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Platelets and Platelet-Derived 
Extracellular Vesicles in Liver Physiology 
and Disease
Alexandre Balaphas ,1-3 Jeremy Meyer ,1-3 Karin Sadoul,4 Pierre Fontana,5,6 Philippe Morel,1-3 Carmen Gonelle-Gispert,2,3* 
and Leo H. Bühler1-3*

Beyond their role in hemostasis, platelets are proposed as key mediators of several physiological and pathophysiologi-
cal processes of the liver, such as liver regeneration, toxic or viral acute liver injury, liver fibrosis, and carcinogene-
sis. The effects of platelets on the liver involve interactions with sinusoidal endothelial cells and the release of 
platelet-contained molecules following platelet activation. Platelets are the major source of circulating extracellular 
vesicles, which are suggested to play key roles in platelet interactions with endothelial cells in several clinical disor-
ders. In the present review, we discuss the implications of platelet-derived extracellular vesicles in physiological and 
pathophysiological processes of the liver. (Hepatology Communications 2019;3:855-866).

Although the primary function of platelets is 
hemostasis, they also transport molecules 
implicated in numerous physiological pro-

cesses, such as wound healing,(1-3) cell activation 
and proliferation,(3-5) angiogenesis,(3,6-8) and immune 
responses.(2,4,9-11) Platelet interactions with liver cells 
protect hepatic tissue and stimulate liver regeneration 
after parenchyma transection or ischemia-reperfusion 
injury.(12-15) However, platelets also contribute to liver 
injury, as detailed below.(12)

The human platelet proteome is comprised of >1,500 
different proteins.(16) Platelet “releasate” designates the 
supernatant solution after platelets have released their 
granules; it contains membrane fragments called extra-
cellular vesicles (EVs).(17,18) The term EV includes 
microparticles (also called microvesicles), exosomes, and 

apoptotic bodies.(19) In a healthy condition, platelet- 
derived EVs account for 70% to 90% of circulating 
EVs in the blood.(20) EVs carry proteins, lipids, lipo-
proteins, messenger RNA, micro-RNA (miRNA), and 
possibly DNA,(21,22) and they interact with target cells 
by means of endocytosis, surface contact, or membrane 
fusion.(21) EVs permit intercellular communication 
and were shown to be involved in various physiologi-
cal and pathological processes.(17,23-26) The topic of EV 
has become increasingly popular throughout the years, 
with research teams using different methods and tools 
for EV isolation and characterization, thereby produc-
ing variable and sometimes contradictory results.(27-29) 
Despite a call from international societies for increased 
standardization, researchers nevertheless continue to 
employ the protocol and standards they see fit.(27,28)

Abbreviations: CD, clusters of differentiation; ESCRT, endosomal sorting complex required for transport; EV, extracellular vesicles; HCC, 
hepatocellular carcinoma; HSC, hepatic stellate cell; IL, interleukin; LSEC, liver sinusoid endothelial cell; miRNA, micro-RNA; NAFLD, 
nonalcoholic fatty liver disease; PEV, platelet-derived extracellular vesicles; PMP, platelet microparticles.
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Platelet-derived EVs (PEVs) transport mainly 
procoagulant material, recapitulating most platelet 
function processes. They were also demonstrated to 
be involved in vascular integrity and immune pro-
cesses.(20) Moreover, PEVs are involved in the patho-
genesis of chronic inflammatory processes, such as 
rheumatoid arthritis(20,30-32) and hypercoagulabil-
ity,(33-35) and could play a role in endothelial dys-
function in patients with metabolic syndrome.(36) 
Interestingly, PEVs seem to be implicated in regen-
erative processes.(37-41) However, despite the potential 
importance of the interplay between PEVs and liver 
tissue, the literature on this topic remains sparse.

Features of PEVs
Platelets largely produce platelet microparticles 

(PMPs), which are defined as complete membrane 
fragments with sizes ranging from 0.1 μm to 1 μm.(17) 
PMPs are produced by platelet vesiculation following 
platelet activation by strong or weak agonists in the 
presence of low shear stress or by strong shear stress 
alone.(17,18) Release of PMPs following platelet acti-
vation is a means for platelets to accelerate hemostasis 
locally at sites of activation by increasing the phos-
pholipid surface for anchoring and assembling proco-
agulant factors.(42)

The formation of microparticles is a process sim-
ilar to cytokinesis.(24) It involves the disruption of 
the calcium-dependent actin cytoskeleton and the 
proteolysis of actin bonds from plasma membrane 

phospholipids.(43) This induces the membrane to 
bleb spontaneously because of the pressure differ-
ence.(24,43) However, other mechanisms have been 
implicated, such as membrane curvature proteins, 
lipid membrane reorganization, and actin–myosin 
contraction elicited through guanosine triphos-
phate-binding protein, adenosine diphosphate- 
ribosylation factor 6, or rho-associated protein kinase 
1 signaling.(19,24) It has been proposed that micro-
particle formation is a spontaneous and nonregu-
lated process. However, PMP quantity and content 
vary according to platelet activators, and the micro-
particle generation can be blocked by pharmacologic 
agents, suggesting a regulated mechanism.(18,44) 
PMPs are mainly characterized by expression of 
clusters of differentiation (CD)41, CD42b (gly-
coprotein Ib), and phosphatidylserine (the bind-
ing partner of annexin V), which vary according 
to the manner in which platelets are activated.(45) 
Moreover, phosphatidylserine expression appears to 
correlate with the procoagulant activity of PMPs.(45)

Exosomes are smaller than microparticles (0.03 μm 
up to 0.1-0.2 μm) and are released from cells by a 
true exocytosis process that is highly regulated.(19) 
Exosomes originate from multivesicular bodies that 
arise from late endosomes.(46) Exosome secretion 
is regulated either by endosomal sorting complexes 
required for transport (ESCRT) or by an ESCRT-
independent pathway.(19) The latter mechanism impli-
cates ceramide and some tetraspanins (CD63 and 
CD81),(19,47) and the entire process is regulated by 
RAB family proteins. Apoptotic bodies are remnant 
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fragments of cells with sizes ranging from 0.3 μm 
to 5 μm with fibrogenic properties on the liver.(48) 
Apoptotic bodies are difficult to characterize as they 
share similar markers with other EVs(49) and are likely 
to be isolated along with exosomes or microparticles 
as few authors report methods to select or exclude 
them.(49) Due to an overlap between microparticles, 
exosomes, and apoptotic bodies and a lack of reliable 
standardized characterization methods, the term PEV 
will be used in the following sections.

Acute Liver Injury
Acute liver injury encompasses any insult to the 

liver that provokes an acute inflammatory response. 
The insults include physical (e.g., trauma or liver sur-
gery) or chemical agents (e.g., acetaminophen toxic-
ity). Acute liver injury can rapidly lead to acute liver 
failure, a life-threatening condition characterized by a 
severe loss of homeostatic functions of the liver and a 
mortality rate of >30%.(50)

In a mouse model of Fas-antibody-induced hep-
atitis, Hisakura et al.(51) demonstrated that throm-
bocytosis had a protective effect on hepatocytes 
apoptosis as well as on liver sinusoidal endothelium 
injury. In a model of acute cholestatic injury induced 
by alpha-naphthylisothiocyanate in mice, Sullivan 
et al.(52) concluded that platelets are implicated in 
hepatocyte necrosis as platelet depletion induced the 
pooling of blood into liver parenchyma (liver pelio-
sis) and blocking of the P2Y12 receptor expressed on 
platelets reduced the severity of hepatocyte injury. On 
a clinical level, recent meta-analyses indicate that low 
perioperative platelet counts after liver surgery were 
correlated with higher risk of postoperative liver fail-
ure.(53) Moreover, thrombocytopenia occurring during 
the first week of hospital admission for acute liver 
failure was associated with either death or listing on a 
liver transplantation waiting list.(54) These data show 
that low circulating platelet levels correlate with poor 
liver regeneration.

PEVs are involved in chronic and acute inflam-
matory processes, including systemic inflammatory 
response syndrome and sepsis.(55,56) PEVs promote 
inflammation at the level of endothelial cells, which 
are the first static cells they reach. It has been shown 
in vitro that PEVs increase the adhesion of mono-
cytes to human umbilical vein endothelial cells 

(HUVECs)(57) and induce the expression of genes 
coding for inflammatory markers, including adhesion 
receptors, such as intercellular adhesion molecule 1, 
CD11a, and CD11b.(58) Moreover, PEVs induce the 
presentation of Von Willebrand factor at the surface 
of HUVECs(59) and carry interleukin (IL)-1β, which 
is known to stimulate the adhesion of leukocytes to 
the endothelium.(58) Moreover, PEVs enhance the 
aggregation of neutrophils(60,61) and monocytes(62)  
in vitro and stimulate the maturation of dendritic cells, 
which can further activate T lymphocytes.(63,64) PEVs 
were shown to transport mitochondria, which may 
trigger leukocyte adhesion to the endothelium if they 
are released.(65) Finally, PEVs induce platelet adhe-
sion to the endothelium through CD61 (glycoprotein  
IIb/IIIa) binding.(66)

Liver sinusoidal endothelial cells (LSECs) are 
key actors in liver regeneration(67) and therefore are 
important for withstanding liver injury. As platelets, 
PEVs could be of importance in the regulation of 
cytokine production and release by LSECs during 
acute liver injury. Of interest, Stravitz and col-
leagues(68) showed that patients suffering from acute 
liver failure had an increased amount of circulating 
microparticles that were essentially PEVs (Table 1). 
Furthermore, these microparticles were independent 
predictors of liver transplantation complications and 
mortality.(68)

Chronic Liver Diseases
Fatty liVeR Disease anD 
steatoHepatitis

The role of platelets in nonalcoholic steatohepatitis 
remains contentious (Table 1). Some studies attribute 
a proinflammatory effect to platelets, whereas others 
demonstrate an anti-inflammatory role.(69) Studies by 
Kanellopoulou et al.(70) did not detect differences in 
PEV counts between healthy volunteers and patients 
with nonalcoholic fatty liver disease (NAFLD), 
although Kornek et al.(71) reported a decrease in PEV 
counts for patients with NAFLD. Alcohol directly 
affects platelet counts independently of liver implica-
tion,(72) but little is known on the effect of platelets on 
alcoholic steatohepatitis. Ogasawara and colleagues(73) 
found a statistically significant increase in PEV counts 
in patients with alcoholic fatty liver disease when 
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compared to healthy patients. Moreover, PEV counts 
decreased 10 days after alcohol withdrawal. However, 
the effect and the clinical significance of these varia-
tions in PEV counts remain unknown.

liVeR FiBRosis
Liver fibrosis results from a complex interplay 

between nonparenchymal cells and dying hepato-
cytes. Activation of hepatic stellate cells (HSCs), their 
transformation into myofibroblasts, and their interac-
tion with Kupffer cells represent the key events of the 
fibrotic process.(74)

Platelets were demonstrated to protect liver tissue 
against drug-induced fibrosis in rodents by an action on 
the redox status and an increase in intracellular cyclic 
adenosine monophosphate in HSCs.(75) Hepatocyte 
growth factor (HGF) released by platelets contrib-
utes to alleviate the fibrotic process,(76,77) and platelet 
transfusion improved residual liver function in patients 
with cirrhosis.(78) On the other hand, platelets contain 
numerous factors (transforming growth factor β, plate-
let-derived growth factor b, and platelet factor 4) that 
are known to promote liver fibrosis.(69) In vitro, platelet 
lysates were shown to induce HSC proliferation and 

profibrogenic cytokine production.(79) Additionally,  
in vivo experiments in a rodent model of biliary- 
induced fibrosis established that platelet-derived 
growth factor b plays a role in HSC activation.(80) A 
study by Vasina and colleagues(81) also demonstrated 
that PEVs were implicated in monocyte polarization 
and thus maturation and may therefore be implicated 
in the turnover of liver macrophages, particularly in 
the case of chronic inflammation, such as steatohepa-
titis, where circulating monocytes are recruited.(82)

The correlation between PEV counts and liver 
fibrosis is controversial. Some clinical studies demon-
strated that PEV blood levels were higher than 
normal in patients with alcoholic cirrhosis or hepa-
titis C virus-induced cirrhosis(73) or in patients with 
Child-Pugh A cirrhosis.(83) Furthermore, Fusegawa 
and colleagues(84) demonstrated that blood PEV 
counts were correlated with indirect markers of liver 
fibrosis in blood (serum hyaluronate and N-terminal 
propeptide of type III procollagen) in patients with 
chronic hepatitis B or C. PEVs are induced by 
platelet activation, and it was proposed that PEV 
levels reflect the systemic inflammatory state asso-
ciated with liver cirrhosis.(85) However, Rautou  
et al.(86) did not report any difference in PEV counts 

taBle 1. peV Counts CoulD Constitute a maRKeR oF liVeR inFlammatoRy pRoCesses anD 
WeRe CHaRaCteRiZeD By FloW CytometRy

Type of 
Pathology/Injury Publication

Platelet-Derived EV 
Blood Count*

Characterization 
Markers Species

Target Cells and 
Effect*

Acute Acute liver injury Stravitz et al.(68) Increase CD41+, Annexin V+ Human NA

Ischemia-reperfusion 
injury

Freeman et al.(116) Increase CD41+, Annexin V+ Mouse NA

Teoh et al.(117) Increase CD41+, Annexin V+, 
CD62P+

Mouse Enhanced neutrophil 
migration, 
hepatocyte injury, 
platelet activation

Hepatectomy Banz et al.(130) Increase CD41+, Annexin V+ Human NA

Chronic Alcoholic fatty liver 
disease

Ogasawara et al.(73) Increase CD61+ Human NA

NAFLD Kanellopoulou et al.(70) Normal CD61+, Annexin V+ Human NA

Kornek et al.(71) Decrease CD41+ Human NA

Chronic active 
hepatitis C virus

Kanellopoulou et al.(70) Increase CD61+ Human NA

HCC Levi et al.(104) Increase CD41+ Human NA

Cirrhosis Ogasawara et al.(73) Increase CD61+ Human NA

Fusegawa et al.(84) Increase CD61+ Human NA

Sayed et al.(83) Increase CD41+ Human NA

Rautou et al.(86) Normal CD41+, Annexin V+ Human NA

Kornek et al.(71) Normal CD41+ Human NA

*Fluctuations are relative to healthy individuals.
Abbreviation: NA, not applicable.
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between patients with cirrhosis and healthy partici-
pants. The same observation was made by Kornek  
et al.(71) who also reported the absence of correlation 
between PEV counts and alanine transaminase level 
or biopsy stage of fibrosis. Moreover, liver cirrhosis is 
associated with thrombocytopenia, which appears to 
be multifactorial following a reduced production, a 
splenic sequestration, or an increased destruction of 
platelets.(87) Two early publications reported an inverse 
correlation between platelets and PEV counts,(73,84) 
but recent publications did not.(71,83,86) This discrep-
ancy can be explained by the methods used to char-
acterize PEVs. Thus, it appears that platelet numbers 
did not influence the generation of PEVs.

Currently, the available data do not allow conclu-
sions to be drawn regarding the implication of PEVs 
in liver cirrhosis.(85,86,88) Notably, the clinical data 
show contradictory results regarding PEV blood lev-
els in patients with cirrhosis. Further experimental 
research is needed to clarify the implication and the 
causality of PEV in liver cirrhosis.

ViRal inFeCtions
Platelets were shown to have a deleterious role 

in viral hepatitis by promoting cytotoxic T lym-
phocyte recruitment to the liver in rodents.(69,89-95) 
This effect was reported to be mediated by sero-
tonin released from platelets.(92) Hepatitis B and E 
virus highjack trafficking machineries (respectively, 
multivesicular bodies and ESCRT III) that are usu-
ally used by EVs,(96,97) but little is known about the 
direct involvement of PEVs during infection. There 
are some studies analyzing PEV levels during viral 
infections. One such study reported a correlation 
between PEV count and active chronic hepatits C 
infection(70) (Table 1). In this study, the increased 
levels of PEVs returned to baseline when sustained 
virologic responses to interferon-α and ribavirin 
were observed. Another study found that the lev-
els of PEVs in blood were higher in patients with 
chronic hepatitis C than in patients with chronic 
hepatitis B.(84)

liVeR metastatiC Disease 
anD liVeR pRimaRy CanCeR

Platelets play a role in carcinogenesis. After con-
tact with epithelial cancer cells or by secretion of 

cytokines, platelets facilitate the epithelial-mesenchymal 
transition, a cardinal step in the metastatic pro-
cess.(77,98) Moreover, platelets are able to protect free 
cancer cells from shear stress and natural killer cells 
during their circulation in the blood.(77,99-101) They 
allow their extravascular migration (mainly through 
their releasate)(77,102) and facilitate metastases implan-
tation and proliferation.(77) Platelets were also sug-
gested to be implicated in hepatocellular carcinoma 
(HCC) growth and migration.(103)

A study by Bihari and colleagues(103) analyzed 
blood platelet smears and clustering around tumor 
cells after fine needle aspiration of HCC nodules. 
They found positive correlations between distant 
metastasis and platelet/lymphocyte ratio, platelet 
clustering, and HCC group (according to the extent 
of disease) invasiveness assay and platelet concentra-
tion. They suggested that platelets are implicated in 
HCC growth and migration (Table 1). Furthermore, 
Levi and colleagues(104) reported that EVs, identified 
as PEVs, were significantly elevated in the blood of 
patients with HCC.

Ischemia-Reperfusion Injury
Liver ischemia-reperfusion injury occurs following 

the arrest of blood circulation to liver tissue, as occurs 
during clamping of the portal pedicle. Clamping may 
be necessary during major liver resection to prevent 
blood oozing or control bleeding or during organ 
donor liver transplantation. Indeed, liver tissue isch-
emia activates resident Kupffer cells, which produce 
free reactive oxygen species following reperfusion of 
the liver. These oxygen species combined with the 
secretion of proinflammatory cytokines induce an 
overwhelming inflammatory reaction involving the 
recruitment of neutrophils and CD4+ T lympho-
cytes.(105) Free reactive oxygen species are responsi-
ble for tissue injury but also for the amplification of 
this phenomenon. Further, liver ischemia-reperfusion 
injury is characterized by alteration of the microcir-
culation.(106,107) Platelets were shown to play a key 
role in this process. First, platelets aggregate within 
sinusoids during the ischemic phase, contributing to 
the propagation of no-reflow zones during reperfu-
sion.(108) Second, platelets induce apoptosis of LSECs 
following a synergistic interaction with Kupffer cells 
and leukocytes.(109,110) This effect was proposed to be 
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induced by a platelet nitric oxide combination with 
free oxygen radicals and the release of pro-apoptotic 
factors.(108,111,112) Finally, platelets contain numerous 
factors that, when released, could worsen liver tis-
sue damage following extravasation into the space of 
Disse.(113)

Gambim and colleagues(115) reported that PEVs 
collected from patients with septic shock, a condi-
tion known to impair microcirculation,(114) directly 
induce apoptosis of rabbit endothelial cells.(115) 
Using a mouse model of ischemia-reperfusion injury, 
Freeman and colleagues(116) reported an acute eleva-
tion of platelet- and neutrophil-derived EVs in blood 
followed by a delayed elevation of endothelial cell- 
derived EVs. The highest concentration of PEVs in 
the blood lasted for 1 hour. Interestingly, PEV con-
centration in the blood dropped after 8 hours to a level 
that was significantly lower than in the control group 
(sham procedure). Moreover, Teoh and colleagues(117) 
reported that liver ischemia-reperfusion injury in 
mice generated a mixed population of microparti-
cles, some of which were positive for platelet markers 
(CD41 and CD62P). These microparticles promoted 
migration of liver-isolated neutrophils in ThinCert 
chambers. Additionally, the authors demonstrated 
that co-incubation of these mixed microparticles with 
hepatocytes induced cell injury by activation of c-jun 
N-terminal kinase and nuclear factor-kappa B (Fig. 1).  
This effect was mediated by oxidative stress and 
mitochondrial membrane permeability transition as it 
could be blocked by N-acetylcystein and cyclosporine 
A, respectively. In summary, PEV release is increased 
after liver ischemia-reperfusion injury and has a cyto-
toxic effect on hepatocytes and possibly on LSECs.

Liver Regeneration
Liver has the unique ability to regenerate and 

recover a functional volume sufficient to ensure the 
physiological needs of the organism. This regenerative 
property has been recognized since Greek antiquity 
and gave life to the myth of the scourge of Prometheus. 
Recent advances indicate that liver regeneration 
involves cytokine interplay between nonparenchymal 
and parenchymal cells to induce hepatocyte hyperpla-
sia,(118) whereas most reparative processes in humans 
imply cellular hypertrophy. Importantly, liver regen-
eration does not occur when its functional volume is 

below 25%. This has major consequences for patients 
with extended oncological diseases that cannot benefit 
from liver resection.(119,120)

Platelets have been shown to contribute to liver 
regeneration in many ways(13-15) (Fig. 1). Platelet 
counts were demonstrated to directly correlate to 
hepatocyte proliferation(121-126) and improved survival 
after critical liver resection in a rodent model.(124) 
Furthermore, low platelet counts were shown to cor-
relate with the occurrence of liver failure after hepa-
tectomy in humans.(53,127) It has been proposed that 
platelets might directly stimulate hepatocytes to pro-
liferate by releasing promitogenic factors and also by 
inducing LSECs to secrete IL-6, which stimulates 
hepatocyte proliferation.(13) The release of granule 
contents during platelet activation has been sug-
gested to trigger liver regeneration. Notably, it was 
suggested that platelet serotonin, vascular endothelial 
growth factor, HGF, and insulin like-growth factor 
are involved.(13-15)

PEVs play a role in angiogenesis and endothe-
lial regeneration.(37-41) PEV injection in a rat model 
of myocardial ischemia promoted myocardial angio-
genesis.(38) Moreover, PEVs are implicated in bone 
regeneration and neuronal proliferation, suggesting 
therapeutic potential in stroke victims.(128,129) As pre-
viously described, PEVs are generated in the blood 
following liver injury (e.g., partial hepatectomy)(116,130) 
(Fig. 1). Of interest, Nomura and colleagues(131) 
showed that shear stress generated PEV-induced IL-6 
secretion from endothelial cells.

Furthermore, PEVs obtained after platelet acti-
vation are able to deliver Ag02-miRNA complexes 
to cultured endothelial cells and thereby modu-
late endothelial gene expression.(132) Later, it was 
demonstrated that platelets stimulate liver regener-
ation by the delivery of miRNA to hepatocytes.(133) 
Therefore, platelets and/or platelet-derived EVs 
may stimulate liver regeneration by delivering prop-
roliferative molecules and/or miRNAs.

Conclusion and Perspectives
Platelets are involved in physiological and patho-

physiological liver processes. However, delineating 
the mechanisms by which platelets mediate these 
effects warrants further investigation. Notably, 
platelets may be likened to a double-edged sword 
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Fig. 1.  Roles of platelets and PEVs in ischemia-reperfusion injury and acute liver injury. (A) After liver ischemia-reperfusion injury 
and acute liver injury, such as hepatectomy, activated platelets in the sinusoid release several growth factors that can directly stimulate 
hepatocytes to proliferate or activate LSECs to further produce growth factors or factors, such as IL-6, that regulate liver regeneration. 
(B) PEVs have opposite effects on the liver after injury. (B1) In ischemia/reperfusion, PEVs activate c-jun N-terminal kinase and 
nuclear factor-kappa B in hepatocytes and contribute to cell injury. (B2) After acute liver injury and ischemia/reperfusion, PEVs can 
induce endothelium activation, which further promotes the recruitment, adhesion, and migration of monocytes and neutrophils and 
the secretion of cytokines, such as IL-6. (B3) We propose that growth factor production by LSECs could modulate liver regeneration. 
Moreover, PEVs might have a direct effect on hepatocytes.
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depending on the specific pathology. Platelets may 
have either deleterious effects on liver tissue, as 
during ischemia-reperfusion injury, or beneficial 
effects, as in liver regeneration. To explain these 
contrasting effects, some researchers proposed 
that platelet α-granules contain multiple subsets 
of antagonist factors (notably pro-angiogenic and 
anti-angiogenic factors) that may be differentially 
released depending on platelet activators.(134-140) 
PEVs constitute alternative candidates to explain 
the discrepant effects of platelets.(141)

PEVs are generated following liver injury and 
could serve as transporters of molecules necessary 
for signaling a regenerative process, even at remote 
sites. Platelet exosomes and PMPs could be part 
of a common transport system; identical proteins 
are transported by both of them, and recent evi-
dence suggested that PMP production is also regu-
lated.(18,141) Regulation of PEVs  at the level of their 
production and release as well as their content could 
explain the dual role of platelets in liver physiology 
and pathophysiology.

Some reports show contradictory results regard-
ing the association between PEVs and particular 
diseases in patients. This discrepancy likely reflects 
the lack of consensus in the way PEVs are quanti-
fied. In order to understand the role of platelets in 
liver diseases and regeneration, it will be necessary 
to focus future research on the generation of PEVs, 
their content, and their uptake by hepatocytes and 
nonparenchymal cells. This field of research still 
requires improved standardization for PEV isolation 
and characterization.
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