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Review Article

Introduction

Methicillin‑resistant  (MR) Staphylococcus  aureus  (SA) is 
a major cause of hospital‑acquired infection worldwide. In 
addition, dissemination of certain clones in the community 
has resulted in community‑acquired MRSA causing severe 
infection in certain geographical regions. An example of 
this, is the spread of the hypervirulent USA 300 clones in the 
United States, causing significant morbidity and mortality 
through the community‑onset skin and soft tissue infections 
and necrotizing pneumonia.[1] Unfortunately, the days when all 
community‑acquired SA were methicillin susceptible (MS) and 
all hospital‑acquired were MRSA are long gone. The mortality 
rate with critical MRSA infection is approximately two times 
higher than with MSSA infection.[2]

Delay in placing a patient on appropriate antibiotic therapy 
is an independent predictor for a longer hospital stay, 
hospital‑acquired infection, and infection‑related mortality.[3,4] 
Targeted therapy is based on the conventional culture and 
susceptibility testing which takes at least 24–48 h. In the last 
few years, various commercial rapid tests have been developed 

for use in clinical laboratories that detect MRSA directly from 
nasal swabs and blood cultures (BC). These new methodologies 
have the advantage of faster turnaround time (TAT) and can 
minimize the time to initiate optimal antimicrobial therapy and 
further reduce the cost of healthcare. In this paper, we discuss 
the available rapid molecular tests and their ongoing evolution 
to ensure accurate detection of MRSA from a patient specimen.

The Clinical Utility of Rapid 
Methicillin‑Resistant Staphylococcus Aureus 
Detection

Rapid detection of MRSA from nasal swabs is essential 
to adequately identify colonized individuals and provide 
appropriate infection control. Furthermore, rapid detection 
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of MRSA from clinical samples can also helps to optimize 
the care of the severely unwell patient. A common clinical 
conundrum is the patient who presents with sepsis and is 
found to have Gram‑positive cocci in clusters  (GPCCL) in 
the blood. This could be SA, a highly pathogenic organism, or 
coagulase‑negative Staphylococcus (CoNS). CoNS accounts 
for 60%–80%[5,6] of GPCCL‑positive BC and in the patient 
without central line or prosthetic material, usually represents 
contamination of the BC by organisms on the skin. Thus, it is 
essential that rapid tests can distinguish CoNS from SA with 
high accuracy.

Once SA is identified, a further clinical conundrum exists; is 
this MSSA or MRSA? These patients are usually managed 
with broad‑spectrum antibiotics until the susceptibility of the 
organism is fully established 24 h later. If the clinicians give 
empirical antibiotics for MSSA to a severely unwell patient 
with a MRSA infection, that patient has an increased risk 
of mortality. However, the reverse is also true. A number of 
studies have shown that antimicrobials targeting MRSA, such 
as vancomycin, result in prolonged bacteremia and higher 
mortality rates than the β‑lactams used to treat MSSA, such 
as cloxacillin.[7] One retrospective study looking at MSSA 
bacteremia in intravenous drug users found the mortality rate 
of 39.4% in those treated with vancomycin but only 11.4% in 
those treated with flucloxacillin. In a subgroup of patients who 
received vancomycin for 48 h while awaiting susceptibility 
results, the mortality was 40%, suggesting that choice of 
empiric therapy has a large effect on clinical outcome.[8] Ideally 
rapid tests can distinguish MRSA from MSSA with a high 
degree of accuracy.

A few prospective studies have analyzed the utility of rapid 
diagnostic tests for MRSA and its influence on the prescription 
of antimicrobials. Implementation of rapid diagnostics results 
in timely effective therapy which significantly reduces the 
length of hospital stay and cost.[9,10] A systemic review and 
meta‑analysis compared the TAT of BD GeneOhm with 
the chromogenic medium. In comparison, the mean TAT of 
BD GeneOhm (13.2–21.6 h) was shorter than chromogenic 
medium (46.2–79.2 h) for detection of SA.[11] Rapid detection 
of SA resulted in 21% reduction in the number of patients 
treated with anti‑MRSA drugs. In addition, among patients 
with negative BC for SA, the mean duration of antibiotic 
therapy was reduced from 19.7 to 12.2 h, and there was a mean 
reduction of 6.2 days in a hospital stay. On implementation of 
rapid molecular tests, the time to optimal therapy fell from 44.6 
to 38.4 h among patients with MSSA bacteremia.[12,13] Thus, 
rapid identification of MRSA has a direct impact on patient 
care and infection control.

Molecular Detection of Methicillin‑Resistant 
Staphylococcus Aureus

MRSA is encoded by the mec A gene located on the mobile 
genetic element staphylococcal cassette chromosome 
mec (SCCmec). To date, there are at least 11 SCCmec types 

(I–XI), and numerous subtypes (IVa, IVb, IVc, IVd, IVg, and 
IVh) have been described in MRSA.[14,15] Molecular detection 
of MRSA requires target‑specific detection of SA (via the nuc, 
gyrB, or the Staphylococcus protein A gene) together with 
identification of MR (via SCCmec‑orfX, fem A, or mec A).[16‑19] 
Different kits use different combinations of these targets which 
are listed in Table 1. However, the emergence of novel mec 
variants means that targets for detection of MR need continuous 
reevaluation.

Detection of Methicillin‑Resistant 
Staphylococcus Aureus From Swabs 
(Nasal/Wound)
In 2004, Huletsky et al. introduced a novel real‑time polymerase 
chain reaction (PCR) targeting the SCCmec‑orfX junction for 
rapid identification of MRSA. The target SCCmec‑orfX is in 
the highly conserved region of Staphylococcus sp.[32] This was 
followed by several other assays detecting the same target 
including BD GeneOhm MRSA ACP, BD MAX MRSA, Xpert 
MRSA, and MRSA test. Unfortunately, these tests had two 
limitations. First, they did not differentiate between MRSA 
and MR‑CoNS as the SCCmec‑orfX junction is present in all 
staphylococci. As most patients have nasal colonization by 
CoNS, many of which are MR but are rarely pathogenic, this 
was a big problem. Second, they did not directly detect mec A 
gene which encodes MR but rather depended on the integration 
of the SCCmec cassette proximal to orfX as a surrogate marker 
of resistance. This resulted in a specificity of only 90.4%; MS 
isolates with an SCCmec element but which lacked the mec 
A gene were falsely reported as positive. These were known 
as empty cassettes or mec A dropouts. However, these tests 
had the major advantage of being easy to perform with rapid 
TAT of <1 h.

From 2008 onward, FDA‑approved second‑generation kits 
became available. These included Xpert SA Nasal Complete 
for the screening of the anterior nares (2008) and Xpert MRSA/
SA SSTI for wound specimens  (2010). These kits targeted 
three genes; the SCCmec‑orfX junction, the mec A gene, and 
the staphylococcal protein A (spa) gene [Figure 1]. The highly 
conserved SCCmec‑orfX identifies all staphylococci, the spa 
gene identifies only SA, and the mec A gene identifies MR in 
staphylococci. All three targets must amplify for the isolate to 
be deemed as MRSA. Detection of SA based on these targets 
was well documented with the sensitivity and specificity of 
100% and 99.5% for MSSA and for MRSA with sensitivity 
and specificity of 100%, respectively [Table 1].

Detection of Staphylococcus Aureus and 
Methicillin‑Resistant Staphylococcus Aureus 
Directly From Blood Culture

The Staph SR (BD GeneOhm), the Gram‑positive BC (BC‑GP, 
Verigene), and the Xpert MRSA/SA BC (second generation) 
can rapidly distinguish SA from CoNS and MR from MS 
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isolates directly from BC. They have sensitivity, specificity, and 
positive predictive value of 100%, and a negative predictive 
value of 99% [Table 1].

Staph SR uses the nuc gene to distinguish SA from CoNS but 
continues to use the orfX‑SCCmec junction to establish MR 
with its associated problems. BC‑GP uses gyrB gene (which 
codes for DNA gyrase subunit B) and mec A for detection of 
SA and MR, respectively. However, this gyrB gene is also 
found in other Gram‑positive pathogens such as Streptococcus 
pneumoniae and Streptococcus anginosus group. The 
reliability of this gene in detecting and differentiating SA from 
other Gram‑positive pathogen is not well established.

Like other Xpert MRSA assays such as Xpert MRSA nasal 
complete and Xpert MRSA/SA SSTI, the Xpert MRSA/SA 

BC detects the spa gene, the orfX–SCCmec junction, and 
the mec A gene. Compared with conventional phenotypic 
results, the Xpert MRSA/SA BC has a sensitivity 
and specificity of 100% and 96.7%, respectively, in 
differentiating SA from non‑SA isolates. A  prospective 
study evaluating the performance of Xpert MRSA/SA 
BC assay and its impact on antibiotic prescription among 
GPCCL‑positive BC found that the proportion of MRSA 
bacteremic patients receiving optimal vancomycin therapy 
was increased from 46% to 100%. Vancomycin therapy 
was stopped in 27% of patients with MSSA or non‑SA 
bacteremia and antibiotics were stopped completely in 
16% of patients.[33] Similarly, the time taken to initiate 
appropriate antibiotics in patients with MSSA bacteremia 
was reduced from 49.8  h with conventional testing to 

Table 1: Sensitivity, Specificity and Predictive Value of Various Molecular Methods and Nucleic Acid Region/Targets in 
Detecting Methicillin Resistant S. Aureus  (Mrsa)

Molecular methods DNA target sequence Sensitivity (%) Specificity (%) Positive 
predictive 

value (PPV)

Negative 
predictive 

value (NPV)

Intended 
use claim

Time to 
results

References

Light Cycler 
Staphylococcus and 
MRSA detection kit

Insertion site SCC mec at 
orfX junction

95.7 90.8 75.9 98.6 Nares, 
axilla, 
perimeum

3 [20]

MRSA test 
advanced ‑ lightcycler

Insertion site SCC mec at 
orfX junction

98.3% 98.9% 86.7% 99.1% Nares 2 [21]

BD GeneOhm MRSA 
ACP

SCC mec at orfX junction 98% 96% 77% 99.7% Nares 2 [22]

BD GeneOhm Staph 
SR assay

nuc gene, insertion site 
SCC mec at orfX junction

100% 98.4% 92.6 100% Blood 
culture

1-1.5 [23]

BD MAX MRSA 
assay - 1st generation

SCC mec at orfX junction 93.9% 99.2% 83.8% 99.7% Nares 2 [24]

BD MAX Staph SR 
assay ‑ 2nd generation

SCCmec right‑extremity 
junction (MREJ), 
thermostable nuclease 
(nuc), and methicillin 
resistance (mecA and 
mecC)

99.1‑100% 100% 100% 99.7-100% Blood 
culture

2 [25]

BD MAX MRSA 
XT ‑ 3rd generation

mec A, mec C, 
SCCmec‑orfX junction

87.5% 97.1% 72.7% 96.1% Blood 
culture

2 [26]

*NucliSENS EasyQ 
MRSA

SCC mec at orfX junction 
and mec A gene for 
oxacillin resistance

95.8% 96.8% ‑ ‑ Nares 3 ‑

BC‑GP (Verigene 
nanosphere)

gyrB for S. aureus 
and mec A gene for 
methicillin resistane

100% 100% NA NA Blood 
culture

2.5 [27]

Xpert MRSA – 
1st generation

Insertion site SCC mec at 
orfX junction

95% 98% 90% 99% Nares 1 [28]

Xpert SA Nasal 
complete – 
2nd generation

Staphylococcal protein 
A gene (Spa), mec A, 
SCCmec‑orfX junction

86.5% 98.5% 94.6% 96.1% Nares < 1 [29]

Xpert MRSA/SA 
SSTI‑ 2nd generation

Staphylococcal protein 
A gene (Spa), mec A, 
SCCmec‑orfX junction

97.1% 96.2% 91.9% 98.7% Skin and 
soft tissue 
infections

< 1 [30]

Xpert MRSA/SA 
BC – 2nd generation

Staphylococcal protein 
A gene (Spa), mec A, 
SCCmec‑orfX junction

100 100 100% 99% Blood 
cultures

< 1 [31]

Xpert MRSA/SA 
BC – 3rd generation

Staphylococcal protein A 
gene (Spa), mec A, mec 
C, SCCmec‑orfX junction

99.6% 99.5% 100% 99% Blood 
cultures

< 1 See reference 26

*Manufacturers claimed sensitivity and specificity. Clinical evaluation of NucliSENS EasyQ MRSA in detecting MRSA was not available
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5.2  h while using Xpert MRSA/SA BC for detection of 
SA‑associated bacteremia.[34]

Detection of Mec C Gene Directly From Blood 
Culture

As genetic mechanisms evolve in MRSA, variations in the 
mec gene may appear which are not detected by the current 
molecular assays. In 2011, a new mec A gene homolog, 
mecALGA251, was identified in isolates from humans and 
dairy cattle and became known as livestock‑associated MRSA. 
The International Working Group on the Classification of 
Staphylococcal Cassette Chromosome Elements has since 
suggested that the mecALGA251 gene should be renamed 
as mec C.[35]

mec C is a mec A homolog identified on the SCCmec XI 
mobile genetic element. It encodes a protein with  <63% 
amino acid identity with penicillin‑binding protein 2a (PBP2a) 
and is resistant to methicillin.[36,37] Unfortunately, mec C is 
not detectable with routine diagnostics including the latex 
agglutination test for PBP2a and mec A‑specific PCR due 
to variation in the protein PBP2a structure and nucleotide 
variation in the primer region. False negative results may lead 
to uncontrolled transmission of undetected MRSA strains, and 
outbreaks of mec C containing MRSA have now been reported 
in humans across Europe. The mec C MRSA now accounts 
for 3%–4% of all new MRSA cases in humans[38] necessitating 
the inclusion of mec C‑specific targets into routine MRSA 
diagnostic kits.

Three third‑generation kits are now available to detect mec C 
alongside mec A MRSA including Xpert MRSA Gen 3, BD 
MAX MRSA XT (eXTended Detection Technology), and BD 
MAX Staph SR. The sensitivity and specificity of Xpert MRSA 
Gen 3 have been reported as 95.7% and 100%, respectively, 

while that of BD MAX MRSA XT was reported as 87.5% and 
97.1%, respectively [Table 1].

Although commercial kits are designed and updated to 
cover emerging clones, molecular diagnosis of MRSA 
remains challenging. The mutation, deletion, insertion, and 
rearrangement in SCCmec genetic element result in the 
evolution of MRSA strains with new SCCmec types or mec A 
homologs. These SCCmec or mec A homolog variants may not 
be detected by currently available primers, and so continuous 
evaluation of the performance of these test in clinical settings 
is warranted. Designing of new primers in this scenario is 
crucial to ensure detection of most prevalent MRSA strains.

Conclusion

Dissemination of MRSA strains in hospital and community 
settings continues to be an important problem worldwide. Rapid 
molecular methods are a valuable tool for detection of MRSA 
directly from a patient specimen. Molecular assays can detect SA 
and MRSA accurately from specimens such as nasal swabs and 
BC with the TAT of 1–3 h. Early identification of SA, particularly 
detection of MRSA isolates from positive BC, increases the 
likelihood of patients receiving appropriate antibiotic therapy, 
reduces the time to appropriate therapy, and further decreases the 
length of stay, hospital cost, and mortality. To achieve improved 
care for patients with SA bacteremia, an ideal diagnostic 
molecular kit for early detection of SA (spa, nuc gene), MR (mec 
A/C) with better accuracy indices is essential. Further, rapid 
molecular assays targeting SCCmec should be continuously 
monitored to ensure their claimed sensitivity and specificity 
in detecting MRSA strains is maintained. Genetic evolution 
of MRSA may affect the accuracy indices of the kit. Today’s 
standard may not hold good tomorrow due to the evolving nature 
of genetic elements in MRSA.
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