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Myelodysplastic syndromes (MDSs) are associated with a significant risk of transformation
to acute myeloid leukemia (AML), supported by alterations affecting malignant stem cells.
This review focuses on the metabolic, phenotypic and genetic characteristics underlying
this dynamic evolution, from myelodysplastic stem cells (MDS-SCs) to leukemic stem cells
(LSCs). MDS-SCs are more likely to be derived from healthy hematopoietic stem cells
(HSCs), whereas LSCs may originate from healthy progenitors, mostly LMPP (lymphoid-
primed multipotential progenitors). Moreover, overexpression of CD123 and CLL1
markers by LSCs and MDS-SCs in high risk-MDS [HR-MDS] has led to exciting
therapeutic applications. Single-cell sequencing has suggested that clonal evolution in
the stem cell compartment was non-linear during MDS initiation and progression to AML,
with pre-MDS-SC acquiring distinct additional mutations in parallel, that drive either MDS
blast production or AML transformation. In AML and HR-MDS, common metabolic
alterations have been identified in malignant stem cells, including activation of the
protein machinery and dependence on oxidative phosphorylation. Targeting these
metabolic abnormalities could prevent HR-MDS from progressing to AML. Strikingly, in
low risk-MDS-SC, the expression of ribosomal proteins is decreased, which may be
accompanied by a reduction in protein synthesis.

Keywords: myelodysplastic syndromes, acute myeloid leukemia, leukemic stem cell, whole genome sequencing,
single cell
INTRODUCTION

Over 70% of adults under 60 years of age diagnosed with acute myeloid leukemia (AML) achieve
complete hematologic remission following induction therapy. Nevertheless, a significant proportion
of these patients experiences relapse, and the 5 year overall survival does not exceed 50% (1). At
diagnosis, a higher percentage of leukemic stem cells (LSCs), also called leukemia-initiating cells,
confers an increased risk of relapse and resistance to treatment, as well as a lower overall survival
(2, 3). Similarly, persistence of LSCs during a complete hematologic remission is associated with
poorer overall survival (2).
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Myelodysplastic syndromes (MDSs) are associated with a
significant risk of transformation to AML, the 5-year
transformation risk amounting to 20% (4). Improved
phenotypic, genetic and metabolic characterization of
myelodysplastic stem cells (MDS-SCs), also called MDS-
initiating cells, should have a strong prognostic and therapeutic
impact. In this review, we highlight the recent advances in the
knowledge of MDS-SCs and LSCs. A better insight into their
characteristics should allow an earlier detection of AML
transformations and the development of drugs directed against
specific targets.
PART 1: PHENOTYPIC
CHARACTERISTICS OF MALIGNANT
STEM CELLS: CELL OF ORIGIN AND
ABERRANT MARKERS

MDS Is an Hematopoietic Stem Cell (HSC)
Disease
Stem cell potential of hematopoietic cells can be demonstrated
in vitro by performing cell culture on a stromal feeder for 6 weeks
and ultimately evaluating the ability to give rise to hematopoietic
cells, a technique referred as LTC-IC (long-term culture-
initiating cells assays). However, in vivo approaches in murine
xenotransplantation models remain the gold standard as stem
cells possess the ability to regenerate long-term human
multipotent hematopoiesis in serial xenografts. These in vivo
experiments have first demonstrated that HSCs reside in the
CD34+ CD38- (5), later CD34+ CD38- CD90+ (6), and finally
CD34+ CD38- CD90+ CD45RA- (7) cell fraction with a weak
expression of CD45 in the bone marrow.

MDS-SCs were first characterized in MDS with isolated del
(5q). In this population, LTC-IC assays demonstrated that
malignant stem cells were located in the CD34+ CD38-/low
bone marrow fraction (8). Later, their selective chemoresistance
to lenalidomide allowed to locate them in the CD34+ CD38-/low
CD90+ fraction (9). Finally, the first successfully performed
murine xenografts specified their CD34+ CD38- CD90+
CD45RA- phenotype, whether derived from patients with low-
risk MDS (LR-MDS) [isolated del(5q)] (10) or high-risk MDS
(HR-MDS) (monosomy 7) (11). In addition, CD34+ CD38+
progenitors (common myeloid progenitors [CMP], granulocyte-
macrophage progenitors [GMP], and megakaryocyte-erythroid
progenitor [MEP]) as well as CD34- cells failed to generate the
pathology when injected in immunocompromised mice (10).

Thus, MDS-SCs display the same phenotype as physiological
HSCs. The cell of origin could therefore be a normal HSC,
transformed into MDS-SCs with acquisition of genetic
abnormalities. The original cell could also be a normal
progenitor, with HSCs-defining flow cytometry phenotype
acquired upon transformation. To determine the origin of
MDS-SCs, several teams have studied their gene expression
profile. Gene expression profiles of MDS-SCs from MDS
patients with isolated del(5q) clustered extensively with healthy
Frontiers in Oncology | www.frontiersin.org 2
HSCs, suggesting that MDS-SCs are indeed originally derived
from physiological HSCs (10, 12).

AML Is a Progenitor Disease
Among CD34+ fraction, normal progenitors can be
distinguished by their differential expression of CD90, CD38,
CD45RA, CD110 and CD123 antigens. Among CD38 negative
cells, multipotential progenitors (MPPs, CD45RA- CD90-) (7)
and lymphoid-primed multipotential progenitors (LMPPs,
CD45RA+ CD90-) coexist (13). Among the more committed
CD38+ progenitors, CMPs (Lin- CD123+ CD45RA-), MEPs
(Lin- CD123- CD45RA-) and GMPs (Lin- CD123+
CD45RA+) can be found (14).

Xenotransplantion experiments have revealed that LSCs were
enriched in the CD34+ CD38- medullary compartment of AML
patients (15). Goardon et al. demonstrated that Lin- CD34+
CD38- CD90- CD45RA+ (LMPP-like) LSCs coexist with CD34+
CD38+ CD123+/low CD110- CD45RA+ (GMP-like) LSCs in
87% of AML cases. However, the LMPP-like population
managed to give rise to the GMP-like population in vitro and
in vivo, and not the converse, suggesting its higher stemness
potential. Besides, LMPP-like LSCs expression profiles are
enriched for genes upregulated in more immature AMLs,
consistent with CD38- CD45RA+ LSCs being more immature
than GMP-like LSCs (13). In the remaining 13% of AML cases,
Lin- CD34+ CD38- CD90- CD45RA- (MPP-like) LSCs coexisted
with CD34+ CD38+ CD123+ CD110- CD45RA- (CMP-like)
LSCs. Another team confirmed that CD45RA is a powerful LSC
marker, allowing for their detection in 65% of AML cases (16).
Injection of murine GMPs transformed with the fusion protein
KMT2A-AF9 gave rise to AML in immunocompromised mice,
demonstrating that AML LSCs may derive from progenitor cells
(17). Comparing the gene expression profiles of LMPP-like and
GMP-like LSCs with those of HSCs and progenitors from
healthy patients, LSCs had a gene expression profile closer to
healthy progenitors corresponding to their phenotypic
counterpart (LMPP or GMP) than to healthy HSCs. Moreover,
LSCs overexpressed genes involved in self-renewal processes
compared to their healthy counterparts (13, 17).

MDS-SCs thus likely originate from HSCs, while LSCs may
derive from progenitors. Surprisingly, an expansion of the CMP
compartment has been established in LR-MDSs, mirrored by an
expansion of the GMP compartment in HR-MDSs (18), these
compartments being enriched with LSCs in AML (13).

Stem Cell Malignancy Markers and
Antigenic Targeting
We chose to focus on a few promising markers that have been
reported in recent publications.

Flowcytometryhas revealed that theCD123antigen (interleukin-
3 receptor alpha chain) was over-expressed in the LSC-enriched
fraction (CD34+ CD38-) of bone marrow collected from patients
diagnosedwith primaryAMLcompared to healthy patients. Purified
CD34+ CD123+ leukemia cells successfully established and
maintained leukemic populations after transplantation into
August 2021 | Volume 11 | Article 730899
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immunocompromised mice, then demonstrating their stemness
potential (19). Another team revealed that CD123 was expressed
by a majority of AML blasts, with a similar mean fluorescence
intensity (MFI) level compared to LSCs (20). In MDS, CD123
expression profile is stage-dependent, being overexpressed in the
CD34+ CD38- bone marrow fraction of HR-MDS patients
compared to LR-MDS patients (21). Targeted therapies against
CD123 are therefore quickly arising (22). Since CD123 is expressed
by themajorityofCD34+hematopoieticprogenitors andaportionof
HSCs (23, 24), toxicity of these new therapies may be limiting. Thus,
identification of more specific targets is needed.

Human C-type lectin-like molecule-1 (CLL1) is expressed
by malignant cells collected from the CD34+ CD38- medullar
compartment of AML patients (25). The injection of CD34+
CLL1+ bone marrow fraction derived from these patients is
able to generate AML in immunocompromised mice,
demonstrating that CLL1 may be a relevant marker of LSC.
CLL1 is also expressed on AML blasts (26). Interestingly, its
expression seems stable when AML relapses (25). In MDS,
CLL1 expression profile is also stage-dependent. Recently,
overexpression of CLL1 by CD34+ CD38- bone marrow
fraction and its various subcompartments (HSC, MPP and
LMPP) has been demonstrated in patients with MDS-EB
(myelodysplastic syndromes with excess blasts), compared to
LR-MDS and healthy individuals (27). Although expressed by a
fraction of bone marrow progenitors (26), CLL1 is not
expressed in the CD34+ CD38- fraction of normal and
regenerating bone marrows (25). MCLA-117, a bispecific
antibody targeting both CD3 and CLL1 has demonstrated its
efficacy in vitro and is currently being tested in a clinical trial
(28) (NCT03038230). CAR-T cells targeting CLL1 have also
been optimized (29, 30) and are evaluated in several clinical
trials (31).

Phenotypic characteristics of malignant stem cells and
healthy counterparts are summarized in Table 1. These
markers are heterogeneously expressed by stem cell
populations. Nevertheless, in AML, CD45RA may be the most
interesting LSC marker as its combination with CD34, CD38 and
CD90 allows to estimate these cells at diagnosis and follow up by
multiparametric flow cytometry (16, 32).
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PART 2: GENETIC CHARACTERISTICS OF
MALIGNANT STEM CELLS

Genetic Defects in MDS and AML
Cytogenetic abnormalities observed in primary AML are mostly
balanced, such as t(8;21)(q22;q22), t(15;17)(q22;q21), inv(16)
(p13;q22)/t(16;16)(p13;q22), and translocations involving 11q23.
Conversely, alterations observed in MDS are mostly unbalanced,
such as -7/del(7q), -5/del(5q), +8, dup(1q), del(20q), del(11q),
del(12p)/t(12p), del(17p)/iso(17q), del(18q), +21q, del(13q),
and +der(1;7)(q10;p10) (33, 34). Complex karyotypes are
commonly reported in MDS, unlike in primary AMLs. The
spectrum of mutated genes in AML and MDS is broadly
overlapping. However, in AML, mutations affecting genes
encoding tyrosine kinase receptor (FLT3 and KIT), genes
involved in the RAS pathway, and genes like CEBPA, NPM1
and IDH1/IDH2 are over-represented compared to MDS.
Conversely, mutations affecting genes involved in splicing (e.g.,
SF3B1, U2AF1, SRSF2), as well as epigenetic regulators (e.g
DNMT3A, TET2), are over-represented in MDS (33). In MDS,
mutations are mainly C to T base transitions occurring in CpG
dinucleotides, suggesting age-related methylated cytosine
deamination (35).

Models of Clonal Evolution Accounting
for MDS Development and AML
Transformation
AsMDS naturally progresses to AML, a major research challenge
is to uncover the genetic events leading the MDS-SCs to
transform into LSCs. Intriguingly, one team has revealed that
the proportion of clonal cells in the bone marrow does not vary
between MDS and secondary AML stages (36). Thus, the blast
cell percentage in MDS does not reflect clonality.

Whole genome sequencing techniques have established that
the transformation into AML is defined by the persistence of a
founder clone containing a large number of somatic mutations
(several hundreds), and the emergence or growth of at least one
subclone, carrying new mutations (several dozens to hundreds)
(36). In agreement, Makishima et al. demonstrated that
mutational diversity (reflected by the Shannon index) was
TABLE 1 | Phenotypic characteristics of malignant stem cells and healthy progenitors.

CD34 CD38 CD90 CD45RA CD123 CLL1

LSC + – – + + +
MDS SC from LR MDS + – + –

MDS SC from HR MDS + – + –

HSC + – + – +/- –

LMPP + – – + low –
August 2
021 | Volume 11 | Artic
For malignant (MDS-SC, LSC) and physiological (HSC, LMPP) cell populations, expression of the following antigens is depicted: CD34, CD38, CD90, CD45RA, CD123 and CLL1.
The “-” sign indicates absence of expression of the marker and the “+” sign indicates frank expression of the marker. For a given marker, if the intensity of expression in a population is
defined in respect to another population, the staining intensity of the circles reflect the intensity of expression. MDS-SC, myelodysplastic stem cells; LSC, leukemic stem cells; HSC,
hematopoietic stem cells; LMPP, lymphoid-primed multipotential progenitors; MDS, Myelodysplastic syndromes; LR, Low risk; HR, High risk.
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higher in secondary AMLs than HR-MDS, and secondary AMLs
were enriched with mutations affecting FLT3, NPM1, NRAS,
PTPN11, WT1, IDH1 and IDH2 genes (35). In addition, MDS
patients harboring mutations in one of these genes displayed a
faster AML transformation (and thus reduced overall survival).
Emergence of mutations affecting these genes could be
investigated upon the follow-up of patients with MDS, in order
to provide them early treatment which could be based on
therapies targeting these abnormalities. These mutations are
highly represented in primary AMLs as well.

Thus, a linear model was first established to account for
leukemic transformation: a pre-myelodysplastic stem cell evolves
into MDS-SCs, which in turn evolves into LSCs (37). However,
Chen et al. recently revealed that stem cell compartments had a
higher subclonal diversity than blast cells, at the MDS and
secondary AML stages (38). They hypothesized that the
relative quiescence of malignant stem cells exposed them to the
accumulation of genetic abnormalities while aging. Indeed, it had
already been emphasized that the quiescence of physiological
stem cells led to the reparation of genome damage with highly
infidel cell cycle-independent mechanisms (39). Moreover, stem
cells displayed high basal expression of pro-survival genes,
reducing elimination of damaged cells by apoptosis (39).
Frontiers in Oncology | www.frontiersin.org 4
Single-cell sequencing has suggested that clonal evolution in
the stem cell compartment was non-linear during MDS initiation
and progression to AML, generating both a dominant clone as
well as sub-clones; then, a reduced number of clones could be
detected at the blast level (38). Thus, for the majority of patients,
some subclones observed within AML blast cells were
undetectable in blast cells at the MDS stage but were present
in MDS-SCs (Figure 1).

LSCs display a phenotypic profile characteristic of
progenitors in both primary and secondary AML (13). Thus,
secondary AMLs could result from the successive acquisition of
mutations, first in the HSC compartment and then in the
progenitor compartment. Indeed, at least one genetic alteration
carried by AML blasts could not be traced back to the Lin−
CD34+ CD38− fraction in some patients (38).
PART 3: METABOLIC CHARACTERISTICS
OF MALIGNANT STEM CELLS

LSCs are generally quiescent (mostly in G0 phase) (40, 41) and
display low levels of reactive oxygen species (low-ROS) (42).
Low-ROS LSCs are deficient in their ability to employ glycolysis,
FIGURE 1 | Models of clonal evolution accounting for MDS development and AML transformation. Distinct temporal stages of disease progression are represented
with the arrow. Healthy cells are depicted by an empty purple circle. Inside purple circles, each colored circle (yellow, red, blue and green) symbolizes the presence
of a distinct mutation. Combination of mutations defines specific clones. According to the linear model, clonal evolution in the stem cell compartment is simply
sequential and cumulative and the dominant clone in MDS stage (found in the blast compartment) initiates AML, after acquisition of new mutations. According to the
second model, pre-MDS-SCs acquire distinct additional mutations in parallel, that drive either MDS blast production or AML transformation. MDS, myelodysplastic
syndrome; AML, acute myeloid leukemia; SC, Stem cells.
August 2021 | Volume 11 | Article 730899
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and preferably rely on oxydative phosphorylation. BCL-2 is
upregulated in low-ROS LSCs and mediates oxidative
respiration, driving them sensitive to BCL-2-targeting therapy
(42). Moreover, LSCs aberrantly rely on exogenous cysteine
intake to drive oxidative phosphorylation, cysteine depletion
impairing the activity of electron transport chain and leading
them to death (43). Targeting mitochondrial translation has
demonstrated selective activity against LSC cells as well (44).

Ribosomal function effectors are overexpressed in AML LSCs
compared to normal HSCs (45). The protein synthesis of
physiological HSCs is extremely reduced compared to other
hematopoietic cells and dysregulation of this synthesis hinders
their function (46). In a murine model, Pten deficiency promoted
leukemia partly by increasing protein synthesis (46).

Like LSCs, MDS-SCs are quiescent (mostly in G0 phase) (21).
A recent study has demonstrated that MDS-SCs exhibit
increased protein machinery activation and oxidative
phosphorylation, as well as an increased use of the citric acid
cycle in patients with HR-MDS, compared to healthy HSCs (21).
Overexpression of ribosomal proteins is associated with a higher
risk of transformation for HR-MDS patients (47). Targeting the
protein synthesis (by omacetaxine), combined with targeting of
oxidative phosphorylation (by venetoclax), has proven to be
effective against MDS-SCs in immunocompromised mice
engrafted with HR-MDS bone marrow cells (21). As this
combination demonstrated low toxicity on healthy
hematopoietic cells, a Phase 2A study was conducted to
evaluate efficacy of omacetaxine mepesuccinate in HR-MDS
population, yielding promising results (48). Surprisingly, MDS
with isolated del(5q) have been associated with underexpression
of genes involved in ribosomal biogenesis and translational
control, and may be considered as ribosomopathies (47, 49).
Moreover, mice hemizygous for Rps6, a gene encoding a
ribosomal protein, displayed a phenotype very similar to MDS
with isolated del(5q), dependent on P53 activation (50). In
addition, patients diagnosed with other forms of LR-MDS
Frontiers in Oncology | www.frontiersin.org 5
displayed an underexpression of ribosomal proteins in their
malignant stem cells (50).
CONCLUSION

Functional experiments in vitro and in vivo have been used to
define the phenotype of LSCs and MDS-SCs. MDS-SCs share a
common phenotype with healthy HSCc, whereas LSCs
phenotype is closer to that of healthy progenitors, mostly
LMPP. The study of their gene expression profi les
demonstrated that MDS-SCs are more likely to be derived
from HSCs, while LSCs may rise from progenitors re-
expressing stem cell transcriptional programs. The genetic
abnormalities underlying MDS and AML are distinct, although
they overlap to a large extent. Whole genome sequencing
techniques have been able to establish that the progression of
MDS to AML is defined by the persistence of a founder clone,
and the emergence or growth of at least one subclone, carrying
new mutations (mostly FLT3, NPM1, NRAS, PTPN11, WT1,
IDH1 and IDH2). Single-cell genotyping has suggested that
clonal evolution in the stem cell compartment is non-linear
during MDS initiation and AML progression, generating both
dominant clone and subclones, with a reduced number of clones
detectable in the blast compartment. Malignant stem cells have
demonstrated activation of the protein machinery and
dependence on oxidative phosphorylation in both AML and
HR-MDS. Targeting these metabolic abnormalities could
prevent HR-MDS from progressing to AML.
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