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Abstract

Successful antiretroviral pre-exposure prophylaxis (PrEP) for mucosal and intravenous HIV-1 transmission could reduce new
infections among targeted high-risk populations including discordant couples, injection drug users, high-risk women and men
who have sex with men. Targeted antiretroviral PrEP could be particularly effective at slowing the spread of HIV-1 if a single
antiretroviral combination were found to be broadly protective across multiple routes of transmission. Therefore, we designed
our in vivo preclinical study to systematically investigate whether rectal and intravenous HIV-1 transmission can be blocked by
antiretrovirals administered systemically prior to HIV-1 exposure. We performed these studies using a highly relevant in vivo
model of mucosal HIV-1 transmission, humanized Bone marrow/Liver/Thymus mice (BLT). BLT mice are susceptible to HIV-1
infection via three major physiological routes of viral transmission: vaginal, rectal and intravenous. Our results show that BLT
mice given systemic antiretroviral PrEP are efficiently protected from HIV-1 infection regardless of the route of exposure.
Specifically, systemic antiretroviral PrEP with emtricitabine and tenofovir disoproxil fumarate prevented both rectal (Chi
square = 8.6, df = 1, p = 0.003) and intravenous (Chi square = 13, df = 1, p = 0.0003) HIV-1 transmission. Our results indicate that
antiretroviral PrEP has the potential to be broadly effective at preventing new rectal or intravenous HIV transmissions in
targeted high risk individuals. These in vivo preclinical findings provide strong experimental evidence supporting the potential
clinical implementation of antiretroviral based pre-exposure prophylactic measures to prevent the spread of HIV/AIDS.
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Introduction

Preventing the spread of HIV to new individuals is critical to

stopping the HIV/AIDS pandemic. However, few successful

strategies to prevent HIV transmissions currently exist [1–5].

Novel approaches to prevent HIV transmission, including effective

vaccines, are being considered and developed [6]. In particular,

antiretroviral pre-exposure prophylaxis (PrEP) has been postulated

to be a potentially highly effective prevention modality [7–15].

There are many reasons to consider implementing targeted

antiretroviral PrEP until less toxic, easier to deliver and more

potent prevention methods become available. Candidate antiret-

roviral drugs for PrEP already exist. Antiretrovirals to prevent

vertical HIV transmission are already used clinically. In 2007,

500,000 (,33%) HIV positive pregnant women worldwide

received antiretrovirals to prevent HIV transmission between

them and their children [5]. Additionally, PrEP is a prevention

approach that can be discretely utilized without requiring partner

consent. While PrEP comes with associated costs, these should not

distract from the vast prospective positive impact of PrEP: targeted

PrEP has been mathematically modeled to avert up to 3 million

new infections over a 10 year period in Sub-Saharan Africa alone

[16]. Antiretroviral PrEP could benefit numerous groups at risk of

either vaginal, rectal or intravenous HIV exposure: discordant

couples, high risk women, men who have sex with men and

injection drug users [13]. Topical microbicides may be identified

that block mucosal HIV transmission [17–19]. However, as

illustrated by several setbacks in recent clinical trials (i.e.

Microbicides Development Program study 301using 0.5% Pro

2000/5) microbicide development and implementation lags far

behind that of clinically approved antiretrovirals [13,20,21]. In

addition, it should be noted that topical interventions will not

prevent intravenous HIV transmission. The diversity of the groups

targeted for PrEP highlights the need for broad prevention
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modalities that protect from the multiple and frequently

overlapping ways by which an individual may become exposed

to HIV.

We performed comprehensive efficacy studies to determine

whether a single antiretroviral PrEP approach can protect from

multiple routes of HIV transmission using a uniform and highly

relevant experimental platform. When choosing a model system to

perform PrEP efficacy studies, it was important to identify critical

characteristics that the system would have to exhibit in order to

study HIV prevention modalities. Such a model would permit

studying the interplay between de novo generated human immune

cells and HIV being transmitted via physiological routes in the

context of highly active antiretroviral drugs. In addition, such a

model should be affordable, available to many investigators and

capable of providing relatively rapid feedback on the efficacy of

any intervention being evaluated. To this end, we chose the

humanized Bone marrow/Liver/Thymus (BLT) mouse as our

experimental system [22].

Humanized BLT mice are individually bioengineered to exhibit

a complete, systemic, self-renewing reconstitution of all major

human hematopoietic lineages including T, B, monocyte/

macrophage, dendritic and natural killer cells that facilitates the

generation of functional human immune responses [22–26]. The

levels of HIV receptor and co-receptor expression in BLT mice

reflect those observed in humans and the pathogenesis of CCR5

tropic HIV-1 in BLT mice mirrors descriptions of HIV

pathogenesis in infected individuals [24,26]. Particularly relevant

to this study is the broad and systemic reconstitution of BLT mice

with human immune cells necessary for HIV-1 replication and

transmission (CD4+ T cells, macrophages and dendritic cells) that

encompasses the peripheral blood and the rectal and vaginal

mucosa rendering BLT mice susceptible to intravenous and

mucosal HIV-1 infection [22,24,26]. Furthermore, systemic PrEP

with a combination of antiretrovirals (FTC: emtricitabine and

TDF: tenofovir disoproxil fumarate) prevents vaginal HIV-1

transmission in BLT mice establishing this model as a novel

system for in vivo preclinical evaluation of HIV prevention

modalities [24].

To date, the majority of HIV prevention research has focused

on the assessment of the safety and effectiveness of products

capable of preventing HIV transmission via the vaginal compart-

ment. Receptive anal intercourse is common among men who

have sex with men and rectal transmission is a major driving force

of the AIDS pandemic [5]. In addition, rectal transmission is also

likely to account for a significant number of transmissions to

women [27]. We hypothesized that systemic antiretroviral PrEP

can provide protection from rectal and intravenous HIV-1

transmission. We tested this hypothesis by treating BLT mice

systemically with FTC/TDF prior to exposure and we determined

that antiretroviral PrEP can prevent rectal and intravenous HIV-1

transmission. Our in vivo preclinical efficacy data shows that

systemic antiretroviral PrEP provides strong protection against

HIV-1 infection regardless of the route of transmission.

Materials and Methods

Preparation of Humanized BLT Mice, Tissue Harvesting
and Microscopic and Flow Cytometric Analyses

BLT mice were prepared essentially as previously described

[22–26]. Briefly, thy/liv implanted [28] NOD/SCID or NOD/

SCID-gamma chain null mice (The Jackson Laboratories, Bar

Harbor, ME) were transplanted with autologous human fetal liver

CD34+ cells (Advanced Bioscience Resources, Alameda, CA) and

monitored for human reconstitution in peripheral blood by flow

cytometry [22,24,26]. Mice were maintained at the Animal

Resources Center of University of Texas Southwestern Medical

Center (UTSWMC) in accordance with protocols approved by the

UTSWMC Institutional Animal Care and Use Committee.

Tissues were harvested and then evaluated by molecular,

microscopic and flow cytometric analyses for evidence of HIV

infection as we have previously described [22,24,26]. Briefly,

minced and/or digested tissues were disrupted and filtered

through a 70 mm cell strainer. Liver and lung mononuclear cells

were isolated using a Percoll gradient. In other tissues, red blood

cells were lysed (ACK lysing buffer). Once isolated, mononuclear

cells were washed, enumerated and utilized in the indicated assays

described below.

Systemic Application of FTC/TDF and Exposure of BLT
Mice to HIV-1

Stocks of HIV-1JR-CSF [29] were prepared, titered and p24

content was determined as we have previously described [30,31].

Briefly, virus supernatants were collected following transient

transfection of 293T cells with the plasmid molecular clone of

JR-CSF. Supernatant p24 content was determined by ELISA

(Coulter, kit sensitivity: 7.8 pg/ml). HIV-1 exposures were

performed essentially as previously described using a total volume

of 2–10 mL (rectal: 170 ng p24) or 200 mL (intravenous: 58 ng

p24) [26,32]. Intravenous HIV-1 exposures were administered via

the tail vein. FTC/TDF dosing was based on published efficacy in

BLT mice [24]. To prepare FTC/TDF for BLT mouse

administration TruvadaH capsules (Gilead, Foster City, CA) were

dissolved in deionized water with 10% DMSO then sterile filtered

(0.22mm). FTC and TDF concentrations were initially estimated

by UV spectrophotometry and then confirmed by mass spectros-

copy (UTSW Chemistry Core). The FTC/TDF solution was

administered intraperitoneally (daily injections of 3.5 mg FTC and

5.2 mg TDF) prior or subsequent to exposure to HIV-1, as

indicated in Figure 1A and the text [24,33–35].

Analysis of HIV-1 Infection of BLT Mice
In this study, the primary endpoint was determining whether a

given intervention protected BLT mice from HIV-1 transmission.

To ensure that the most stringent criteria were met by the

intervention, we designed a high threshold defining ‘‘protection’’.

We defined ‘‘protection’’ in treated groups as the complete

absence of any evidence of infection, such that protected mice had

no positive results for the presence of HIV by any method of

analysis at any time point tested. A positive result for the presence

of HIV-1 from any treated animal by any method indicated a lack

of protection referred to as ‘‘breakthrough’’ infection.

Infection of BLT mice with HIV-1 was monitored in peripheral

blood by determining plasma levels of viral antigenemia (ELISA

p24, Coulter, assay sensitivity: 7.8 pg/ml), levels of viral RNA in

plasma (Amplicor, Roche, assay sensitivity of 400 RNA copies per

ml) and levels of viral DNA in peripheral blood cells (real time

PCR analysis, assay sensitivity of 10 copies) as previously described

[22,24,26,31]. Analysis for systemic infection was performed on

tissues harvested from infected mice or on cells isolated from the

indicated tissues utilizing in situ hybridization, real time PCR

analysis and co-culture with PHA activated allogeneic human

PBMC as previously described [22,24,26]. In the case of

breakthrough infection, it is possible that any developed drug

resistance mutants could revert back to wild-type in the absence of

drug selection following the completion of PrEP. Therefore, to

increase our likelihood of detecting any developed resistance

mutants we performed our sequence analysis on DNA samples

from the earliest possible time point at which HIV-1 DNA was

PrEP for HIV-1 Transmission

PLoS ONE | www.plosone.org 2 January 2010 | Volume 5 | Issue 1 | e8829



detected. We directly sequenced the entire reverse transcriptase

gene from cell-associated HIV-1 DNA amplification products to

evaluate whether these transmission events resulted from drug

resistant variants. No described resistance mutations in reverse

transcriptase were observed [36–39].

Statistical Analysis
All statistical analyses (alpha level: 0.05) were performed in

Prism version 5 (Graph Pad Software, Inc., San Diego, CA).

Kaplan-Meyer plots indicate the percentage of animals that are

HIV-1 positive in the peripheral blood by each time point. Tick

marks on the curves represent the time point at which HIV-1

negative animals were censored from the analysis.

Results

This study models application of antiretroviral PrEP in a

manner that closely resembles planned or ongoing PrEP clinical

trials evaluating the efficacy of TruvadaH [FTC co-formulated

with TDF] [13]. Systemic PrEP models routine daily systemic

administration of antiretrovirals (not temporally associated with a

specific high-risk event) that continues until a general behavior

pattern of high-risk actions ceases. Systemic PrEP dosing in the

BLT mice continued for 4 days following exposure to simulate

how systemic PrEP is expected to continue beyond the last high

risk action for a given period before a person would stop the

regimen (Figure 1A). Once BLT mice were generated, but prior to

HIV-1 exposure, we analyzed their peripheral blood to determine

their reconstitution with human cells and their suitability for these

studies. All the humanized BLT mice used for these experiments

had high levels of human lymphoid (CD45+) cells in their

peripheral blood (51.0%616.8 SD, n = 46) (Figure 1B). In

addition, all mice were reconstituted with high levels of human

CD4+ T cells in peripheral blood (Figure 1C).

Systemically Administered Antiretroviral PrEP Prevents
Rectal HIV-1 Transmission

We have previously shown that systemic PrEP efficiently blocks

vaginal HIV-1 transmission in BLT mice [24]. Here we sought to

determine whether systemic PrEP also can prevent rectal HIV-1

transmission. As depicted in Figure 1A, test BLT mice (n = 9) were

exposed to a single dose of HIV-1 (CCR5-tropic primary isolate

JR-CSF [29]) on the third of seven days of consecutive dosing with

FTC/TDF. After rectal HIV-1 exposure, BLT mice were followed

over time to determine if transmission had occurred. Transmission

was defined using most stringent criteria: any single evidence of

infection by any method of detection at any of the time points

analyzed. Protection was also defined by very stringent criteria:

complete lack of evidence of infection, by any method of detection

at any of the time points analyzed, including a systemic post-

mortem analysis. Using this criteria, none of the samples evaluated

from rectally challenged animals also receiving systemic FTC/

TDF showed evidence of plasma viral RNA (Amplicor), PBMC-

associated HIV-1 DNA (real time PCR), plasma antigenemia

(ELISA) or loss of peripheral CD4+ T cells (flow cytometry). In

contrast, 12 of 19 non-treated control mice became HIV-1 positive

(Log-rank [Mantel Cox] Test: Chi square = 8.6, df = 1, p = 0.003)

(Figure 2A–D; Table 1). These data indicate that systemically

Figure 1. Experimental design and reconstitution of BLT mice with human hematopoietic cells. (A) Systemic PrEP with FTC/TDF (daily
administrations for 7 consecutive days) to prevent rectal, intravenous and vaginal HIV-1 transmission. Viral exposure was performed 3 hours following
the third FTC/TDF dosing. (B) Peripheral blood human leukocytes (CD45+) levels in each of the groups of BLT mice used. (C) Peripheral blood human T
lymphocytes (CD4+ and CD8+) levels in each of the groups of BLT mice used. Box-plot interpretation for this and subsequent figures: middle line is the
median; box extends from the 25th to the 75th percentiles; error bars extend down to the lowest value and up to the highest value.
doi:10.1371/journal.pone.0008829.g001
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administered antiretrovirals can efficiently prevent rectal HIV-1

transmission in humanized BLT mice.

We confirmed the lack of rectal HIV-1 transmission in BLT

mice treated systemically with FTC/TDF using a comprehensive

set of highly sensitive analytical techniques aimed at detecting the

presence of HIV-1 in tissues. Specifically, we analyzed several

tissues from these mice for evidence of viral RNA expression (in

situ hybridization), replication competent virus (co-culture with

activated allogeneic PBMC) or viral DNA (real time PCR). All

tissues analyzed by each method for each mouse are detailed in

Table 1. Whereas HIV-1 infection was confirmed by in situ

hybridization for the presence of productively infected cells in

tissues from the infected non-treated control mice, no productively

infected cells were detected in the tissues obtained from the

systemic PrEP treated mice (Figure 3A & B; Table 1). We also

tested for the presence of cells containing replication competent

HIV-1 with a co-culture virus rescue assay utilizing PHA/IL2

activated allogeneic PBMC. Whereas virus was rescued from cells

originating in the tissues of infected non-treated mice, no virus was

rescued from any tissues from the protected mice treated with

antiretrovirals (Figure 3C; Table 1). Finally, real time PCR

analysis of DNA obtained from cells isolated from tissues of

infected non-treated control mice demonstrated the presence of

viral DNA. In contrast, none of the mice receiving systemically

applied antiretroviral PrEP exhibited viral DNA in tissues

(Figure 3D; Table 1). In summary, these results demonstrate the

absence of any evidence of HIV infection following systemic

administration of antiretrovirals prior to exposure in humanized

BLT mice.

Systemic Administration of Antiretrovirals Results in
Protection from Intravenous HIV-1 Infection

Having established the ability of systemic PrEP to prevent

mucosal HIV-1 transmission, we sought to determine whether

systemic PrEP could also prevent intravenous HIV-1 infection.

During intravenous exposure no mucosal surfaces must be

overcome by the virus in order to establish infection. Therefore,

infection can potentially be established simultaneously in numer-

ous sites throughout the body rendering protection from

intravenous HIV-1 exposure much more difficult to achieve. We

assessed the efficacy of systemically applied antiretrovirals to

prevent intravenous HIV-1 transmission in BLT mice by

administering a seven-day course of systemic PrEP with FTC/

TDF as described previously for the vaginal and above for the

Figure 2. Systemic PrEP with FTC/TDF prevents rectal HIV-1 transmission. (A) Kaplan-Meier plot of the time course to peripheral blood
conversion following rectal HIV-1 exposure in BLT mice with or without pre-exposure treatment with systemic FTC/TDF. (B) Plasma viral RNA was only
detected in infected non-treated control mice. Mice receiving systemic PrEP were negative for plasma viral RNA. Thin dashed line represents the limit
of detection for this assay. (C) PBMC-associated viral DNA was only detected in infected non-treated control mice. Mice receiving systemic PrEP were
negative for PBMC-associated viral DNA. (D) Average levels of human CD4+ T cells in peripheral blood showed a loss of CD4+ T cells in infected non-
treated control mice, but not in systemic PrEP treated BLT mice. Note that regardless of the assay utilized there was no evidence of rectal infection in
any of the mice receiving systemic PrEP with FTC/TDF.
doi:10.1371/journal.pone.0008829.g002
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rectal exposure experiments (Figure 1A) [24]. We exposed BLT

mice (n = 8) intravenously to a single dose of HIV-1JR-CSF 3 hours

after the administration of the third of 7 consecutive daily doses of

FTC/TDF (Figure 1A).

Consistent with the high efficiency of transmission associated with

this type of exposure, in the absence of treatment we observed 100%

transmission after intravenous inoculation (6/6) (Figure 4A–D;

Table 2). In addition, we observed that intravenous infection could

be delayed, but not prevented, when BLT mice (n = 4) were

administered the 7 day treatment with FTC/TDF 24 hours

following intravenous exposure to the same dose of HIV-1 (Log-

rank [Mantel Cox] Test: Chi square = 9, df = 1, p = 0.003) (Table 2).

Table 1. Description of BLT mice used to evaluate systemic PrEP for rectal HIV-1 transmission.*

Mouse # In PB at exposure:

Weeks
followed
(exposure
to harvest) Peripheral Blood Analysis Multiple Tissue Analysis

% human
CD45+

% hCD45+

hCD3+

hCD4+

Plasma
antigenemia
(Gagp24)A

Plasma viral
load (RNA)B

PBMC
associated
viral DNAC

Included
in Figure
2B–D

In situ
hybridization
for viral RNA

Quantitative
Real time
PCR for cell
associated
viral DNAC

Virus
rescue of
replication
competent
virus
(Gagp24)A

No Drug 1 40 75 3 Pos (2 of 3) Pos (1 of 1) Pos (1 of 1) Yes frt,L.int,lu,mln,
o,S.int,s,st

b,li,lu,o,s b,li,lu,o

2 22 76 3 Pos (2 of 3) Pos (1 of 1) Pos (2 of 2) Yes nd nd nd

3 62 82 3 Pos (1 of 2) Pos (1 of 1) Pos (1 of 2) Yes s b,li,lu,o,s b,li,lu,o,s

4 43 88 4 Pos(1 of 2) Pos (1 of 1) Pos (1 of 2) Yes nd nd b,li,lu,s

5 69 82 6 Pos (3 of 3) Pos (1 of 1) Pos (3 of 3) Yes lu,o,pln,r,s b,li,lu,o,s b,li,lu,o,s

6 63 84 7 Pos (6 of 7) Pos (1 of 1) Pos (5 of 6) Yes mrt,lu b,li,lu,o,s b,li,lu,o,s

7 73 82 7 Neg (0 of 4) nd nd No nd nd nd

8 27 78 8 Neg (0 of 8) nd nd No nd nd nd

9 20 82 9 Pos (5 of 5) Pos (1 of 1) Pos (4 of 5) Yes s b,li,lu,o,s b,lu,o,s

10 64 72 10 Neg (0 of 10) nd nd No nd nd nd

11 22 71 11 Pos (11 of 11) Pos (1 of 1) Pos (9 of 10) Yes nd b,li,lu,o,s nd

12 63 86 11 Neg (0 of 6) nd nd No nd nd nd

13 80 86 11 Pos(7 of 7) Pos (1 of 1) Pos (7 of 7) Yes s b,li,lu,o,s b,li,lu,o,s

14 58 91 12 Pos (5 of 8) Pos (1 of 1) Pos (8 of 8) Yes s b,li,lu,o,s b,li,lu,o,s

15 59 90 12 Neg (0 of 6) nd nd No nd nd nd

16 43 76 14 Pos (13 of 14) Pos (1 of 1) Pos (11 of 13) Yes nd b,li,lu,o b,li,lu,o

17 39 63 14 Pos (12 of 14) Pos (1 of 1) Pos (10 of 12) Yes nd nd b,li,lu,o,s

18 31 66 14 Neg (0 of 14) nd nd No nd nd nd

19 61 94 15 Neg (0 of 9) nd nd No s nd nd

FTC/TDF 20 60 87 4 Neg (0 of 2) Neg (0 of 1) Neg (0 of 2) Yes nd b,li,lu,o,s b,li,lu,o,s

21 67 89 6 Neg (0 of 3) Neg (0 of 2) Neg (0 of 3) Yes nd b,li,lu,o,s b,li,lu,o,s

22 68 79 8 Neg (0 of 4) Neg (0 of 2) Neg (0 of 4) Yes nd b,li,lu,o,s b,li,lu,o,s

23 52 91 9 Neg (0 of 6) Neg (0 of 2) Neg (0 of 5) Yes s b,li,lu,o,s b,li,lu,o,s

24 44 88 10 Neg (0 of 4) Neg (0 of 2) Neg (0 of 4) Yes nd b,li,lu,s b,li,lu,s

25 42 76 12 Neg (0 of 5) Neg (0 of 2) Neg (0 of 5) Yes L.int,o,pln,S.int.,s b,li,lu,o,s b,li,lu,o,s

26 63 88 12 Neg (0 of 7) Neg (0 of 2) Neg (0 of 6) Yes s b,li,lu,o,s b,li,lu,o,s

27 42 88 12 Neg (0 of 7) Neg (0 of 2) Neg (0 of 6) Yes s b,li,lu,o,s b,li,lu,o,s

28 38 86 15 Neg (0 of 8) Neg (0 of 2) Neg (0 of 8) Yes s b,li,lu,o,s b,li,lu,o,s

Mean
(+/2SD)

51%
(+/217)

82%
(+/28)

9
(+/24)

*The data shown in the table includes analyses performed on both infected and uninfected mice with the text in bold used to highlight that HIV-1 was found in the
indicated tissues. Numbers in parenthesis: first number represents the number of positive results out of the second number, which represents the number of different
time points (total samples) tested. b – bone marrow; frt – female reproductive tract; li – liver; L.int – large intestine; lu – lung, mln – mesenteric lymph node; mrt – male
reproductive tract; nd - not done; neg – negative; o – thymic organoid; pb – peripheral blood; pln – peripheral lymph node; pos – positive; r – rectum; S.int – small
intestine; s – spleen; st – stomach.

AELISA limit of detection = 7.8 pg/ml.
BAmplicor limit of detection = 400 copies/ml.
CReal-time PCR limit of detection = 10 copies.
doi:10.1371/journal.pone.0008829.t001
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Figure 3. Systemic analyses of the protection afforded by FTC/TDF from rectal HIV-1 transmission. (A) Tissues from a representative
non-treated control mouse (#1) showed the presence of productively HIV-1 infected cells expressing detectable viral RNA. (B) Tissues from a mouse
receiving systemic PrEP (#25) demonstrated a complete lack of productively infected cells in any of the tissues analyzed. Black foci represent cells
producing viral RNA (bar = 50 mm). (C) Tissues from infected non-treated control mice were positive for replication competent HIV-1 when co-
cultured with activated allogeneic PBMC. Tissues from mice receiving systemic PrEP were consistently negative for the presence of HIV-1. Presence of
replication competent virus was indicated by the detection of viral p24 in the culture supernatant. (D) Tissues from infected non-treated control mice
were positive for HIV-1 DNA by real time PCR analysis. Tissues from mice that received systemic PrEP were consistently negative for the presence of
HIV-1 DNA. Thin dashed lines represent the limit of detection for the respective assays.
doi:10.1371/journal.pone.0008829.g003
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Sequence analysis of the entire reverse transcriptase gene from these

treated, infected mice demonstrated the absence of mutations

associated with resistance to either FTC or TDF [37]. All tissues

analyzed by each method for each of the mice used for these

experiments are detailed in Table 2. In all cases, infection was

confirmed by every criterion utilized (Figures 4 and 5; Table 2).

In sharp contrast with the results described above, we observed

protection from intravenous infection in 7 of 8 BLT mice that

received the seven day course of systemic PrEP with FTC/TDF.

Protection was determined by each of the following criteria: the

lack of HIV-1 plasma antigenemia, PBMC-associated viral DNA,

loss of CD4+ T cells or plasma viral RNA (Log-rank [Mantel Cox]

Test: Chi square = 13, df = 1, p = 0.0003) (Figure 4A–D; Table 2).

Comprehensive analyses of different tissues from these mice

further confirmed that they were indeed fully protected from

infection (Figure 5A–C, all tissues analyzed by each method are

detailed in Table 2). In the case of the single breakthrough

transmission (mouse #42), sequence analysis of the entire reverse

transcriptase gene indicated that transmission was not due to the

development of drug resistance [37]. Together, these results

demonstrated that systemic administration of FTC/TDF PrEP

can efficiently prevent intravenous infection with HIV-1 and

illustrates the significant potential of PrEP to prevent intravenous

HIV transmission in humans.

Discussion

In this manuscript, we provide in vivo preclinical evidence

supporting the hypothesis that systemic antiretroviral PrEP can

provide broad protection from HIV transmission. Our results

obtained using a highly relevant in vivo model of HIV transmission

show that systemic antiretroviral PrEP can effectively prevent

rectal and intravenous HIV-1 infection. It is important to note that

systemic antiretroviral PrEP with a single drug combination

prevents infection of BLT mice by the three most common routes

of human HIV-1 transmission. The highly encouraging results

from this comprehensive evaluation of antiretroviral PrEP efficacy

serve as strong proof of principle for this approach and have major

implications for the continued planning and implementation of

future and current PrEP studies.

Approaches aimed at obtaining protection from all potential

modes of transmission are highly significant. Individually,

unprotected vaginal intercourse accounts for the vast majority of

new HIV transmissions globally [40]. Rectal HIV exposure

Figure 4. Systemic PrEP with FTC/TDF results in effective protection from intravenous HIV-1 transmission. (A) Kaplan-Meier plot of the
time course to peripheral blood conversion following intravenous exposure to HIV-1 in BLT mice with or without systemic PrEP. (B) Seven (out of
eight) mice receiving systemic PrEP were consistently negative for plasma viral RNA. Plasma viral RNA was detected in the systemic PrEP
breakthrough mouse (#42) and the 6 non-treated control mice. Thin dashed line represents the limit of detection for this assay. (C) BLT mice
receiving systemic PrEP were negative for PBMC-associated viral DNA by real time PCR. PBMC-associated viral DNA was detected in the systemic PrEP
breakthrough mouse (#42) and the 6 non-treated control mice. (D) Average levels of human CD4+ T cells in peripheral blood showed loss of CD4+ T
cells in the systemic PrEP breakthrough mouse (#42) and the 6 non-treated control mice. CD4+ T cells remained constant in the protected systemic
PrEP treated BLT mice.
doi:10.1371/journal.pone.0008829.g004
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accounts for the majority of HIV transmission events in the United

States and other developed nations [41]. Even though rectal HIV

exposure is the main mode of transmission among men who have

sex with men, this route is also likely to account for a significant

number of transmissions to women [27]. Intravenous HIV

exposure occurs primarily among injection drug users and is a

growing health concern in many nations [42]. Unlike mucosal

exposure with its intrinsic physical and biological barriers, the

direct exposure of virus to the blood stream results in more

efficient transmission. Our results provide clear pre-clinical

evidence of the potential usefulness of systemic PrEP for

intravenous transmission. The ability to prevent HIV-1 transmis-

sion by all three routes using one drug combination has the

potential of greatly facilitating the global implementation of

preventative measures.

Until this study, in vivo preclinical data substantiating a broad

prevention approach using a single drug combination to prevent

three routes of transmission had been lacking. In vivo data on the

efficacy of PrEP with FTC/TDF had been limited to two reports

relating to mucosal transmission. In one study, we showed that

systemic PrEP with FTC/TDF can effectively prevent vaginal

HIV-1 transmission in BLT mice [24]. The second study used

rhesus macaques to show that intermittent or daily systemic PrEP

with FTC/TDF can protect from rectal SHIV transmission in a

low-dose repeat exposure model [43]. Collectively, these two

reports and the current data show that antiretroviral PrEP with

FTC/TDF can afford extensive protection from vaginal, rectal

and intravenous HIV-1 transmission.

When considering such broad use of antiretrovirals as

prophylaxis, there is an issue of major importance that must be

Figure 5. Systemic analyses of the protection afforded by FTC/TDF from intravenous HIV-1 transmission. (A) In situ hybridization
analysis in spleens showed productively infected cells in a representative non-treated control mouse (#29) and the systemic PrEP breakthrough
mouse (#42). In contrast, no productively infected cells were identified in the spleen of a representative systemic PrEP protected mouse (#38). Black
foci represent cells producing viral RNA (bar = 50 mm). (B) Tissues from mice protected by systemic PrEP were consistently negative for the presence
of HIV-1 when co-cultured with activated allogeneic PBMC. Replication competent HIV-1 was detected in the systemic PrEP breakthrough mouse
(#42) and the 6 non-treated control mice. Presence of replication competent virus is indicated by the detection of viral p24 in the culture
supernatant. (C) Tissues from mice given systemic PrEP were consistently negative for the presence of HIV-1 DNA by real time PCR. HIV-1 DNA was
detected in the systemic PrEP breakthrough mouse (#42) and the 6 non-treated control mice. Thin dashed lines represent the limit of detection for
the respective assays.
doi:10.1371/journal.pone.0008829.g005
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addressed. In humans, lack of strict compliance to PrEP regimens

could increase the likelihood of drug resistance being developed in

the event of breakthrough infection. Therefore broad antiretrovi-

ral use can result in increased emergence of resistance to the

drug(s) when infections do occur [11]. Spread of resistant viruses

could limit the efficacy of current therapeutic interventions using

these same drugs, although it should be noted that the fitness of

multidrug resistant viruses for mucosal transmission has yet to be

fully established. Future BLT mouse studies could model lack of

compliance to evaluate the fitness of multidrug resistant viruses for

mucosal transmission and explore potential mechanisms of

breakthrough infections. Despite the high protection observed

while using PrEP (.88%), our results indicated one breakthrough

infection observed in one animal infected intravenously. It should

be noted that sequence analysis of the entire reverse transcriptase

gene revealed that this one transmission event was not the direct

result of the appearance of mutations associated with drug-

resistance [37]. The molecular basis for transmission of wild type

virus after venous exposure in the presence of PrEP remains to be

determined.

Results obtained using humanized BLT mice must be

considered in the context of previous studies of antiretrovirals

for HIV prevention performed in other models such as non-

human primates. Experiments performed using non-human

primates have provided evidence for the use of tenofovir (PMPA)

to prevent intravenous infection by SIVmne in long-tailed

macaques [44] and successful antiretroviral PrEP in rhesus

macaques exposed rectally to either SIVmac251/32H or

SHIVSF162P3 have also been reported with this compound

[45,46]. Topical and systemic PrEP with one or more fusion

inhibitors protected from vaginal SHIV transmission in rhesus

macaques [47,48]. Systemic PrEP with FTC/TDF was shown to

prevent rectal SHIV transmission in rhesus macaques [43] and in

yet another non-human primate model, 2 pig-tailed macaques

were protected from intravenous challenge with simian-tropic

HIV (stHIV) by systemic PrEP with efavirenz plus FTC/TDF

[49]. Additional preclinical studies in macaques testing antiretro-

viral HIV-1 prevention modalities have focused on post-exposure

prophylaxis, not pre-exposure regimens [44,50–54]. The use of

multiple animal models and different classes/combinations of

drugs in these studies makes it difficult to make direct comparisons

and to extrapolate potential outcomes. The current study

represents a significant advance because it has produced a data

set that can be easily interpreted and easily compared across

multiple virus transmission routes all within the same experimental

platform.

While our findings and those from non-human primate research

suggest that antiretroviral PrEP can prevent HIV transmission,

neither model has been shown to predict efficacy or safety in

humans. This limitation exists because there is still no evidence of

efficacy for antiretrovirals in preventing vaginal, rectal or

intravenous transmission in humans [7,10,12,15,55]. It will be

essential that ongoing human clinical trial data be compared to

BLT and non-human primate studies in order to validate these

useful models. Protection is likely to be dependent on the drug

exposure levels achieved following dosing of the PrEP antiretro-

virals. Currently, there is no comparative pharmacological data of

these levels between humans and BLT mice. Since protection is

dependent on the dose of FTC/TDF it will be important to define

the drug exposure of the regimen in BLT mice, and assess its

relationship to the drug exposure achieved after oral dosing with

Truvada in humans. Detailed information on the drug exposure in

BLT mice will be important for interpreting the efficacy results in

this model and for comparison with efficacy data from human

trials when these become available in the near future. These data

might help assess the relationship between drug exposure achieved

after oral dosing with Truvada in humans and its effectiveness in

ongoing clinical trials. In addition, a significant strength of

humanized BLT mice is the fact that they can be used in future

studies to address other potential variables between BLT mice and

humans including differences in timing of dosing, drug concen-

trations, adherence to drug regimens, virus inoculum and relevant

co-infections. Our results also suggest that humanized BLT mice

will be useful for the evaluation of topical microbicides and to

provide preclinical evidence for their potential success. The

availability of a small animal model such as BLT mice for

screening prevention modalities prior to or in conjunction with

macaque and human studies is a great asset to the field [56].

In conclusion, we provide preclinical evidence regarding the

potential efficacy of an antiretroviral pre-exposure prophylactic

approach to prevent vaginal, rectal and intravenous HIV-1

transmission. Our results provide strong support for the continued

implementation of clinical trials using targeted antiretroviral pre-

exposure prophylaxis for all the major routes of HIV transmission

contributing to the HIV/AIDS pandemic.
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