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Abstract: In this paper, we propose effective data collection schemes that stimulate cooperation
between selfish users in mobile opportunistic crowdsensing. A query issuer generates a query and
requests replies within a given delay budget. When a data provider receives the query for the first
time from an intermediate user, the former replies to it and authorizes the latter as the owner of the
reply. Different data providers can reply to the same query. When a user that owns a reply meets the
query issuer that generates the query, it requests the query issuer to pay credits. The query issuer pays
credits and provides feedback to the data provider, which gives the reply. When a user that carries
a feedback meets the data provider, the data provider pays credits to the user in order to adjust its
claimed expertise. Queries, replies and feedbacks can be traded between mobile users. We propose an
effective mechanism to define rewards for queries, replies and feedbacks. We formulate the bargain
process as a two-person cooperative game, whose solution is found by using the Nash theorem.
To improve the credit circulation, we design an online auction process, in which the wealthy user
can buy replies and feedbacks from the starving one using credits. We have carried out extensive
simulations based on real-world traces to evaluate the proposed schemes.

Keywords: mobile opportunistic crowdsensing; incentive mechanism; data query; two-person
cooperative game; optimal stopping theory

1. Introduction

With the improvement in hardware manufacturing, CPU architectures, radio communication
techniques and software design, the price of smartphones can be accepted by the majority of people,
resulting in large availability. Due to powerful computation, communication capabilities and various
functional built-in sensors, smartphones enable accurate trace world-related information and activities
of citizens by taking advantage of people willing to collaborate toward continuous data collection,
called crowdsensing [1]. The rapid development and proliferation of sensor-equipped smartphones
are making mobile crowdsensing an effective way to enable more and more applications, ranging from
L3 [2] for traffic monitoring, iCal [3] for noise monitoring, vCity Map [4,5] for smart cities [6], for air
pollution monitoring, LiFS [7] for indoor localization and [8] for urban WiFi characterization.

We consider mobile opportunistic crowdsensing formed by mobile users who share similar
interests and connect with one another by exploiting Bluetooth and/or WiFi connections of their mobile
phones or portable tablets. Mobile opportunistic crowdsensing is often created for a local community
where the participants have frequent interactions, e.g., people living in an urban neighborhood,
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students studying in a college or tourists visiting an archaeological site. Its size varies from a large
group (for instance, all students in a university) to a small cluster (such as members of a school
band). It may serve a community over a long span of years or be temporary, lasting for as short as a
few hours only. As discussed in the context of delay-/disruption-tolerant networks (DTNs) [9–11],
sporadically-connected sensor networks [12], vehicular networks [13], peer-to-peer mobile social
networks [14–16], and 5G networks [17–19], mobile opportunistic crowdsensing is characterized
by intermittent and nondeterministic connectivity, often due to interruptible wireless links, sparse
network deployment and/or nodal mobility.

1.1. Incentives and Selfishness

Mobile users in mobile opportunistic crowdsensing can be either cooperative or selfish.
Each cooperative user carries data packets for others voluntarily. However, if a user is selfish, it is often
reluctant to consume its energy, storage and bandwidth resources for other users, resulting in poor
performance. The more users help others deliver data packets, the better the network performance.
Therefore, it is imperative to propose an incentive scheme to stimulate user cooperation.

In this work, we consider users selfish and rational. The data query is a “push-and-pull” model,
where a query issuer intends to query data. At the same time, each data provider has expertise
for each category to reply to queries. In practice, however, it is nontrivial to properly define the
expertise, because a mobile user hardly knows precisely his or her probability to answer queries in
each category. He or she may initially claim his or her expertise based on the mobile user’s social
roles. However, such initially claimed expertise is often inaccurate. Therefore, data providers intend
to require feedbacks from query issuers. Both query issuers and data providers pay for the delivery
service. Other users participate in the query, reply and feedback delivery only if they are beneficiaries.
This is in a contrast to other incentive models in the literature, where either sources intend to “push”
data as payers or receivers intend to “pull” data and, thus, are deemed as payers [20–22]. In this paper,
we assume that neither do all users consume their resources to help, nor to maliciously attack others.
We also assume strong authentication that provides auditability for the verification of the identities
of users and prevents forging identification to obtain a free forwarding service or more rewards
from others.

An example is illustrated in Figure 1, where User A wonders “who can get the ticket for the
Superbowl final” and would like to query the data in his or her community. Therefore, User A
generates a query for sports. Obviously, User A needs to get the ticket before the final; therefore, the
delay budget for the query is from the date User A generates the query to the final date. When User A
meets User B, they trade the query by a trading process. The reason that User B is eager to obtain
the query is that User B can meet User C frequently, who has expertise for sports news. Therefore,
when User B meets User C, User B sends the query to User C and gets the reply from it. After the
retrieval of the reply, User B has two ways to get paid from User A. On the one hand, User B can
cash in the reply when User B meets User A directly. However, it will be infeasible if User B has a
small contact probability with User A. On the other hand, User B may trade the reply with another
user (e.g., User D). Such a trading process should benefit both users. User D gets paid from User A
when they meet; at the same time, User A sends a feedback to User D. When User D meets User E, the
feedback will be exchanged via the same trading process, if the process benefits both users. Finally,
User C cashes in the feedback to User E when User C meets User E. Note that queries, replies and
feedbacks can be traded when two users meet. However, it is difficult to determine which data packet
should be traded, since selfish users aim to maximize their own benefits only. Therefore, when a user
wants to require a data packet from another user, he or she needs to trade one data packet of his or her
own. The two-user trading process can be formulated as a two-person cooperative game; given the
selfishness of the two users, the binding agreement must do good for both users.
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Figure 1. An example of data query and feedback in a small community where the red dotted curved
arrow indicates the movement of a user, and the black solid straight line arrow depicts communication.

1.2. Contribution of this Work

We propose incentive schemes for data query in mobile opportunistic crowdsensing. A query
issuer generates a query and requests replies within a given delay budget. When a data provider
receives the query for the first time from an intermediate user, the former replies to it and authorizes
the latter as the owner of the reply. Multiple copies of a query can be created and replied to by
different data providers. When a user that owns a reply meets the query issuer that generates the query,
it requests the query issuer to pay credits. Note that a query issuer only pays replies issued by himself
or herself. The query issuer pays credits and provides a feedback of the reply to the data provider.
Each user has an expertise for each category. In practice, however, it is nontrivial to properly define
the expertise, because a mobile user hardly knows precisely his or her probability to answer queries
in each category. He or she may initially claim his or her expertise based on the mobile user’s social
roles (e.g., professions), interests and available resources. However, such initially claimed expertise
is often inaccurate. Therefore, after initialization, the expertise should be updated according to the
feedbacks from the query issuers. When a user that carries the feedback meets the data provider that
relates to the feedback, the data provider pays credits to the user in order to adjust his or her claimed
expertise. Queries, replies and feedback can be traded between mobile users. Multiple replies of
a query can be obtained by different data providers. Only the first copy of the reply can be payed
credits. On the other hand, the first copy of the feedback can be cashed back. Therefore, the key point
is how to effectively track the potential value of queries, replies or feedbacks and how to have them
get payed as quickly as possible in such an intermittent connectivity setting. We propose an effective
mechanism to define rewards for queries, replies and feedbacks. We formulate the bargain process as
a two-person cooperative game, whose solution is found by using the Nash theorem. We carry out
extensive simulations to evaluate the proposed schemes under real-world mobility traces.

The rest of the paper is organized as follows: Section 2 discusses related work. Section 3 introduces
our proposed incentive scheme. Section 4 develops an online auction algorithm based on the optimal
stopping strategy. Section 5 presents simulations under real-world mobility traces. Finally, Section 6
concludes the paper.

2. Related Work

Dealing with selfish users has been extensively studied in the context of mobile Ad Hoc
networks [23–26]. The work in [23] proposes a reputation-based approach, where the reputation of each
node reflects its degree of cooperation. Nodes update their reputation by forwarding packets for other
nodes and select a routing path based on nodal reputation. The work in [24–26] develop credit-based
approaches, where a node earns credits by delivering packets for others and uses such credits to obtain
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the data delivery service from other nodes in the network. However, these incentive approaches are
not directly applicable in mobile opportunistic crowdsensing. The intermittent connectivity in mobile
opportunistic crowdsensing makes it impractical for a node to build up the reputation of its neighbors
as required in the reputation-based approaches or to estimate the number of intermediate nodes that
would be involved in packet forwarding as required in the credit-based schemes.

Several incentive works are developed for mobile crowdsensing. For example, the work in [27]
takes advantage of the pervasive smartphones to collect data. They consider two system models:
the platform-centric model where the platform provides a reward shared by participating users and
the user-centric model where users have more control over the payment they will receive. For the
platform-centric model, they design an incentive mechanism using a Stackelberg game, where the
platform is the leader, while the users are the followers.

The work in [28] proposes an online incentive mechanism design for crowdsensing applications
with smartphones, where the platform does not have to synchronize large amounts of users
simultaneously while distributing tasks. The work in [29] investigates two-sided online interactions
among service users and service providers in mobile crowdsourcing. They model such interactions as
online double auctions, explicitly taking the dynamic nature of both users and providers into account,
and propose a general framework for the design of truthful online double auctions for dynamic
mobile crowdsourcing. Clearly, the above scenarios are different from this work, where data query in
mobile opportunistic crowdsensing results in a distinctive communication paradigm characterized by
intermittent link connectivity, autonomous computing storage and unknown or inaccurate expertise,
making data query in mobile opportunistic crowdsensing a very unique, interesting and challenging
problem. Only a handful of works have considered data query in opportunistic network settings.
The work in [30] employs the epidemic approach for query dissemination in the network, and the
replies are routed back based on the traces while traveling between query issuers and data providers.
The work in [31] proposes to query geo-location-based information, where each node moves according
to a given schedule and adopts a semi-Markov model to predict nodal meeting events, in order to
identify a proper relay to carry the query to the target location and bring the interested information
back to the source. However, neither of them considers incentives for the data query in mobile
opportunistic crowdsensing.

3. Proposed Incentive Scheme for Delay-Constrained Data Query and Feedback

In this section, we first introduce some preliminaries, then propose our incentive scheme. To make
the definitions clearer, we list them in Table 1.

Table 1. The main definitions in the paper.

Definition Description
γq The deliveries of Query q
γ f The deliveries of Feedback f
λq The appraisal of Query q
λ f The appraisal of Feedback f

Prc
i (δ) The delay-constrained category contact probability (DCCP)

Pc
i (δ)

The direct delay-constrained contact probability of User i
with data providers in Category c with remaining Delay Budget δ

P̄c
i (δ)

The indirect delay-constrained contact probability of User i
with data providers in Category c with remaining Delay Budget δ

Rq
i (c, δ) The reward if User i trades Query q in Category c with Delay Budget δ

R̂q̂
i (c, δ) The reward if User i trades Reply q̂ in Category c with Delay Budget δ

P̂rj
i(δ) The delay-constrained reply contact probability (DRCP)

Ř f
i (c, δ) The reward if User i trades Feedback f in Category c within Delay Budget δ

P̌rk
i (δ) The delay-constrained feedback contact probability (DFCP)
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3.1. Preliminaries

3.1.1. Deliveries

Each query is associated with a number of deliveries, which indicates the number of the intended
data providers that can reply to the query. Let γq denote the deliveries of Query q, which can be learned
by a counting algorithm [32]. Each feedback maintains a delivery number, which is an indicator of
the current estimation of the copies of the feedback in the network. Let γ f denote the deliveries of
Feedback f . γ f can be obtained by a split-based approach [33].

3.1.2. Appraisal

Each a copy of a query is associated with an appraisal, which indicates the amount of credits the
query issuer is willing to pay to each intended data provider that replies to the query. Let λq denote
the appraisal of Query q. Similarly, each feedback maintains an appraisal that indicates the number
of credits the data provider is willing to pay to the user that delivers the feedback. Let λ f denote the
appraisal of Feedback f .

3.1.3. Delay-Constrained Category Contact Probability

The delay-constrained category contact probability (DCCP)indicates the probability that User
i delivers queries of Category c to data providers within a given delay budget directly or indirectly.
Its value intrinsically depends on the aggregated direct and indirect delay-constrained contact
likelihood with data providers. The former, i.e., the direct delay-constrained category contact
probability of User i in Category c, represents the probability that User i directly meets a data provider
that can reply to the queries in Category c within a given delay budget. The latter is the indirect
delay-constrained category contact probability, which indicates the probability that User i delivers the
queries to the data provider via other users indirectly within a given delay budget. In this research,
we adopt the exponentially-weighted moving average (EWMA), which is an effective scheme for
online estimation to maintain and update the delay-constrained category contact probability.

The delay-constrained category contact probability is intrinsically the cumulative distribution
function of delivery delay [34], which is ideal to support QoS data delivery, but impractical to maintain
in continuous time under an arbitrary delay distribution. Thus, we adopt discrete time slots to
construct approximate delay distributions, where a slot is ∆ minutes. The delay distribution of a direct
link between User i and a data provider in Category c can be represented by a vector [P1

ic, P2
ic, ..., PK

ic ],
where Pk

ic is the probability that their inter-meeting time is greater than (k − 1)∆ and less than k∆.
Such delay distributions can be built via a trivial online learning algorithm according to historical
inter-meeting times. Let Pc

i (δ) denote the direct delay-constrained contact probability of User i with
data providers in Category c with remaining Delay Budget δ. When User i meets User j that is not
a data provider in Category c, User i maintains the delay distribution between User i and User j,
i.e., [P1

ij, P2
ij, ..., PK

ij ], User j maintains the delay distribution between User j and the data provider in

Category c, i.e., [P1
jc, P2

jc, ..., PK
jc ]; thus, the indirect delay distribution from User i to Data Provider c

via User j can be calculated as the convolution of [P1
ij, P2

ij, ..., PK
ij ] and [P1

jc, P2
jc, ..., PK

jc ]. Let P̄c
i (δ) denote

the indirect delay-constrained contact probability of User i with data providers in Category c with
remaining Delay Budget δ. As shown in [35], two-hop relaying achieves the most performance gains.
Therefore, we assume that indirect contacts involve only two-hop relaying in the following discussions.
We have the DCCP of User i with Category c with Delay Budget δ:

Prc
i (δ) = 1− (1− Pc

i (δ))(1− P̄c
i (δ)) (1)
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3.2. Reward

The reward of a query depends on two factors. First, if a user has a higher likelihood to meet data
providers within the remaining delay budget, he or she has a higher possibility to get payed from the
query issuer. Second, a query with more copies tends to have a higher value since a user may deliver
the query to more data providers in order to obtain more replies. The second factor does not change as
long as a query is generated, while the first one is user-dependent. Let Rq

i (c, δ) denote the reward if
User i trades Query q in Category c with Delay Budget δ. We define Rq

i (c, δ) as:

Rq
i (c, δ) = λq × Prc

i (δ) (2)

where λq is the appraisal of Query q and Prc
i (δ) is the DCCP of User i in Category c with Delay

Budget δ.
If a query is replied to by a data provider, User i obtains the reply. Let R̂q̂

i (c, δ) denote the reward

if User i trades Reply q̂ in Category c with Delay Budget δ. We define R̂q̂
i (c, δ) as:

R̂q̂
i (c, δ) = λq̂ × P̂rj

i(δ) (3)

where λq̂ is the appraisal of Reply q̂ and P̂rj
i(δ) is the delay-constrained reply contact probability

(DRCP), i.e., the probability that User i meets Query Issuer j directly or indirectly within Delay Budget
δ. The calculation of DRCP is the same as DCCP, but based on individual users instead of categories.

The reward of a feedback depends on two factors. First, a user only gains credit when he or she
delivers the feedback to the data provider; therefore, the reward depends on the contact probability
with the data provider. Second, the data provider only pays for the first copy of the feedback. The
more the copies, the lower the probability for a copy to be delivered to the data provider before other
copies. Let Ř f

i (c, δ) denote the reward if User i trades Feedback f in Category c within Delay Budget δ.

We define Ř f
i (c, δ) as:

Ř f
i (c, δ) =

λ f × P̌rk
i (δ)

γ f
(4)

where λ f is the appraisal of Feedback f and P̌rk
i (δ) is the delay-constrained feedback contact probability

(DFCP), i.e., the probability that User i meets the Data Provider k directly or indirectly within Delay
Budget δ. The calculation to obtain DFCP is similar to DRCP. γ f is the deliveries of Feedback f .

3.3. Utility Function

When User i meets another user, he or she needs to decide whether or not to exchange queries,
replies and feedbacks with the latter. Due to his or her selfish nature, User i wants to maximize his or
her own reward if the data packet exchange happen. The utility function used by User i to trade the
queries, replies and feedbacks is given as follows:

Ui = ∑q∈φ̂(i) Rq
i (c, δ)−∑q∈φ(i) Rq

i (c, δ)

+∑q̂∈ϕ̂(i) R̂q̂
i (c, δ)−∑q̂∈ϕ(i) R̂q̂

i (c, δ)

+∑ f∈ψ̂(i) Ř f
i (c, δ)−∑ f∈ψ(i) Ř f

i (c, δ)

(5)

where Ui is the utility function of User i, φ(i) and φ̂(i), ϕ(i) and ϕ̂(i), and ψ(i) and ψ̂(i) are the set of
queries, replies and feedbacks in Category c before and after the exchange, respectively.
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3.4. Overview of the Proposed Scheme

To facilitate our discussion, we assume that each data packet is associated with a category, a
sequence number, an appraisal and deliveries. Let Li, L̂i, Ľi denote the set of queries, replies and
feedbacks at User i, respectively.

1. When User i meets User j, he or she first updates his or her DCCP, DRCP and DFCP,
respectively. User i creates his or her candidate query, reply and feedback lists, i.e.,
Li = Lj − (Li ∩ Lj), L̂i = L̂j − (L̂i ∩ L̂j) and Ľi = Ľj − (Ľi ∩ Ľj). Li, L̂i and Ľi are sorted in
a decreasing order of the reward of data packets. Note that they are the queries, replies and
feedbacks at User j, but not at User i.

2. User i checks if he or she is a data provider for any query in Li. If he or she is, User i requests
those queries from User j. For each received query, e.g., Query q, User i replies to it, gives it back
and authorizes User j to deliver it to the query issuer. Upon receiving the reply, User j decreases
the deliveries of Query q by one, i.e., γq = γq − 1.

3. User i checks if it is a query issuer of any reply in L̂i. If it is, User i pays User j a number of credits,
which are equal to the appraisal of the reply, and User j removes the reply from L̂j.

4. User i checks if he or she is a receiver for any feedback in Ľi. If he or she is, User i pays User j
a number of credits, which are equal to the appraisal of the feedback, and User j removes the
feedback from Ľj. At the same time, User j examines if he or she is a data provider for queries, a
query issuer for replies or a receiver for feedbacks similarly.

5. Users i and j bargain about which queries, replies and feedbacks should be traded. The bargaining
process is formulated as a two-person cooperative game, and the Nash theorem is applied to
reach the optimal solution. Users i and j exchange queries, replies and feedbacks pair by pair
according to the Nash bargaining solution.

We summarize the description in Algorithm 1.

Algorithm 1: Incentive algorithm for delay-constrained data query and feedback.
1: When User i meets User j, User i updates his or her DCCP, DRCP and DFCP and creates his or

her candidate query, reply and feedback lists, i.e., Li = Lj − (Li ∩ Lj), L̂i = L̂j − (L̂i ∩ L̂j) and

Ľi = Ľj − (Ľi ∩ Ľj).
2: if User i is the data provider for query q in Li then

3: replies to the query and gives back to User j;
4: Li = Li − {q};
5: γq = γq − 1;
6: else if User i is the query issuer for reply q̂ in L̂i then

7: pays a number of credits to User j;
8: else if User i is the receiver for feedback f in Ľi then

9: pays a number of credits to User j;
10: end if
11: Users i and j exchange queries, replies and feedbacks pair by pair according to the Nash

bargaining solution.

3.5. Game Theory Model

The two-person cooperative game allows players to reach a binding agreement based on the
conflicting interests. Given the selfish nature of the two persons, the binding agreement, once reached,
must promote the interest of both persons.

The solution for a two-person cooperative game is given by:

(Ûi, Ûj) = arg max
(Ui ,Uj)∈S

(Ui − Di)× (Uj − Dj) (6)
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where (Ûi, Ûj) is the optimal solution, also called the Nash solution; Ûi and Ûj are the utility gain
of User i and User j in the Nash solution, respectively; Ui and Uj are the utility gain of User i and
User j, respectively; (Ui, Uj) forms the utility gain space S; (Di, Dj) is the status quo point in space S,
usually defined as the utility gain of no cooperation, i.e., (0, 0); (Ui−Di)× (Uj−Dj) is called the Nash
product. What the Nash theorem [36] says is that, for a two-person cooperative game, the solution
(Ui, Uj) that maximizes the Nash product (Ui − Di)× (Uj − Dj) is optimal.

While the optimal solution can be obtained by applying the two-person cooperative game,
it is non-trivial to get such an optimal solution. Since queries, replies and feedbacks are traded
separately, we take query trading as an example. We assume the final traded query lists are L

′
i and

L
′
j. We define l = ‖L

′
i‖ = ‖L

′
j‖, m = ‖Li‖ and n = ‖Lj‖. Apparently, l ≤ m and l ≤ n. We assume

m ≤ n. In order to obtain the optimal solution, the total number of query exchanges should be
∑m

l=0(C
l
m × Cl

n) = O(2m). We can see that the computational cost to get the optimal solution is
exceedingly high due to the great number of data packets in the list, rendering it un-scalable to the real
implementation. Therefore, we propose a heuristic algorithm by trading only one pair of data packets
at a time. The algorithm selects the data packet pair that results in the maximum Nash product for
trade. Therefore, the computational complexity is O(mn). The selection process repeats until L

′
i or L

′
j

is empty, or there no feasible solution for Equation (6).

4. Distributed Online Auction Algorithm

Since replies and feedbacks are not real credits and cannot be used to pay for delivery service
directly, even if the trading process helps cashing them in more quickly, there is a possibility that
some users may starve due to being out of real credits, and some users may be wealthy, withholding
enough credits. If those two users meet and the wealthy user can buy some replies and/or feedbacks
from the starving one using real credits, the credit circulation in the network will be greatly improved.
Furthermore, this process also does good to both. From the perspective of the starving user, he or
she is desperate to get real credits to initiate or pay for his or her own query dissemination process,
and he or she is happy to sell some replies and/or feedbacks, even if less than the reward. From the
perspective of the wealthy user, the reason why he or she is willing to buy the data packets is that he
or she may get profits from cashing in replies from query issuers and feedbacks from data providers.
In this way, both users benefit from the data packet buying/selling process. We formulate this process
as an auction model.

Now, we come to the question of how the seller decides which bid he or she should accept or
reject. Since the seller meets the buyers in a subsequent order and he or she does not meet Buyer A,
Buyer 1 places two credits for a reply, and he or she accepts the bid and sell the reply for two credits.
While at time t2, Buyer B may place five credits for the same reply. In this case, the seller does not find
the best buyer for the reply and loses the chance to maximize his or her gain. Thus, it is essential to
choose the best buyer to make an irrevocable decision to sell the reply. In general, User i may meet a
sequence of users, similar to a stochastic process. He or she must make an adaptive, online decision on
which bid should be accepted, in order to achieve the optimal gain. We observe that the online auction
process matches the optimal stopping problem with a finite horizon and tries to find the best buyer for
the replies and/or feedbacks among all of the buyers.

Based on the above observation, we propose a distributed online algorithm based on the optimal
stopping theory. We first present an analysis followed by the protocol design.

4.1. Analysis

Since we are concerned about the problem of accepting a bid within a certain delay budget, we
propose a distributed approach based on the stopping rule problem with a finite horizon. A stopping
rule problem has a finite horizon if there is a known upper bound on the number of stages at which
one may stop.
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In order to facilitate the following discussion, we denote the remaining delay budget δ as T − τ,
then we denote the expected reward of a reply with remaining delay budget (T− τ) as X(T−τ), and we
define Yτ as the return when User i decides to accept a bid after τ time slots, i.e.,

Yτ = X(T−τ) = XT · gτ (7)

where (T− τ) is the remaining delay budget to deliver the reply and gτ means that the further delivery
is at the cost of the decrease in the delay budget. We denote the pdf of X as f (x).

For the online auction problem, User i will meet a certain user (or users), which may help he or
she to deliver the reply at time slot τ, with Yτ observed. User i may decide to stop at time slot τ or to
continue to meet other users. Therefore, the online auction problem can be considered as an optimal
stopping problem with an objective to find the optimal stopping time that maximizes the expected
return, i.e.,

τ∗ , arg max
τ

[E(Yτ)], Y∗ , sup
τ
[E(Yτ)] (8)

We define Vτ as the maximum return the user can obtain if the user accepts a bid with Delay Budget
T after τ time slots. At τ, we compare the return for stopping, namely Yτ , with the return we expect to
be able to get by continuing and using the optimal rule for time slots τ + 1 through T, which at time
slot τ is E(Vτ+1(Yτ+1)), i.e.,

Vτ = max{Yτ , E(Vτ+1(Yτ+1))} (9)

From Equation (9), we can see that E(Vτ+1(Yτ+1)) serves as a threshold in the sense that if Yτ is
above the threshold, it is optimal for the user to accept the bid. We define the threshold at time slot
τ as:

ρ∗τ = E(Vτ+1(Yτ+1)) (10)

Then, we can obtain the optimal stopping strategy of the online auction problem as follows.

Theorem 1. For the online auction problem, it is optimal for the user to accept the bid if the following condition
is satisfied at τ,

τ∗ = inf
τ
{τ > 0 : Yτ ≥ ρτ} (11)

Theorem 2. For the online auction problem, the threshold of the optimal stopping strategy is given by:

ρ∗T = 0 (12)

ρ∗T−1 = gT

∫ Xmax

Xd

x f (x)dx (13)

...

ρ∗τ∗ = gτ+1

∫ Xmax

ρ∗
τ+1

gτ+1

x f (x)dx + ρ∗τ+1

∫ ρ∗τ+1
gτ+1

Xd

f (x)dx (14)

Proof. When T time slots are consumed, the reply cannot be delivered to the query issuer due to
the expiration of the reply; therefore, the reward is zero, i.e., ρ∗T = 0. Then, we have YT ≥ ρ∗T .
Then, according to Equation (10), we can obtain ρ∗T−1 as:

ρ∗T−1 = E[VT ] = E[YT ],

= gTE[XT ] = gT
∫ Xmax

Xd
x f (x)dx

(15)
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Combining Equations (12) and (13), we can next compute {ρ∗τ}T−2
τ=0 by the backward

induction as:
ρ∗τ = E[max{Yτ , ρ∗τ+1}] = E[max{gτXτ , ρ∗τ+1}] =

gτ+1

∫ Xmax

ρ∗
τ+1

gτ+1

x f (x)dx + ρ∗τ+1

∫ ρ∗τ+1
gτ+1

Xd

f (x)dx
(16)

4.2. Protocol Design

After the query is replied to by the data provider, it will meet a set of intermediate users.
As introduced in Section 3.2, let R̂q̂

i (c, τ) denote the expected reward of Reply q̂ in Category c at
User i that intends to get payed from the query issuer.

We consider that User i meets User j at time slot τ; User j places a bid bj; if the reply is not sold
to User j, then in the next time slot τ + 1, the expected reward of User i to deliver the reply will
become R̂q̂

i (c, τ − 1).
According to Theorem 1, User i accepts the bid if and only if the following condition is satisfied:

bj ≥ R̂q̂
i (c, τ − 1) (17)

Note that feedbacks can be handled similarly. Since the communication opportunity is low,
transmission is often between two users only. If more than two users are within communication range,
we assume an underlying medium access control protocol (e.g., IEEE 802.11) that randomly selects one
user as the seller and another as the buyer.

5. Performance Evaluation

We have carried out simulations to demonstrate the efficiency of the proposed schemes. In this
section, we first introduce our simulation setup and then present simulation results.

5.1. Simulation Setup

We have compared the performance of different schemes as summarized in Tables 2 and 3:
the “selfish” scheme, where no cooperation exists among users, and thus, queries are replied to
and feedbacks delivered only when query issuers meet data providers directly; the “cooperative”
scheme, where users are fully cooperative and always choose the most valuable data packets to carry;
the “TFT” scheme, where a user forwards as much traffic for a neighbor as the neighbor forwards
for him or her [37]; and our proposed incentive schemes denoted by “incentive” and “incentive
with auction”.

Table 2. Overall performance comparison based on the Haggle trace.

Reply Rate Reply Delay Overhead
Selfish 0.21 5.27 h 1
Cooperative 0.68 2.01 h 40
TFT 0.56 5.59 h 13
Incentive 0.72 3.44 h 7
Incentive with Auction 0.78 3.26 h 7

Table 3. Overall performance comparison based on the DieselNettrace.

Reply Rate Reply Delay Overhead
Selfish 0.19 12.19 h 1
Cooperative 0.79 6.14 h 42
TFT 0.70 14.16 h 16
Incentive 0.81 6.98 h 9
Incentive with Auction 0.85 6.44 h 9
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We have evaluated our proposed schemes under two real-world traces, i.e., the Cambridge Haggle
trace and the UMassDieselNettrace. The former involves 98 iMotes and Bluetooth devices and runs
for a total period of about three days. The latter is based on a MOSNtestbed, which is constructed by
37 transit buses, serving an area of approximately 150 square miles for a period of about two weeks
in 2006.

We assume there are 30 categories in the network. The queue size of each user is 250. The initial
credit for each user is 120. The query issuer generates one query every 15 min in a random category
with the delay budget randomly distributed from one hour to 10 h. For the online auction process, the
bid price is set to be randomly distributed from 70% to 100% of the reward of the query or feedback
when it is generated. The claimed expertise in each category for each user is randomly set and learned
and updated during the simulation.

5.2. Performance Comparison

We are interested in the following metrics for performance evaluation: query reply rate, query
delay and transmission overhead. The query reply rate is defined as the ratio of the total number of
replied queries to the total number of queries generated. Query delay is a measure of how long a query
issuer waits to get a query reply. Transmission overhead is defined as the ratio of the total number of
transmissions to the total number of replied queries.

Tables 2 and 3 compare the overall performance of different schemes based on the Haggle trace
and the DieselNet trace, respectively. The high query reply rate of “incentive” is attributed to the fact
that users are well stimulated by employing the reward of data packets, leading to highly efficient data
transmission. It seems counter-intuitive that the query reply rate of “cooperative” is lower than that
of “incentive”, because users are all altruistic with respect to helping each other by always choosing
the most valuable data packets to carry. It actually makes sense that cooperation always makes
data packets aggregate quickly and, thus, dropped due to queue overflow. While “TFT” considers
selfishness, its query reply rate is lower than “incentive”, because maintaining a mutual forwarding
balance wastes useful contact opportunities. Moreover, we can see that “Incentive with auction” further
improves the query reply rate. This is because the auction process makes users have more chances
to cash in the replies and feedbacks and to get credits to pay for their delivery service and initiate
more query dissemination and feedback retrieval. Finally, users under “selfish” do not cooperate at all,
resulting in the lowest query reply rate.

The shorter delays of “cooperative”, “incentive” and “incentive with auction” are contributed
to by the fact that they leverage the packet value to estimate the probability to deliver the packet
and choose the best routes to forward it. “Selfish” exhibits the longest delay because a query is
delivered and replied to only when the query issuer and the data provider meet directly. Although
the source in the “TFT” scheme specifies the complete route for each generated packet, packets may
not always follow the best routes due to the “TFT” constraint and results in a longer delay. Moreover,
“cooperative” has a much higher overhead than “incentive”, because its altruism leads to more packets
to be duplicated and distributed in the network. In contrast, the proposed “incentive” and “incentive
with auction” achieve very low overhead, because a user receives a query only if the query is redeemed
as a benefit for the user. Clearly, the overhead of “selfish” is always one, because a user only replies to
the queries in its own categories.

Figure 2 illustrates the distribution of available credits under “incentive” and “incentive with
auction”. Credits are consumed for replies and feedbacks. The more credits a user owns, the more
queries it can disseminate and the more feedbacks it can retrieve. We can see that most users have
available credits less than 120; this is because they all hold some replies and feedbacks waiting to
be delivered to the query issuers and data providers. Fifty four percent of users keep their available
credits around 40 to 100 in “incentive”compared to 68% in “incentive with auction”. This indicates
that the auction process helps users keep a better balance of credit retrieval and consuming.
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Figure 2. Distribution of available credits.

Figure 3 shows the performance of the query reply delay if we change the credit amount of
one query. A user is chosen as an example, while similar results are observed for other users, as
well. We increase its credit amount from 1 to 6, while all other queries keep one. As can be seen,
the query reply delay decreases with the increase of credit. This is because a higher credit indicates
more rewards if a user successfully delivers the query, resulting in stronger incentives to stimulate
nodal collaboration.
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Figure 3. Impact of credit amount on reply delay.

Figure 4 illustrates the average number of packets exchanged when two users meet. We can see
that “incentive” exchanges more packets than “TFT”, but less than “cooperative”. The more packets
are exchanged, the more resources are consumed. Sixty-one-point-two percent of users in “TFT”
exchange less than 10 packets per communication, because the constraints in “TFT” enforce bilateral
balances. Sixty-nine-point-four percent of users in “cooperative” exchange more than 30 packets per
communication. In “incentive”, users keep a good balance between their own gains and contributions
to the network. Forty-eight percent of users exchange 10 to 20 packets per communication. Since
“incentive with auction” does not impact the packet exchange factor, we omit its performance here.

The distribution of failed transmissions among users is depicted in Figure 5. The failed
transmissions are due to the lack of cooperation opportunities, which consequently leads to credit
shortage. We can see that 60% of the users do not have any failed transmissions, and the average
number of failed transmission is less than five, showing that the two-person cooperative game helps
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both users obtain gains and prevents unilateral benefit. Furthermore, the auction process helps about
27.6% of users reduce their failed transmissions, thus improving the credit circulation in the network.

Figure 6 shows the convergence of the claimed expertise to the ground truth. We randomly choose
a user as an example. As we can see, the feedback mechanism effectively adjusts the user’s expertise,
gradually approaching the true value within a few hours.
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Figure 4. Distribution of the packet exchange.
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Figures 7 to 9 illustrate the performance trend with the variation of several network parameters
based on the Haggle trace. The DieselNet trace shows a similar trend. With the increase of queue
size, the query reply rate of all schemes increases (see Figure 7). Particularly, “cooperative” increases
significantly, because a longer queue allows more data packets to be buffered for a longer time, thus
increasing the probability of query delivery. At the same time, query delay decreases. On the other
hand, the overhead increases rapidly. Since “TFT” is constrained by the amount of traffic forwarded
for others and “incentive” and “incentive with auction” exchange data packets based on self interests
and aim to maximize their rewards, the increase of queue size has marginal impact on the performance
of “TFT” and the proposed “incentive” and “incentive with auction”.

The impact of traffic load is illustrated in Figure 8; we vary the packet generation rate. With the
increase of the query generation rate, the query reply rate decreases. Given the limited resources at
individual users, the higher the generation rate, the longer the queries and replies need to reside at the
sources and intermediate users, leading to longer reply delay. The overhead increases as well, since
more data packets are duplicated during their transmissions.

Figure 9 compares the performance by varying the delay budget of queries. Figure 9a shows
that with the increase of the delay budget, all schemes achieve a higher query reply rate. We notice
from Figure 9b that most queries can be replied to within eight hours in “cooperative”, “incentive”
and “incentive with auction”, while “selfish” and “TFT” need to keep queries longer in the queue.
Moreover, the overhead of all schemes increases with the increase of the delay budget. This is because
a longer delay budget allows queries to stay longer in the queue, resulting in a better chance to be
duplicated and distributed in the network.
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Figure 7. Performance trend with increasing queue size.
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Figure 9. Performance trend with increasing delay budget.

6. Conclusions

We have proposed an incentive scheme to stimulate cooperation between selfish users for data
query and feedback in mobile opportunistic crowdsensing. Queries, replies and feedbacks can be
traded between mobile users. We have proposed an effective mechanism to define rewards for queries,
replies and feedbacks and formulate user interaction as a two-person cooperative game. To improve
the credit circulation, we have considered a bid placing problem. We have proven that the problem
can be formulated as an optimal stopping problem, given a closed-form expression for the threshold of
the optimal stopping strategy and then developed an online auction algorithm based on the optimal
stopping strategy that makes an efficient decision on every bid. Extensive simulations have been
carried out based on real-world traces to evaluate the proposed schemes. We leave further study on a
testbed experiment using off-the-shelf Nexus tablets to demonstrate the feasibility and efficiency of the
proposed algorithms and to gain useful empirical insights, as well as possible consideration of data
fusion as our future works.
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