreased after incubation, their degradation is blocked by DAPT. (K) VAMP2 levels remain unaltered throughout
the incubation experiments. Number of measurements obtained in at least three independent experiments are given within the bars; *, P,0.05; **, P,0.005;
***, P,0.001, paired t-test relative to t50 h; ###, P,0.001, paired t-test relative to t50.5 h DMSO. (L) Deglycosylation of V1 membranes (left panel) and
syntaxin13 organelles (right panel) with PNGaseF and endoglycosidase H. The N-terminal (APPN) and the C-terminal (APPC) antibodies detected identical band
patterns in all samples. No cleaved ectodomain of APP can be detected. (M) APP is not degraded in calsyntenin-1 vesicles. V1, vesicular fraction 1; ctrl, control
vesicle immunoisolation performed without the indicated antibody; f, full-length; ec, ectodomain; CTF, transmembrane stump; TPEN, an inhibitor of Zn2+-dependent

matrix metalloproteases; IV, b-secretase inhibitor IV; DAPT, c-secretase inhibitor DAPT; DMSO, dimethyl sulfoxide; APPN, antibody against N-terminal epitope(s)
of APP; APPC, antibody against C-terminal epitope(s) of APP; N+O-APP695, N- + O-glycosylated mature form of APP695; N-APP695, high-mannose N-
glycosylated immature form of APP695.
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quantification of the band intensities in Western blots (Fig. 6A).

Down-regulation of calsyntenin-1 by 52% (Fig. 5A,B)

substantially increased the colocalization of APP and ADAM10

both in axons and growth cones (Fig. 5C). Calsyntenin-1-specific

shRNA increased the fraction of ADAM10 vesicles containing

APP from 6% to 21% in axons and from 9% to 26% in growth

cones, compared to treatment with nonsense shRNA (Fig. 5D).

Conversely, the fraction of APP vesicles containing ADAM10

increased from 4% to 19% in axons and from 8% to 27% in growth

cones in the presence of calsyntenin-1-specific shRNA (Fig. 5E).

These results suggest that the reduction of the transport capacity

for APP in the sheltered calsyntenin-1/APP pathway results in

mis-sorting of APP in the TGN and ectopic TGN exit with other

post-Golgi carriers. Mis-sorting leads to premature exposure of

APP to ADAM10.

Abrogation of anterograde axonal calsyntenin/APP transport

enhances both a- and b-cleavage of APP and results in

increased Ab release

We next examined whether mis-sorting of APP into ADAM10-

containing carriers affected its proteolytic processing. Upon

down-regulation of calsyntenin-1 by RNAi, APP cleavage at both

the a- and the b-site was enhanced (Fig. 6A,B). The normalized

a-C99/b-C83 ratio after calsyntenin-1 RNAi was 1.05 and did not

significantly differ from the a-C99/b-C83 ratio found in the

nonsense controls. Because a proportionally equal increase of

both C-terminal fragments could result either from equally

enhanced cleavage at the a- and b-site or reduced c-cleavage, we

also determined Ab after RNAi down-regulation of calsyntenin-

1. Because it has been reported that a substantial proportion of

the intracellular Ab pool is released into the extracellular space

Fig. 5. Downregulation of calsyntenin-1 by RNAi results in axonal cotransport of APP and ADAM10. Hippocampal neurons were infected with rAAVs (shNS,
shCst1) and immunostained after 10 DIV. (A) Double-staining for calsyntenin-1 (a1,b1) and eGFP (a2,b2) of a representative neuron expressing shNS::eGFP (a) and a
neuron expressing shCst1::eGFP (b). (B) Relative fluorescence intensities of cell somas (dotted lines in A). Values indicate mean6s.e.m. (**P#0.005; t-test; n52,

with n53 each). (C) Confocal microscopic images of growth cones after immunocytochemical staining of ADAM10 and APP. Black-and-white masks (a4,b4) were
generated to emphasize the colocalization. Inserts (a4,b4) display eGFP expression. Note that colocalization of ADAM10 (a1,b1) with APP (a2,b2) is increased
when calsyntenin-1 is down-regulated (b1–b4). (D) Fraction of ADAM10 puncta which are colocalized with APP puncta. (E) Fraction of APP puncta which are
colocalized with ADAM10 puncta. Values represent mean6s.e.m. (*, P#0.05; ***, P#0.001; t-test; n54, with n52–4 growth cones and axons each, total n513
each). Scale bars, 10 mm in Ab2 and Cb4. shNS, RNAi with a short-hairpin RNA construct containing a nonsense sequence; shCst1, RNAi with a short-hairpin RNA
construct containing a calsyntenin-1-derived sequence; R140, anti-calsyntenin-1 antibody 140, EGFP, anti-EGFP antibody; Ax, axon; GC, growth cone.
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(Haass and Selkoe, 2007), we quantified Ab levels in neuronal

culture medium after down-regulation of calsyntenin-1, using

ELISA (Fig. 6C–E). Compared to control cultures, Ab secretion

was significantly increased by 13% from 260616 pg/ml to

296621 pg/ml, P#0.005 (Fig. 6D). To test whether the detected

Ab (1–40) was attributable to release from live neurons we

compared release in the absence and presence of the c-secretase

inhibitor DAPT. DAPT reduced the amount of released Ab by

77%, P#0.001 (Fig. 6D) and resulted in the accumulation of

calsyntenin-1 and APP CTFs (Fig. 6E). The increase of Ab
argued against inhibition of c-secretase as a consequence of

calsyntenin-1 down-regulation. Protein levels of ADAM10,

BACE1, L1-CAM, syntaxin13, Rab11, and b-actin were

identical throughout experimental treatments. We concluded

that calsyntenin-1 protects APP from proteolytic processing by its

a- and b-secretases during axonal transport.

Discussion
Immunoisolated trafficking organelles comprise a combination
of multiple vesicular subpopulations – a methodological note

Trafficking organelles are elements of a highly dynamic system

of numerous complex and interconnected pathways. The

contacts, fusions, and scissions of distinct organelles result in

the exchange of ‘‘organelle-specific’’ components. To maintain

the proper composition of organelles, components ‘‘lost in

action’’ are returned to the location of their function by

recycling pathways (Maxfield and McGraw, 2004). This

explains why most, if not all of the well characterized

‘‘vesicular marker proteins’’ are also found at lower

concentrations in vesicles fusing to or leaving from the

respective organelle, as well as in vesicles serving as recycling

pathways to maintain the specific molecular inventory of the

respective vesicle.

Vesicular cargo proteins are shipped along their intracellular

path from one organelle to the other. Therefore, vesicle

immunoisolations based on cargo proteins represent a mixture

of organelles that are visited by the cargo protein along its

trajectory. Also, when vesicles are isolated based on a bona fide

‘‘specific’’ structural or functional component of a trafficking

organelle, such as syntaxin13 or Rab5, a clean population of the

respective organelle cannot be expected.

Attributable to the composite nature of most immunoisolates,

the detection of a given protein by mass spectrometry or Western

blotting does not allow for its unequivocal localization. To

overcome this drawback, we generated immunoisolates based on

partially overlapping vesicular markers. This approach allowed

us to more specifically assign the localization of a protein, based

on its presence or absence in two or more partially overlapping

populations.

The axonal calsytenin-1/APP (Rab11-negative) vesicles
represent an anterograde axonal route for delivery of APP and
BACE1 to the rapid (early-endosomal) APP recycling pathway
of the growth cone

Live-imaging demonstrated that calsyntenin-1-containing

organelles move in anterograde direction along axons, based on

a specific interaction of calsyntenin-1 with Kinesin-1 (Konecna

et al., 2006; Araki et al., 2007). Subsequent proteomic and

immunocytochemical characterizations revealed that the early-

endosomal fraction of calsyntenin-1 organelles contains APP

Fig. 6. Downregulation of calsyntenin-1 by RNAi results in enhanced APP processing and increased secretion of Ab. Cortical neurons were infected with
rAAVs expressing a hairpin targeting calsyntenin-1 (shCst1) or a nonsense hairpin (shNS), together with eGFP. (A) Western blot of cell lysates. The signal indicated
equal expression of the recombinant proteins. (B) Quantification of Western blots. Values indicate mean6s.e.m. (*, P#0.05, **, P#0.005, ***, P#0.001; paired t-

test; n53, with n54 each). (C–E) Measurement of Ab secretion. (C) Cortical neurons were infected with rAAV-shCst1 or rAAV-shNS. At DIV12 new medium with
DAPT (2 mM) or DMSO carrier was added. Analysis was at DIV14. (D) ELISA of secreted Ab (1–40) from four experiments. Values indicate mean6s.e.m.. n514
(DMSO) and n513 (DAPT); **, P#0.005; ***, P#0.001, paired t-test. (E) Immunoblot showing the CTFs of calsyntenin-1 and APP at DIV14. Syntaxin13, Rab11,
and b-actin served as loading controls. f, full-length; st, transmembrane stump; b-C99, C-terminal transmembrane stump after b-secretase cleavage; a-C83, C-
terminal transmembrane stump after a-secretase cleavage; N+O-APP695, N- + O-glycosylated mature form of APP695; N-APP695, high-mannose N-glycosylated
immature form of APP695; rAAV, recombinant adeno-associated virus containing an expression cassette of the shRNA construct; DAPT, c-secretase inhibitor DAPT;
DMSO, dimethyl sulfoxide.
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(Steuble et al., 2010). In extension of these studies, we showed
here that BACE1 colocalized with calsyntenin-1, APP, and

syntaxin13 along axons and in growth cones. We propose that
calsyntenin-1, APP, and BACE1 are sorted at the TGN for
common post-Golgi anterograde transport. This view is supported

by our previous data in COS7 cells, in which calsyntenin-1 and
APP intimately colocalized in the TGN and left the TGN together
via the formation of tubular structures (Ludwig et al., 2009).

Large pleiomorphic structures in the C-region of growth cones
represent the distal end point of the axonal calsyntenin-1/APP
trajectory (Steuble et al., 2010). In accordance, live organelle

tracking revealed the fusion between calsyntenin-1/APP-tubular
structures emerging from the TGN and syntaxin13-labeled
structures with early-endosomal morphology (Ludwig et al.,
2009). Together, these results strongly suggest that the combined

anterograde axonal transportation of APP and BACE1 in
calsyntenin-1/Kinesin-1-powered vesicles ends in sorting
endosomes of the C-region of the growth cone. Such sorting

endosomes have been characterized as a major hub for the
peripheral recycling of adhesive and growth-promoting cell
surface proteins of the growth cone (Kamiguchi and Lemmon,

2000; Kamiguchi, 2003).

Calsyntenin-1/APP organelles shelter APP during anterograde
axonal transport from contact with ADAM10 and protect it from
co-transported BACE1

Both organelle immunoisolation and immunocytochemistry

characterized the calsyntenin-1/APP vesicle as a carrier in
which APP is sheltered from ADAM10. We previously found
that calsyntenin-1 is essential for the formation of the

calsyntenin-1/APP carrier in the TGN and speculated that the
absence of calsyntenin-1 may result in leakage of APP into other
anterograde carriers (Ludwig et al., 2009). Here, we show that

down-regulation of calsyntenin-1 indeed abolishes the separate
anterograde trafficking of APP and ADAM10 along axons. Thus,
a reduced capacity of the calsyntenin-1/APP route results in
premature encounter of APP and ADAM10, which in turn

provides a plausible explanation for the increased a-cleavage
found as a result of RNAi-mediated down-regulation of
calsyntenin-1.

We also found that a substantial proportion of BACE1 destined
for EEs of the growth cone is transported along axons together
with APP. Our results are in accordance with a study indicating a

common Kinesin-mediated transport compartment for BACE and
APP in axons of the sciatic nerve, the dorsal root ganglia, and the
corpus callosum (Kamal et al., 2001). In contrast, a study in

axons of retinal ganglion cells indicated separate transport of
YFP-APP and CFP-BACE1 (Goldsbury et al., 2006). Possible
explanations for such apparently conflicting observations include

differences in the molecular cargo of the distinct trafficking
organelles in different neuronal populations, as well as
experimentally induced alterations in the molecular cargo due

to overexpression of tagged proteins.

The colocalization of BACE1 and APP during calsyntenin-1-
mediated axonal transport suggested that b-cleavage of APP may

occur before it reaches the growth cone. However, several studies
identified the early endosome as the major site of b-cleavage of
APP that was imported via endocytosis from the plasma

membrane (Koo and Squazzo, 1994; Perez et al., 1999;
Kinoshita et al., 2003; Rajendran et al., 2006; Rajendran et al.,
2008; He et al., 2007). Consistent with this concept, we found

predominantly full-length APP in calsyntenin-1, APP, and
BACE1 immunoisolates, indicating that APP is not or only

slowly processed during axonal transport. This implies the
existence of a mechanism that protects APP from proteolysis en
route to the growth cone. Several pieces of circumstantial

evidence point to calsyntenin-1 as an essential protective agent.
Firstly, calsyntenin-1 and APP co-localize from TGN exit to the
early endosomal sorting compartment in the C-domain of the
growth cone. Secondly, the EE, the major site of APP cleavage

by BACE1, coincides with the endpoint of calsyntenin-1/APP
colocalization through proteolytic cleavage of calsyntenin-1.
Thirdly, knock-down of calsyntenin-1 via RNAi markedly

increased the relative amounts of b-CTFs of APP and the
secretion of Ab. Fourthly, APP cleavage in the EE was reported
to depend on its ongoing endocytosis from the plasma membrane

(Perez et al., 1999; Carey et al., 2005; Cirrito et al., 2008),
indicating that endocytosed APP is preferred over anterogradely
delivered APP for BACE1 cleavage in EEs.

The mechanism that keeps BACE1 away from APP or that
inhibits its activity during its calsyntenin-1/Kinesin-1-mediated
anterograde transport is open to conjecture. A mechanism

controlling BACE1 activity via redistribution between lipid
domains could involve the X11/Mint proteins. The interaction of
X11/Mint proteins with APP was found to slow down cellular
APP processing (Borg et al., 1998). The formation of a tripartite

complex of X11b/Mint2 bound directly to the cytoplasmic
segments of calsyntenin-1 and APP was subsequently shown to
retard APP processing (Araki et al., 2003).

The reticulon family, in particular reticulon-3 and reticulon-4/
Nogo, may directly inactivate BACE1 (He et al., 2004;
Murayama et al., 2006). Similarly, complex formation with

CSS, the copper chaperone for superoxide dismutase, could
inactivate BACE1 (Angeletti et al., 2005). Recent reports indicate
an interaction between X11/Mint proteins and CSS (McLoughlin

et al., 2001). Based on these observations, it has been suggested
that BACE1 could be connected to the APP/X11-complex via
CSS and that the formation of a neuronal APP/X11/CSS/BACE1

complex could have an inhibitory effect on BACE1 (Miller et al.,
2006). Combining these views, it is tempting to speculate that
calsyntenin-1 may interact with the APP/X11/CSS/BACE1

complex in a way that enhances its inhibitory effect on BACE1.

Our analyses identified several components of these BACE1-
inactivating mechanisms in calsyntenin-1 vesicles. We identified

reticulon-4/Nogo by mass spectrometry and X11b/Mint2 by
Western blotting (Steuble et al., 2010). Therefore, it is plausible
that the BACE1-inhibiting effect of these compartments

maintains APP in full-length form during its calsyntenin-1-
mediated anterograde axonal trajectory.

Cleavage of calsyntenin-1 by endocytosed ADAM10 may
terminate the protection of APP and release axonally
transported APP into the peripheral cycling pathway

Our studies which aimed at cell-surface biotinylation of
calsyntenin-1 failed despite numerous attempts (not shown),
thus suggesting that calsyntenin-1 was proteolytically processed

in an internal compartment or within a very short time after its
arrival at the plasma membrane. Similarly, the striking clearance
of calsyntenin-1 from APP vesicles at the transition from the C-

to the P-domain of growth cones suggested an internal
compartment as a major site of calsyntenin-1 proteolysis
(Steuble et al., 2010). Based on these and the results of our
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vesicle incubation studies demonstrating that calsyntenin-1 is
cleaved in syntaxin13 immunoisolates, but not in Rab11 and APP

immunoisolates, we concluded that calsyntenin-1 is cleaved in
early endosomes. Accordingly, most cleaved calsyntenin-1 was
found in Rab5 immunoisolates.

A recent report indicated that both ADAM10 and ADAM17,

but not BACE1, are capable of cleaving calsyntenin-1 (Hata et
al., 2009). Because ADAM17 was reported to be expressed in
astrocytes and endothelial cells, but not in neurons (Goddard et

al., 2001), we suspected ADAM10 to be the principle terminator
of the calsyntenin-1-mediated protection of APP along
anterograde axonal transport. We found a relatively strong

immunoreactivity for active ADAM10 in Rab5 immunoisolates
indicating that some ADAM10 may be endocytosed from the
plasma membrane into EEs. In addition, active ADAM10 was
found in syntaxin13 and APP, but not in Rab11 or calsyntenin-1

immunoisolates. Contamination with plasma membrane
components as a trivial explanation for the detection of
ADAM10 in these immunoisolates could be excluded based on

the absence of syntaxin4. Because the major fraction of
ADAM10 is thought to reside on the plasma membrane and
because calsyntenin-1 vesicles do not contain ADAM10, we

conclude that endocytosis from the plasma membrane is the
major origin of early-endosomal ADAM10. This conclusion is
supported by a recent demonstration of enhanced surface

expression of ADAM10 after inhibition of endocytosis (Carey
et al., 2011).

Indeed, ADAM10, but not BACE1, is capable of ectodomain
cleavage of calsyntenin-1 (Hata et al., 2009). Selective cleavage

of calsyntenin-1 in EEs could disassemble the calsyntenin-1-
dependent APP-protecting complex and release APP, which in
turn could join the bulk of APP cycling between the plasma

membrane and EEs of the growth cone. Such a de-protection
mechanism is conceivable under the assumption that calsyntenin-
1 is more sensitive to juxtamembrane cleavage by ADAM10 than

APP. Indeed, there is evidence for such a scenario. Most
calsyntenin-1 reaching the plasma membrane via the calsyntenin-
1/Rab11 route seems to be rapidly cleaved, as we could not detect
any full-length calsyntenin-1 at the plasma membrane. In

contrast, only a fraction of full-length APP reaching the plasma
membrane is cleaved by ADAM10, while the rest is endocytosed
and enters the peripheral APP recycling pathway (Haass et al.,

1992; Koo et al., 1996; Yamazaki et al., 1996; Marquez-Sterling
et al., 1997; Groemer et al., 2011). Thus, full-length APP in EEs
originates from two sources: from anterograde delivery via

calsyntenin-1-mediated axonal transport, and from endocytosis.
Previous reports indeed support the notion that APP cleavage in
EEs may affect a fraction of both endocytosed and anterogradely

transported APP. Based on the observation that blockade of
endocytosis reduced the secretion of Ab by , 70%, it was
concluded that primarily endocytosed APP was cleaved (Cirrito
et al., 2008). In contrast, evidence for APP cleavage without prior

surface exposure was provided in a study where exocytosis was
blocked (Khvotchev and Südhof, 2004).

Altogether, our studies clearly characterize calsyntenin-1 as a

one-way protein. Its functional journey starts when it orchestrates
the formation of a vesicular or tubulovesicular structure at the
TGN to recruit Kinesin-1, APP and BACE1 for plus-end-directed

transport along microtubules (Ludwig et al., 2009). The journey
ends with its proteolytic degradation upon arrival at the
endosome of the growth cone (Fig. 7).

Materials and Methods
Antibodies and reagents
Polyclonal rabbit anti-calsyntenin antibodies R85 and R140 have been described
earlier (Konecna et al., 2006; Steuble et al., 2010). Anti-Rip11 was provided by
Mitsuo Tagaya (Tokyo University of Pharmacy and Life Science) and anti-L1-
CAM was provided by Vance Lemmon (University of Miami). Anti-nicastrin
(Ab3444) was from Abcam, Cambridgeshire, UK. Anti-GM130 (610822), anti-
Mint2 (76120), anti-Rab11 (6100656), anti-Rab4 (610888), anti-syntaxin4
(610439), and anti-syntaxin6 (610635) were from BD Biosciences, Allschwil,
Switzerland. Anti-ADAM10 (422751) was from Calbiochem, Läufelfingen,
Switzerland. Anti-APP (MAB348), anti-PS1 (MAB5232), and anti-Tau-1
(MAB3420) were from Chemicon, Lucerne, Switzerland. Anti-Rab11 (71-5300)
was from Invitrogen, Basel, Switzerland. Anti-GFP (1181446001) was from
Roche, Basel, Switzerland. Anti-Pen-2 (36-7200), anti-Grp78 (Sc-1050), anti-
Mint2 (Sc-30135), anti-PS1 (Sc-7860), anti-Rab5a (Sc-309), and anti-Rab5 (Sc-
46692) were from Santa Cruz Biotechnology, Nunningen, Switzerland. Anti-
ADAM10 (A2726), anti-APP (A8717) and anti-b-actin (A5316) were from Sigma-
Aldrich, Buchs, Switzerland. Anti-syntaxin13 (110132), anti-syntaxin16 (110162),
anti-VAMP2 (104211), anti-VAMP4 (136002), and anti-Vti1a (165002) were from
Synaptic Systems, Göttingen, Germany. Anti-BACE1 (PA1-757) was from
Thermo Scientific, Wohlen, Switzerland. Fluorescent secondary antibodies (Cy3-,
FITC-, Cy5-, and DyLight649-conjugated) were from Jackson ImmunoResearch
Laboratories, West Grove, PA, USA and used at 2.5 mg/ml.

The c-secretase inhibitor DAPT (1 mM in DMSO) and TPEN, a cell-permeable
inhibitor of Zn2+-dependent matrix metalloproteases (10 mM in DMSO) were
purchased from Sigma-Aldrich. The b-secretase inhibitor IV (20 mM in DMSO)
was purchased from Calbiochem. N-glycosidase F and endoglycosidase H were
from Roche.

Subcellular fractionation of mouse brain and immunoisolation of
vesicular organelles
The V1 membrane fraction was prepared from P7 mouse brains by differential
centrifugation as previously described (Morfini et al., 2002; Konecna et al., 2006;
Steuble et al., 2010). Washed V1 pellets were resuspended in IP buffer (PBS,
320 mM sucrose, 5 mM EDTA, pH 7.4) and stirred for 1 h at 4 C̊. For
immunoblotting, 2 mg magnetic Dynabeads M-280 protein A (Invitrogen) were
incubated with 10 mg IgG for 40 min and washed four times in IP buffer. V1 inputs
were adjusted to ,0.7 mg/ml with IP buffer and incubated with pre-coated beads
for 1 h at 4 C̊. Beads with immunoisolated organelles were washed 10 times with
1 ml IP buffer, once with 20 mM Tris?Cl, pH 7.4, and subsequently incubated in
50 ml 20 mM Tris?Cl, pH 7.4, 0.1% (v/v) Triton X-100 for 30 min at 25 C̊.

For Western blotting, 20 mg protein from input and 40 ml eluate were resolved
on 4–12% NuPage Bis-Tris gels (Invitrogen). Bead contents were analyzed
separately. Immunoblots were imaged with a Fuji LAS-3000 Lite CCD camera
(Raytest AG, Wetzikon, Switzerland) and quantified using the AIDA 2D multi
labeling software (version 3.4; Raytest AG).

Fig. 7. Model of the itinerary of vesicular calsyntenin-1/APP for

anterograde axonal transport to the growth cone. Calsyntenin-1/APP/
BACE1 transport packages (black) deliver full-length APP to EEs in the C-

domain of growth cones, thus replenishing full-length APP lost in the rapid
recycling endosomal pathway of the growth cone by proteolysis. Calsyntenin-1/
Rab11/Rip11 transport packages (red) provide an independent APP-free
anterograde transport route, possibly corresponding to the anterograde axonal
leg of the long recycling pathway (Lasiecka and Winckler, 2011). ADAM10 is
transported on a calsyntenin-1-independent transport route. TGN, trans-Golgi
network; SV, secretory vesicle; RV, calsyntenin-1-containing early-endosomal

replenishment vesicle; RE, calsyntenin-1-containing recycling-endosomal
vesicle; EE, early endosome.

Sheltered anterograde axonal transport of APP 771

B
io

lo
g
y

O
p
e
n



For in vitro incubation experiments, immunoisolated organelles were incubated
for 30 min at 37 C̊ in PBS, pH 7.4, 2 mM MgCl2, 3 mM ATP, supplemented with
vehicle or 2 mM DAPT, 20 mM TPEN, and 10 mM b-secretase inhibitor IV,
respectively (Yamashiro et al., 1983).

Cultures of dissociated hippocampal and cortical neurons
For immunocytochemistry, 5,000 dissociated hippocampal cells/cm2 from E19
NMRI mice were plated onto poly-L-lysine-coated (Sigma-Aldrich) glass
coverslips and co-cultured face-to-face with a monolayer of astrocytes (Banker,
1980). For Western blotting, 500,000 dissociated cortical cells/cm2 were plated
onto poly-L-lysine-coated 12-well plates. Cells were grown in neurobasal medium
supplemented with B27, 5 mM glutamine, and antibiotics (penicillin/
streptomycin).

Immunocytochemistry
For immunofluorescence analysis, neurons were fixed in 4% paraformaldehyde,
4% sucrose in PBS, pH 7.4, for 10 min at room temperature. Samples were
blocked for 1 h in 10% fetal calf serum, 0.1% saponin in PBS, pH 7.4. Neurons
were then exposed to primary antibodies in 3% fetal calf serum, 0.1% saponin in
PBS, pH 7.4, overnight at 4 C̊, then incubated for 1 h with Cy3-, FITC-, Cy5-, or
DyLight649-conjugated secondary antibodies and mounted in Vectashield medium
(Vector Laboratories, Burlingame, CA, USA).

In some experiments, double-labeling had to be carried out with two primary
antibodies raised in the same species. In this case, neurons were first labeled with
the first primary antibody, washed, and incubated with an excess of goat anti-rabbit
Fab fragments (1:10) following the manufacturer’s instructions (Jackson
ImmunoResearch Laboratories). After extensive washing, cells were incubated
with the second primary antibody, followed by incubation with anti-goat and anti-
rabbit secondary antibodies. Two control experiments confirmed the specificity of
this approach. Firstly, it was shown that FITC-conjugated anti-rabbit secondary
antibody was not immunoreactive in the presence of primary rabbit antibody
masked with goat Fab fragments. This control served to stringently define the
confocal settings during imaging and image processing. Secondly, the staining
patterns of double-labeled cells were shown to be identical to immunostainings of
the respective antibodies alone.

Confocal images were taken with a Leica confocal laser scanning microscope
TCS-SP2 at a resolution of 102461024 pixels using a Leica PL Apo 636
(NA51.32) objective (Leica, Heerbrugg, Switzerland). Colocalization was
analyzed by ImageJ (version 1.386; National Institutes of Health, Betheseda,
MA, USA). Statistical analyses were performed with Prism (version 4.0; GraphPad
Software Inc, La Jolla, CA, USA). RGB images were used to determine the degree
of colocalization between the red, green, and blue channels using the
colocalization RGB plugin of ImageJ. Puncta were counted from binarized
images with the particle analyzer tool, minimum size of counted puncta set to 20
pixels. Data shown are mean6s.e.m. of at least four separate images.

Generation of recombinant adeno-associated viruses (AAV)
for RNAi
To generate calsyntenin-1 small hairpin knockdown construct pBlueU6-siCst1.1,
the promoter of the mouse U6 RNA gene (GenBank X06980) was amplified from
genomic DNA using oligonucleotides GCGGATCCGACGCCATCTCTA and
GCTCTAGAGCGTTAACAAGGCTTTTCTCCAAGG. The resulting PCR
product was digested with BamHI and XbaI and cloned into pBluescript II SK
(+) (Stratagene). A 19 nt sequence targeting mouse calsyntenin-1 (548–476 bp;
GenBank MMU289016) separated by a 9 nt spacer and followed by its 19 nt
reverse complementary sequence plus a termination signal consisting of five
thymidines was cloned into pBlueU6 immediately downstream of the U6
promoter. As a control, a 19 nt sequence derived from the Oryza sativa genome
(GenBank EF576615.1) was cloned into pBlueU6 to generate pBlueU6-nonsense
(NS) plasmid. The small-hairpin RNA expression cassettes in pBlueU6 were
subcloned into psubAAV2-CMV-eGFPN1 to generate psubAAV2-eGFP-siCst1.1
and psubAAV2-eGFP-NS. Helper virus-free recombinant adeno-associated viruses
(rAAVs) were generated in HEK293T by calcium phosphate cotransfection of
rAAV vector plasmid and pDG helper plasmid. Cells were collected and lysed
48 h post transfection. The rAAV particles were purified by iodixanol gradient
ultracentrifugation and concentrated with a Biomax-100K nominal molecular
weight limit (NMWL) filter device (Millipore UFC910024) (Grimm et al., 1998).

Dissociated hippocampal and cortical neurons were infected with equal amounts
of rAAVs on the day of plating and cultivated for 10 or 14 days. Imaging and
analysis was carried out by an experimenter who was blind to the kind of rAAV
applied.

Generation of recombinant adenovirus
APP-mRFP, BACE-eGFP, meGFP-Cst-1, and mRFP-Cst-1 were subcloned into a
transfer vector to generate infectious adenovirus H5, as previously described
(Frischknecht et al., 2008). Viral particles were purified by a single centrifugation

over a CsCl step gradient (1.25 and 1.4 g/ml CsCl). Expression of recombinant
proteins was assessed by immunoblotting of lysates of infected HEK-293 cells.

Live-imaging of axonal transport of fluorescently-tagged
calsyntenin-1, APP, and BACE1
Cultures of dissociated hippocampal neurons were co-infected with adenovirus on
DIV7 and imaged after two days in a Ludin imaging chamber (Life Imaging
Services, Basel, Switzerland) under constant perfusion with (in mM): 119 NaCl,
2.5 KCl, 2 CaCl2, 2 MgCl2, 30 glucose, and 25 HEPES, pH 7.4. Widefield images
were acquired on a Leica LX microscope equipped with a 1006, 1.4 NA, oil
objective, a Hamamatsu-C9100-13 EM-CCD camera system (5006500 px,
Hamamatsu, Hersching am Ammersee, Germany). Images were taken at 1 sec
intervals for a period of 1 min. Axons were identified according to morphological
criteria (thin and at least two times longer than dendrites). Anterograde and
retrograde vesicle transport was quantified independently for each channel and
subsequently tested for colocalization. The quantification was performed manually
and included only vesicles that were clearly traceable for at least 20 sec.

ELISA for murine Ab
Cortical neurons were infected with the respective rAAVs on the day of plating
and kept with virus for 12 DIV. Neurobasal medium was removed and neurons
were washed twice with PBS, pH 7.4, to remove Ab that had accumulated during
cultivation. Then, 300 ml of fresh medium without phenol red, supplemented with
B27, vehicle or 1 mM DAPT were added. After 2 days, 250 ml medium were
harvested and centrifuged for 30 min at 100,0006g at 4 C̊. Samples (100 ml) were
added to a mouse/rat Ab (1–40) ELISA plate (code 27720; Immuno-Biological
Laboratories, Minneapolis, MN, USA) and processed according to the
manufacturer’s instructions.

Glycosidase treatments in vitro
V1 membranes or syntaxin13 immunoisolates were processed with N-glycosidase
F (PNGaseF, Roche) or endoglycosidase H (EndoH, Roche). For deglycosylation
with PNGaseF, the reaction mixture (80 ml final volume) contained 10 mg protein
and 4 mU PNGaseF in 10 mM EDTA, 1% b-mercaptoethanol (v/v), 0.1% SDS,
and 2.75 mM Tris?Cl, pH 7.4. For deglycosylation with EndoH, the reaction
mixture (80 ml final volume) contained equal amounts of protein and 2 mU EndoH
in 1% b-mercaptoethanol (v/v), 0.25% SDS, and 10 mM sodium acetate, pH 5.2.
Enzymes were added for 16 h at 37 C̊ after denaturation of protein samples at 95 C̊
for 5 min.
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