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Several large-scale human cancer genomics projects such as TCGA offered huge genomic and clinical data for researchers to obtain
meaningful genomics alterationswhich intervene in the development andmetastasis of the tumor. Aweb-basedTCGAdata analysis
platform called TCGA4U was developed in this study. TCGA4U provides a visualization solution for this study to illustrate the
relationship of these genomics alternations with clinical data. A whole genome screening of the survival related gene expression
patterns in breast cancer was studied. The gene list that impacts the breast cancer patient survival was divided into two patterns.
Gene list of each of these patterns was separately analyzed on DAVID.The result showed that mitochondrial ribosomes play a more
crucial role in the cancer development. We also reported that breast cancer patients with low HSPA2 expression level had shorter
overall survival time. This is widely different to findings of HSPA2 expression pattern in other cancer types. TCGA4U provided a
new perspective for the TCGA datasets. We believe it can inspire more biomedical researchers to study and explain the genomic
alterations in cancer development and discover more targeted therapies to help more cancer patients.

1. Introduction

Breast cancer is one of the most common cancers and the
leading cause of cancer death among women all over the
world, with 2.6 women being diagnosed every minute and
more than 52 women died every hour in 2008 [1]. Currently,
with the public availability of genomic data such as The
Cancer Genome Atlas (TCGA) and the International Cancer
Genome Consortium (ICGC), a plenty of bioinformatics
researchers analyzed gene expression data with clinical data
to attempt to predict the prognosis and find biomarkers
for therapy [2–5]. These researches have gained obvious
achievements in prediction of cancer prognosis. Integrated
gene expression data and clinical outcome data provided
the potential to correlate the expression pattern with the
survival. To screen thewhole genome and identify statistically
significant gene expression patterns which impact survival

will direct the target for translational research. Heterogeneity
gene expression of the specific gene in the cancer population
is well-known. Such heterogeneitymay regulate proliferation,
survival, angiogenesis, metastasis, and others. Mining these
gene expression patterns and illustrating their mechanisms
on molecular and signal pathway levels will help researchers
and clinicians to subclass and treat the cancer with more
precision. In this study, through integrating gene expres-
sion data and clinical outcome data of breast cancer from
TCGA datasets on a web-based genomic analysis platform
(TCGA4U), breast cancer survival related gene expression
patterns were identified and analyzed.

2. TCGA4U

TCGAprovides the platform for researchers to search, down-
load, and analyze datasets including clinical information,
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Figure 1: Exploring gene expression distribution and survival curves on TCGA4U.

genomic characterization data, and high level sequence anal-
ysis of the tumor genomes of nearly 50 tumor types [6].
Many researchers take statistics methods, novel algorithms,
and computational model on these high throughput genomic
data, including copy number alterations (CNAs), mRNA
and small RNA expression, somatic mutation, and DNA
methylation data to find potential driver mutations, genes
for improving cancer prevention, early detection, and treat-
ment [7–14]. However, there are many clinical researchers
without enough knowledge of data analysis and training
in bioinformatics will face an embarrassing situation where
they have not enough professional abilities and thoughts
to handle with the gigabytes downloaded data. In recent
years, web-based analysis tools such as Cancer Genome
Workbench (https://cgwb.nci.nih.gov/), cBioPortal for Can-
cer Genomics (http://cbioportal.org/), Integrative Genomics
Viewer (http://www.broadinstitute.org/igv/), andBroad Fire-
hose (http://gdac.broadinstitute.org/) have been used by the
clinicians and researchers to search meaningful genomic
alterations to make targeted and personalized treatment
in clinical practice [6, 14]. Different tools using distinct
approaches to visualize the huge volume cancer genomics
data and the relationships under this data are mutually com-
plementary. To help clinical cancer researchers fully benefit
from the TCGA datasets through a simple and user-friendly
tool, we developed a web-based platform called TCGA4U
(http://www.tcga4u.org:8888). TCGA4U is an intuitive web-
based analysis tool to analyze high level genomic data of
different TCGAsamples in distinct cancer types. In themean-
time, TCGA4U platform offers statistical analysis results and
graphical views to help users find interesting results for
further investigation. Besides providing the specific gene or
gene list genomic characteristics query service, such as CNAs,
somatic mutation, gene expression, and DNA methylation,
furthermore, TCGA4U also integrated clinical data, gene
ontology, and data mining results with the gene-level data
to provide more insights for clinical investigation. One of
its unique features is providing interactive user interface and

allowing survival analysis of specific gene alterations. As
shown in Figure 1, the distribution of patients with different
gene expression value was displayed in the left panel. Survival
curves of subgroup patients that were grouped based on
their expression values will be provided for users. In current
TCGA4U, four types of genomic data which include somatic
mutation, DNA methylation, gene expression, and copy
number variationwere integratedwith the follow-up data and
provided survival related analysis. This will make complex
relationships between cancer genomics profiles and clinical
outcomes accessible and understandable to researchers and
clinicians without bioinformatics expertise, thus facilitat-
ing biological discoveries. Theoretically, the comprehensive
survival related gene alterations analysis of different data
types in different cancer types can be investigated. While
TCGA measures hundreds of thousands of variable data for
each data type in each sample, the sheer volume of possible
associations in multiple data type is overwhelming even for
computer. In this study, the gene expression data in the
breast cancer were used to demonstrate the potential power
of bioinformatics approaches to leverage the TCGA big data.

In this study, the difference among survival curves of dif-
ferent subgroup patients can be assessed using the Log-Rank
test. A gene list can be identified on a basis of a certain statistic
threshold such as 𝑝 < 0.005. Generally, genes in this list can
be further classified into two groups: high expression value
correlated with poor outcome and low expression value cor-
relatedwith poor outcome.Through analyzing these gene lists
at molecular and signal pathway levels, some of these genes
can be served as biomarkers to predict the clinical outcome.

3. Materials and Methods

3.1. Data Preparation and Integration. All genomic data and
clinical data of breast cancer were downloaded from TCGA
data portal during two months from February 2014 to April
2014. These downloaded data files including four gene-level
data types (copy number variants, gene expression, somatic
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mutation, and DNA methylation) and clinical data were
imported into a relational database which was defined based
on the downloaded tab delimited files. TCGA barcode ID
for samples and patients in different data files was used to
associate those data tables. Besides, more reference data such
as human genome (hg19/build37) were downloaded as a part
of TCGA4Udatabase.The following datamining and analysis
were based on these integrated TCGA4U datasets.

3.2. Correlation Gene Expression Pattern with Survival. The
gene expression value distributions in population of total
14,819 genes expressed in breast tumor tissue were surveyed.
For each gene, the cancer population can be divided into
two groups: the gene expression more than normal tissue
(log2 Lowess normalized value > 0) and the gene expression
less than normal tissue (log2 Lowess normalized value < 0).
The survival of two subgroup patients for each gene was
compared and testedwith the Log-Rank test. Geneswith Log-
Rank test 𝑝 value < 0.005 and subgroup observed times more
than 4 were filtered out into a gene list for further analysis.
Genes in this list can be further divided into two gene
lists: high expression pattern correlated with poor survival
and low expression pattern correlated with poor survival.
DAVID (http://david.abcc.ncifcrf.gov/) were used to conduct
the Functional Annotation Clustering analysis on these two
gene lists. The enriched gene clusters that contain not only
the identified gene but also its related genes were clustered
using the gene expression profiles to confirm the pathways or
function units play an important role in tumor evolution and
patient survival.

3.3. Bioinformatics Tools. Most of data analyses were con-
ducted under the R 3.1.1. The Log-Rank test was conducted
based on survdiff function in survival package (version 2.37-
7). Heat map was plotted based on heatmap 2 function in
gplots package (version 2.14.1). 𝐾-menas clustering was cal-
culated based on kmeans function in stats package (version
3.1.1) in R.

4. Results

4.1. Log-Rank Test Results of Gene Expression Patterns
Correlated with Survival. Using aforementioned methods,
TCGA4U provides an interactive interface for users to query
distribution of gene expression values and corresponding
survival curves of two gene expression patterns. Please
visit http://www.tcga4u.org:8888/GenomicAnalysis for
details. The results of the Log-Rank test of 14,811 genes were
published at http://www.tcga4u.org:8888/SurvivalLogRank
(please select “breast invasive carcinoma” in disease type and
“Expression HighLow” in characteristic type dropdown list).

As mentioned before, Log-Rank test 𝑝 value < 0.005
and observed times more than 4 were used to filter out
201 genes whose gene expression pattern significantly related
to patients survival. This gene list was further divided into
two gene lists based on its gene expression pattern: patients
with high gene expression have poor outcome (pattern I) or

Table 1: Part of the gene list of two patterns.

Annotations Gene Log-Rank test Mean survival
(𝑝 value) (high/low mos)

Pattern I

Oxidative
phosphorylation

ATP5G3 0.0000572 79.4/156.5
ATP5E 0.0029381 117.8/182.1
COX8A 0.0003704 98.4/172.8
COX5B 0.0013046 120.4/158.3
SDHD 0.0000044 53.6/155.6
UQCRB 0.0042031 125.2/182.7
SDHA 0.0000869 42.2/151.6

Mitochondrial
ribosome

MRPL13 0.0027950 119.1/166.9
MRPL18 0.0000003 80.4/173.9
MRPS23 0.0037369 64.1/154.8
MRPS25 0.0000036 45.0/152.1
MRPS7 0.0014625 98.8/165.8

Proteasome

PSMD12 0.0001182 99.6/161.4
PSMD14 0.0000011 62.9/155.2
PSMA6 0.0026322 85.5/163.8
PSMB1 0.0030467 82.4/153.2

Pattern II

Ribosome

RPL13A 0.0002459 154.9/63.2
RPL3 0.0011936 158.2/115.1
RPS27 0.0009400 162.7/77.4
RPS9 0.0011063 160.5/72.6

DNA repair

MGMT 0.0002336 150.7/42.7
ATXN3 0.0048654 165.7/122.9
POLI 0.0020534 165.9/112.8
PML 0.0000252 159.2/64.0

patients with low gene expression have poor outcome (pat-
tern II). Total 107 genes were grouped into pattern I and 94
genes were grouped into pattern II (please check supplemen-
tary files for details of two gene lists in Supplementary Mate-
rial available online at http://dx.doi.org/10.1155/2015/878546).
A part of the gene list of two patterns that will be discussed
later was given in Table 1.

4.2. Functional Annotation Clustering. Functional Annota-
tion Clustering module of DAVID was used to classify gene
list into functional related gene groups. It generated 2D view
for related gene-term relationship and ranked annotation
groups with enrichment. Pattern I 107 genes and pattern
II 94 genes are separately analyzed on DAVID under the
conditions of Homo sapiens of species.

The most significant annotation enrichment in pattern
I gene list is “mitochondrion.” Total 31 genes in the list are
related to mitochondrion, 18 of which are clustered to the
“mitochondrion part” that play a crucial role in ATP synthase
and mitochondrial protein synthesis. Another enrichment
annotation of pattern I gene list is related to the protein
synthesis and degradation. Five genes of two subunits of
mitochondrial ribosome are found in pattern I gene list and
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Figure 2: High expression of oxidative phosphorylation complex proteins correlated with poor survival.

four genes that encoded proteins of proteasome are found in
pattern I gene list.

The clustering results of the functional annotation of pat-
tern II gene list do not give a dominated functional group.The
most enrichment of annotation is the “membrane-enclosed
lumen” especially the “nuclear lumen,” while there are 4
genes that encode proteins of ribosome which are found in
pattern II gene list that is paradoxical with the mitochondrial
ribosome gene expression pattern (detail about this will be
discussed later). As expected, there are 4 genes related to
“DNA repair” which were found in pattern II gene list. The
low expression of such DNA repair genes will increase the
risk of cancer and also give different therapy responses that
will affect the overall survival.

4.3. Aggressive Tumor with More Mitochondrial Activity.
Mitochondria generate much of the cellular energy, regulate
the cellular redox state, and produce most of the cellular
reactive oxygen species (ROS) [15]. Cancer cells need enough
energy for cell growth, differentiation, and development by
the mitochondria in the form of ATP produced by the
process of oxidative phosphorylation [16]. Thirty-one genes
that related to mitochondrion were identified in pattern I
gene lists. It supported the findings that wementioned above.
Among these genes, 7 genes were located on KEGG oxidative
phosphorylation pathway as shown in Figure 2. It is obvious
to notice that 7 genes covered the entire electron transport
chain except complex I. In other words, the whole oxidative
phosphorylation pathway is more active in the poor survival
breast cancer patients.

To translate those genes into protein, ribosome plays
a critical role. In eukaryotic cells, there are two types of
ribosomes: cytosol ribosome and mitochondrial ribosome.
Cytosol ribosome served as the site of protein synthesis

for most proteins, while there are many mitochondrial
proteins being essential for oxidative phosphorylation in the
mitochondria and the mRNAs of these proteins are only
translated on mitochondrial ribosomes. From Table 1, the
genes that encode important mitochondrial proteins (such as
the oxidative phosphorylation related proteins) and the genes
that are responsible for synthesizing these mitochondrial
proteins (such as genes that encode the mitochondrion
ribosomeproteins)were highly expressed in the poor survival
group, while the annotation analysis of pattern II shows
that the lower expression of cytosol ribosome genes was not
reported in previous studies.

4.4. Mitochondrial Ribosome versus Cytosol Ribosome. Ribo-
some plays an important role in protein synthesis by protein
translation and is also essential for cell growth, proliferation,
and development. In the result, an interesting phenomenon
is that the mitochondrial ribosome and the cytosol ribosome
have very different gene expression patterns. As shown in
Figure 3(a), five mitochondrial ribosome genes (MRPL13,
MRPL18, MRPS23, MRPS25, and MRPS7) are characterized
by pattern I in which high gene expression related with
shorter overall survival time, while four cytosol ribosome
genes (RPL13A, RPL3, RPS27, and RPS9) are characterized by
pattern II.

From Figure 3(b) that gave the gene expression clustering
heat map of related 9 genes in the breast cancer dataset, it is
obvious that the cytosol ribosome related genes are highly
expressed in breast cancer. This confirmed the previous
findings that ribosome production is enhanced in cancer
cells and that ribosome biogenesis plays a crucial role in
tumor progression [17, 18], while the gene expression values
of mitochondrial ribosome genes are observably low. Genes
from cytosol ribosome and mitochondrial ribosome are
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Figure 3: Continued.
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Figure 3: Different gene expression patterns of mitochondrial ribosome and cytosol ribosome. (a) The Kaplan-Meier survival curves of
gene expression pattern of mitochondrial ribosome genes (MRPL13, MRPL18, MRPS23, MRPS25, and MRPS7) and cytosol ribosome genes
(RPL13A, RPL3, RPS27, and RPS9). (b) A gene expression clustering heat map of the above 9 mitochondrial ribosome and cytosol ribosome
genes in the TCGA breast cancer (red for high expression value and blue for low expression value). Genes with different expression level
were clustered in cytosol and mitochondrion ribosome. The samples were also clustered into two groups (Cluster I and Cluster II) based on
the expression value of these 9 genes. (c) The Kaplan-Meier survival curves of Cluster I and Cluster II samples show the difference of overall
survival.

grouped into two clusters. The patients were also clustered
into two groups in which Cluster I contained samples with
relative higher cytosol ribosome expression level and relative
lower mitochondrial ribosome. The Kaplan-Meier survival
curves of Cluster I and Cluster II were shown in Figure 3(c).
It supported that breast cancer patients with relative higher
mitochondrial ribosome gene expression and lower cytosol
ribosome gene expression had shorter overall survival time.

Comparing with the overall high expressed cytosol ribo-
some genes, the high expressed mitochondrial ribosome
genes in breast cancer patients are more detectable from
the general lower expressed background. Furthermore, the
average chi-square statistic value in Log-Rank tests of the five
mitochondrial ribosome genes is higher than the correspond-
ing statistic of four cytosol ribosome genes (15.036 versus
11.381). Considering the above mentioned mitochondrion

role in cancer, we believe that the mitochondrial ribosomes
play a more crucial role in the cancer development. The
upregulated mitochondrial ribosome may be the result of
reprogramed energy metabolism that tumor obtained during
evaluation to fulfill the energy requirement of continuous cell
proliferation, while the downregulated cytosol ribosome in
small part of sample can be explained by the energy gap the
tumor cell faced and it is a tradeoff between cell proliferation
and energy generation.

To confirm this finding and identify more potential
biomarkers, the gene expression clustering heat map of all
the genes that encode proteins of mitochondrial ribosome
was shown in Figure 4. The genes that clustered into the
same groupwith the identified genes will also be investigated.
Through cluster analysis of the 28s subunit of mitochondrial
ribosome, MRPS7 and MRPS23 that are both identified in
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Figure 4: Clustering heat map of mitochondrial ribosome gene lists. (a) Mitochondrial ribosome 28s. (b) Mitochondrial ribosome 39s.

our pattern I gene list and have similar expression profile
are clustered together. Therefore, MRPS7 and MRPS23 have
potential to become biomarkers of prognosis assessment. In
the 39s subunit of mitochondrial ribosome, MRPL28 and

MRPL22 that are clustered with MRPL18 have the same gene
expression pattern of MRPL18. Patients with high MRPL28
expression level have 101.1-month mean survival time, and
the low expression group has 157.0-month mean survival.
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Figure 5: HSPA2 plays a different role in breast cancer. (a) Histogram of HSPA2 expression value. (b) Survival curves of HSPA2 high
expression and low expression. (c) Survival curves of 3 patient groups that are grouped by 𝐾-means of HSPA2 gene expression values. (d)
The correlations of death days with HSPA2 expression value.

Patients with high MRPL22 expression level have 107.3-
month mean survival time, and the low expression group
has 157.8-month mean survival time. The survival curves of
related mitochondrial ribosome and cytosol ribosome genes
expression pattern were given in Supplement Figure 1.

4.5. HSPA2 Plays a Different Role in Breast Cancer. Wemanu-
ally review all the 201 genes in our results using the Gene Ref-
erence into Functions (GeneRIFs) provided by DAVID. We
use the keyword “cancer” to search theGeneRIFs and identify
more reliable cancer related genes in our results. During this
process, HSPA2 was found with different characters in our
breast cancer data compared with previous reported study in
other cancer types. HSPA2 is a member of the HSP70 family

of heat shock proteins and is important for cancer cell growth
andmetastasis [19]. HSPA2 has been highlighted as an impor-
tant biomarker in many cancer types. Fu et al. had confirmed
that hepatocellular carcinoma patients with higher HSPA2
expression had shorter overall survival time [20]. Scieglinska
et al. showed that high HSPA2 expression was significantly
related to shorter overall survival in stage I-II non-small-cell
lung carcinoma patients [21]. But the results of this study
show thatHSPA2 plays a totally different role in breast cancer.

As shown in Figure 5(a), the HSPA2 is highly expressed
in most of breast cancer patients. However, patients with
low HSPA2 expression cancer had a shorter overall survival
time (Figure 5(b)). This result is contradictive with previ-
ous findings reported in other cancers. Considering that
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the relative small group of low HSPA2 expression was not
convincing, 𝐾-means was used to group patients into three
groups, high, medium, and low. As show in Figure 5(c),
patients that with low level HSPA2 gene expression have a
shorter overall survival time. In order to further confirm
the correlation of HSPA2 gene expression value and survival
time, a scatter diagram of patient’s death days and their
HSPA2 gene expression values was plotted in Figure 5(d).
The regression line shows a positive correlation that means
patients with higher HSPA2 expression values have longer
survival time. We also checked several other breast can-
cer datasets at the Oncomine (https://www.oncomine.org/)
which provide 5-year live status for some breast cancer gene
expression datasets. Four additional breast cancer datasets
were plotted in Supplement Figure 2 to support our results.

5. Discussion

In this study, we focused on exploring breast cancer survival
related gene expression pattern. Therefore, we utilized gene
expression data and follow-up data to analyze the difference
of survival curves with different expression levels through
the Kaplan-Meier method and Log-Rank test. We used
Functional Annotation Clustering of DAVID to cluster these
genes to annotations and chose mitochondrion ribosome
and cytosol ribosome as research objects. We explored the
difference of expression of mitochondrion ribosome and
cytosol ribosome genes on breast patients and discussed the
possible biological mechanisms. We expanded and analyzed
genes related mitochondrion ribosome and cytosol ribosome
with similar expression patterns and prognosis assessments
through cluster heat map and survival analysis on the
TCGA4U. We found that HSPA2 plays a different role in
breast cancer through our bioinformatics approaches. We
would like to ask biomedical researchers to study the HSPA2
in breast cancer to understand the real biological function of
this biomarker.

In 2002, van de Vijver et al. used the correlation coeffi-
cient (correlation coefficient <−0.3 or >0.3) of the expression
for each gene with disease outcome to identify 231 genes
that related to breast cancer outcome. Based on this list,
they further established a 70-gene prognosis profile that was
proved as a more powerful predictor of the outcome of
disease in young patients with breast cancer than standard
systems based on clinical and histologic criteria [22]. We
use the dataset of this study to further confirm the HSPA2
expression pattern result as shown in Supplement Figure 3.
In 2012, Patsialou et al. identified several markers in the
migratory tumor cells to predict clinical outcome in breast
cancer patients [23]. Different methods and different samples
had been used in the above two studies and our study, while
there are four genes (PGK1, GCN1L1, PRDX5, and SDHD)
that were repeated and identified at least twice in three studies
and might become valuable prognostic tools or therapeutic
targets in breast cancer.

In the current stage, we had published some meaningful
gene lists for researchers at TCGA4U. In the next stage, more
potential relationships between high-dimensional variables
in the TCGA datasets will be studied. As more and more

requirement of data integration, exploration, and analytics,
several professional web-based tools such as cBioPortal for
Cancer Genomics (http://cbioportal.org/) that is supported
by plenty of funding have been developed, while the potential
value of cancer genomics big data lies in the millions of
millions of potential relationships that can be presented
in different form at diverse platform to inspire distinct
researchers. TCGA4U is not a competitor of other cancer
genomics tools but a supplement that provided unique view
of the big data and the relationships under it. The cancer
genomic big data can sustain more different analysis tools.

6. Conclusion

In this study, through developing a novel genomics platform
TCGA4U and usingDAVID, the survival related gene expres-
sion patterns in breast cancer were studied. Gene expression
patterns and survival curves of all genes expressed in breast
tumor can be queried on TCGA4U website. In this paper,
some interesting results were reported: (1) mitochondrial
ribosomes play amore crucial role in the cancer development;
(2) HSPA2 has a widely different gene expression pattern
in breast cancer compared with previous findings in other
cancer types. We believe that published results on TCGA4U
will inspire more biomedical researchers to explore the bio-
logical mechanism of those genes and more precisely explain
their role in the breast cancer development and discovermore
targeted therapies to help more breast cancer patients.
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