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Fossils and artifacts from Herto, Ethiopia, include the most complete child and adult
crania of early Homo sapiens. The endocranial cavities of the Herto individuals show
that by 160,000 y ago, brain size, inferred from endocranial size, was similar to that
seen in modern human populations. However, endocranial shape differed from ours.
This gave rise to the hypothesis that the brain itself evolved substantially during the
past ~200,000 y, possibly in tandem with the transition from Middle to Upper Paleo-
lithic techno-cultures. However, it remains unclear whether evolutionary changes in
endocranial shape mostly reflect changes in brain morphology rather than changes
related to interaction with maxillofacial morphology. To discriminate between these
effects, we make use of the ontogenetic fact that brain growth nearly ceases by the time
the first permanent molars fully erupt, but the face and cranial base continue to grow
until adulthood. Here we use morphometric data derived from digitally restored imma-
ture and adult H. sapiens fossils from Herto, Qafzeh, and Skhul (HQS) to track endo-
cranial development in early H. sapiens. Until the completion of brain growth,
endocasts of HQS children were similar in shape to those of modern human children.
The similarly shaped endocasts of fossil and modern children indicate that our brains
did not evolve substantially over the past 200,000 y. Differences between the endocra-
nial shapes of modern and fossil H. sapiens adults developed only with continuing facial
and basicranial growth, possibly reflecting substantial differences in masticatory and/or
respiratory function.
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The brains of living humans are about three times larger than those of our closest living
relatives, the great apes, and human brains exhibit marked structural differences, nota-
bly in areas involved in complex cognitive tasks such as language (1). When and how
the characteristic features of the human brain evolved, however, is a matter of ongoing
discussion because fossil endocasts—the shapes and sizes of natural or virtual fillings of
braincases—can only partially inform about brain anatomy (2, 3). Brain size can be
estimated from endocranial size, brain shape from endocranial shape, and external brain
structures such as sulci and gyri from their imprints on the endocranial surfaces. Fossil
evidence suggests that key features of the brains of living humans, such as expanded
cerebral association areas of the inferior frontal and posterior parietal lobes, evolved rel-
atively late (<1.7-1.5 million years ago [Ma]), rather than at the beginnings of our
genus Homo at approximately 2.5 Ma (4). The brains of fossil Homo younger than 1.5 Ma
therefore were likely structurally similar to those of present-day humans (4). However,
our brains and their surrounding braincases are now more rounded in shape (5). Indeed,
endocranial globularity in combination with facial retraction is characteristic of Late
Pleistocene-to-recent Homo sapiens, but rarely present in earlier fossils (4).

Various hypotheses have been proposed to explain how the modern human endocra-
nial morphology evolved and developed after the split from the last common ancestor
with our close fossil relatives, the Neanderthals (5-8). Endocranial ontogeny is rela-
tively well documented in Neanderthals, permitting inferences about brain ontogeny.
Compared to present-day humans, Neanderthals had similar endocranial sizes at birth,
indicating similar neonatal brain sizes. However, Neanderthals had higher postnatal
endocranial (and brain) growth rates, resulting, on average, in larger adult brain sizes
[but not in earlier completion of brain growth (9)]. Furthermore, tracking Neanderthal
endocranial development (i.e., change in shape) from birth to adulthood suggests
marked differences in brain development compared to present-day humans, either in
utero (10), or during early postnatal life (11).

When and how the modern human mode of endocranial and brain ontogeny
evolved, however, remains an open question. This is because, on the one hand, the
adult endocranial shape of recent humans is markedly different from that of Pleistocene
fossil H. sapiens (5, 8); and on the other, because only few immature fossil specimens
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have been available with which to document endocranial
ontogeny in fossil H. sapiens. The difference between fossil and
recent adult H. sapiens endocranial shapes has been interpreted
as evidence for developmental and structural novelties of the
brain that evolved gradually over the past 200 ka (thousand
years ago) probably in concert with techno-cultural innovations
during the Middle to Upper Paleolithic transition (8).

This hypothesis assumes that evolutionary changes in endo-
cranial shape reflect changes in brain shape that were ultimately
caused by structural changes in the brain. Endocranial shape
does largely represent brain shape (12). However, this does not
signify that the brain alone influences endocranial shape. Other
external constraints also influence endocranial shape. Overall,
evolutionary and developmental changes in endocranial shape
are due not only to intrinsic changes in the brain but also to
extrinsic factors such as the changing proportions of the neurocra-
nium (the skull region enclosing the brain) relative to the viscer-
ocranium (the face and cranial base) (7, 13). Facial size in
members of the H. sapiens species lineage gradually reduced dur-
ing the past 200-300 ka (14), a period during which techno-
cultural changes and changes in subsistence strategy had impacts
on facial size and shape as well as on masticatory function (15).

Consequently, it is necessary to assess the effects of both vis-
cerocranial and cerebral factors on changes in endocranial size
and shape during both ontogeny of fossil H. sapiens and also
during the past 200 ka of our evolution. Fortunately, there is
now a growing sample of immature and adult fossil H. sapiens

with which to investigate these relations. Key among them are
the crania of a child (age at death estimated to 6-7 y, based on
dental maturation patterns) and an adult from Herto, Ethiopia
(14), recovered in archaeological (16) and chronostratigraphic
(~160 ka) contexts that have rendered them crucial referents in
discussions about the biological evolution and behavior of early
H. sapiens (17, 18). Although well-preserved, both the child
(BOU-VP-16/5) and adult (BOU-VP-16/1) from Herto suf-
fered slight but significant prerecovery taphonomic distortion
that limited their initial metric characterization. To accurately
compare and illuminate the evolutionary and developmental
biology of fossil and recent H. sapiens, we employ newly ren-
dered digital restorations of these two crania.

We apply an evolutionary developmental approach to com-
pare endocranial and viscerocranial growth and development
between fossil and recent H. sapiens and to examine how facial
size reduction affected endocranial shape in evolving H. sapiens.
The human brain nearly ceases its growth around the age of
5-6 y (19) whereas the face and cranial base continue to grow.
This rate transition occurs around the time when the first per-
manent molars (M1s) fully erupt into functional occlusion.
This allows us to test the hypothesis that adult endocranial
shape is influenced by viscerocranial (i.e., facial and basicranial)
development.

Here, we describe and illustrate our stepwise field and labo-
ratory recovery and physical restorations of the two original
Herto fossil crania (Fig. 1 and SI Appendix, Figs. S1-S14), as

Fig. 1. Discovery and restoration of the Herto adult (BOU-VP-16/1) and child (BOU-VP-16/5) crania. Adult cranium (A-F). (A) D. DeGusta examines scatter of

surface cranial vault fragments of (yellow flags); (then) seasonally abandoned Herto Afar village in background. When occupied, hundreds of domestic ungu-
lates (camels, cows, sheep, goats) cross this surface each day. View is to the west. (B) Tight concentration of cranial vault pieces indicated relatively limited
scatter after recent erosional exposure. (C) Indurated sandstone cemented to the right side of the cranium obscures most bone. (D) Removal of sand and
sandstone reveals the intact right side of the cranium. (E) The frontal sinus is large, with thin anterior and posterior walls. Even more fragile maxillary, eth-
moidal and sphenoid bone is left encased in the hardened sandstone because it cannot be safely cleaned. (F) Right lateral view of the cranium after physical
restoration. Child cranium (G-K). (G) B. Asfaw points to fragments of cranial vault. View is to the north, Central Awash Complex in background. (H) Larger
cranial vault pieces indicated by yellow arrows. Other surface lag comprises indurated sandstone fragments and artifacts. Wet sieving recovered smaller
pieces. (/) Recovered pieces. (/) Refitting. (K) Three-quarter view of the restored specimen. An extended set of photographs documenting the recovery and
restoration procedures is provided in S/ Appendix, Figs. S1-S14.
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Fig. 2. Digital restoration of the Herto crania and their endocasts. Left: Herto adult BOU-VP-16/1. Right: Herto child BOU-VP-16/5. Crania are shown in ante-
rior and lateral views; endocasts in posterior and lateral views. (Scale bar: 5 cm.) Details of the restoration procedure and full sets of the six standard views

are provided in S/ Appendix, Figs. S15-S22.

well as the methods used to digitally render and accurately
restore them (Fig. 2 and ST Appendix, Figs. S15-5822). We then
generate comprehensive metric datasets for comparative uses
and apply geometric morphometric methods to quantify endo-
cranial and viscerocranial size and shape of these key specimens.
Finally, we compare them with similarly processed child and
adult fossils from Skhul and Qafzeh (~120-100 ka) and a large
comparative sample spanning the evolutionary time from early
Homo to recent humans.

Results

Fig. 3 shows patterns of endocranial and viscerocranial growth in
fossil and recent H. sapiens, Homo neanderthalensis, mid-Pleistocene
Homo and Homo erectus (sensu lato). Fossil H. sapiens is at the
upper end of variation of the endocranial and viscerocranial growth
trajectories of living humans (Fig. 34 and B), indicating that fos-
sil humans relative to living humans typically had larger endo-
cranial and viscerocranial sizes at any ontogenetic stage. The
proportion of neurocranial to viscerocranial size is expressed here
as the “neuro-viscerocranial proportion” or NVP, defined as the
cube root of endocranial volume (ECV) divided by viscero-
cranial centroid size. The NVP decreases along all ontogenetic
trajectories as an effect of the higher rate and longer duration of
viscerocranial relative to neurocranial growth (Fig. 3C). Most
notably, fossil H. sapiens have comparatively lower NVP values
than living humans at corresponding ontogenetic stages. This
indicates that throughout ontogeny, early humans in general
had larger viscerocrania relative to their endocranial volumes
(Fig. 30). Overall, after the near completion of brain growth,
fossil humans achieved substandally larger viscerocrania than
their living counterparts (Fig. 3B), whereas endocranial size was
at the upper end of living human variation (Fig. 34).

Fig. 44 and B show principal patterns of endocranial and
viscerocranial shape variation in the sample. Each taxon occu-
pies a distinct region in shape space, with H. erectus and living
humans at opposite poles of the variation, reflecting an evolu-
tionary trend toward paedomorphy. Fig. 44 shows evolutionary
shape change from the relatively wide and low endocasts of
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H. erectus to the rounded, narrow, and high endocasts of living
humans (S Appendix, Fig. S23 shows a similar pattern based
on linear endocranial dimensions). Fig. 4B shows the corre-
sponding evolutionary shape change for the viscerocranium,
from the projecting faces and wide cranial bases of H. erectus to
the retracted faces and short cranial bases of living humans.

In all taxa, cranial ontogenetic development is largely charac-
terized by widening and elongation of the endocast (Fig. 44)
and by elongation of the cranial base and antero-inferior projec-
tion of the face (Fig. 4B). The endocranial shapes of fossil
human children prior to completion of brain growth lie at the
boundary of variation for living human children (Fig. 44) but
do not differ significantly (P = 0.36; see Materials and Methods
for statistical tests of shape differences between groups). The
endocranial shapes of fossil human adults >100 ka are at the
boundary (Skhul 5) or outside (Herto 1, Qafzeh 9) of the varia-
tion of living human adults (Fig. 44, P = 0.002). In contrast,
viscerocranial shape differences between fossil and living humans
are less pronounced (Fig. 4B). Fossil human children are within the
range of viscerocranial variation seen in living children (P = 0.20),
whereas fossil adults are at the boundary of living adult variation
(Fig. 4B, P= 0.20).

We further analyzed the possible effects of changes in neuro-
viscerocranial size proportions on endocranial shape. A substan-
tial proportion (46%) of the total endocranial shape variation
in our sample can be accounted for by variation in NVP. The
fossil human children (Herto 5, Qafzeh 11, and Skhul 1) fall
within the pattern of NVP-endocranial shape covariation that
characterizes living humans (Fig. 4C). However, these fossils
are situated at the upper range of variation of modern human
children and within the lower range of modern adults (Fig.
4C). Adult fossil humans are mostly situated at the upper end
of modern human adult variation, except for the Herto and
Qafzeh adults, which are outliers. Changes in neuro-viscerocranial
proportions, both during evolution and ontogeny, thus have an
impact on endocranial shape variation.

To further study endocranial shape variation independent of
neuro-viscerocranial proportions, we partialled out the effects
of NVP on endocranial shape. Fig. 4D shows the residual
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Fig. 3. Endocranial and viscerocranial growth in fossil Homo and modern
humans as a function of dental age. (A) Endocranial volume (ECV). (B) Vis-
cerocranial size (defined as centroid size of viscerocranial landmarks; see
Materials and Methods). (C) Neuro-viscerocranial proportion (NVP), defined
as the ratio between ECV'”® and viscerocranial size. The abscissa repre-
sents successive dental age groups (dm/M1/M2/M3: after full eruption of
deciduous molars, permanent molars M1/M2/M3). Diamonds represent
individual fossil data; boxplots represent living human data (median, first
and third quartiles, minima and maxima; line connects median values).

endocranial shape variation in the sample. In this graph, the
fossil human children fall well within the range of residual
endocranial variation of living human children (P = 0.5), and
fossil adults generally fall within modern adult variation. How-
ever, the adult fossils from Herto and Qafzeh fall outside the
variation that characterizes adult living humans (Fig. 4D, P =
0.01). Compared to both fossil and modern H. sapiens, Nean-
derthals already exhibit clearly different endocranial and facial
morphologies early in ontogeny (Fig. 4B), a finding in agree-
ment with earlier studies revealing distinct modes of endocra-
nial and facial development (9-11, 20, 21).

Fig. 5 shows how, in fossil and modern H. sapiens, endocra-
nial and viscerocranial morphologies change after the comple-
tion of brain growth. In both groups, the endocranial base
expands relative to the vault (as indicated by the yellow surface
areas in Fig. 54; also see SI Appendix, Fig. S23), reflecting the
continuing growth of the viscerocranial region of the skull. In
fossil humans, these changes are more pronounced, resulting in
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adult endocranial shapes that appear more elongate, compara-
tively low, and less rounded in lateral view.

Discussion

The endocranial evidence from the digitally restored Herto
child and adult individuals, and from the immature and adult
individuals from Skhul and Qafzeh, now permit a tentative
reconstruction of endocranial ontogeny in fossil compared to
recent H. sapiens, allowing inferences about our brain’s evolu-
tionary developmental history. The growth trajectory of the
endocranial volume (ECV) of fossil H. sapiens is at the upper
end of variation of the modern human trajectory (Fig. 34), and
a similar pattern can be seen in the Neanderthals (Fig. 34), as
reported earlier (9). These observations lead us to the hypothesis
that in terms of brain growth dynamics, Pleistocene H. sapiens
might have had more in common with the largely coeval
H. neanderthalensis populations than with modern H. sapiens
populations. Large infant brains imply high early postnatal brain
growth rates, which presuppose enhanced maternal and alloma-
ternal investments that, in turn, are typically associated with a
slower pace of life history (22). This hypothesis implies a contrast
between the life histories of Late Pleistocene and modern Homo
populations rather than a contrast between slow human and fast
Neanderthal life histories (23).

Our data further offer a perspective on the developmental
mechanisms underlying the contrasting endocranial shapes of
fossil and recent H. sapiens. The endocranial shapes of the fossil
children from Herto, Skhul, and Qafzeh are at the fringe of
endocranial variation in modern human children of comparable
age, but well within modern adult endocranial variation (Fig.
4A). The difference between fossil and modern immature endo-
cranial shapes could be due to various factors, such as actual
differences in brain morphology, differences in viscerocranial
morphology, or a combination of both. Fig. 4Cand D indicate
that the endocranial shape difference can largely be accounted
for by the different neuro-viscerocranial size proportions of
fossil and modern children, with fossil children having mark-
edly larger viscerocrania, both in absolute terms and relative to
endocranial volume (Fig. 3B and (). Differences in brain struc-
ture may also have contributed to endocranial shape differ-
ences, but there is currently no positive evidence to support that
hypothesis. Taking into account the effects of neuro-viscerocranial
integration on endocranial shape, it is most parsimonious to
infer that the brains of fossil H. sapiens were structurally similar to
those of modern H. sapiens, and had evolved at least as early as
~160 ka, as evidenced by the Herto child, and earlier than previ-
ously inferred by some workers (8, 24).

The evolutionary and developmental causes and mechanisms
that led to the remarkably distinct adult neurocranial and endo-
cranial morphologies of the early members of H. sapiens such as
Herto (14) and Qafzeh (Fig. 44) remain to be elucidated along
similar lines of evidence. MRI-based studies have revealed
structural changes in the brain after the completion of brain
growth, especially in the frontal cortex during adolescence (13,
19, 25). However, these changes have only little effect on the
shape of the endocast and cannot account for endocranial shape
change from immature to adult fossil H. sapiens (Fig. 4A).
Changes in endocranial shape after the near completion of
brain growth are thus unlikely to reflect changes in brain struc-
ture, but rather “alteration of external brain shape under the
influence of nonbrain parts of the head.

Assuming a broad perspective on neuro-viscerocranial inter-
action, it appears that brain shape in mammals is indeed highly
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Fig. 4. Endocranial and viscerocranial shape variation in fossil Homo and modern humans. (A) Endocranial shape components 1 and 2 resulting from
between-group principal components analysis (bgPCA). The 95% density ellipses around fossil H. sapiens specimens indicate reconstructive variants (see
Materials and Methods and S/ Appendlix, section 1.3.5). Inset graphs visualize endocranial shape (posterior and lateral views) at the lower and upper range of
PC1, respectively. (B) Viscerocranial shape components 1 and 2 resulting from bgPCA. Inset graphs visualize endocranial shape (anterior and lateral views) at
the lower and upper range of PC1, respectively. (C) A substantial proportion (46%) of total endocranial shape variation in the sample can be attributed to
variation in neuro-viscerocranial proportion (NVP). Shown here is the covariation of the endocranial shape component 1 with NVP (note: to achieve graphical
correspondence with (A) and (B), the scale of NVP is reverted). (D) Residual endocranial shape variation after partialling out the effects of NVP (i.e., looking at
endocranial shape variation along the axis indicated by the eye symbol in C). Symbols indicate dental age; colors indicate major Homo taxa; convex polygons
are drawn around taxon-specific subsamples representing dental ages <M1 and >M2, respectively, corresponding to ontogenetic stages before (pre) and
after (post) completion of brain growth. Fossil H. sapiens specimens (and approximate geological ages): H1, H5: Herto BOU-VP-16/1 and 16/5 (160ka);
Ho: Hofmeyr (36ka); M1: Mladec 1 (31ka); Oa: Oase 2 (40ka); S1 and S5: Skhul 1 and 5 (100ka); Q9, Q11: Qafzeh 9 and 11 (100ka). [Note on fossil specimens
affiliated by others with H. sapiens but not included in analyses: Omo1: too fragmentary; Omo2 and LH18: geological dates not well constrained; Jebel Irhoud
1 and 2: data not available; see (18)].

malleable and tends to follow external adaptive and develop-  typically seen as male and female individuals, respectively, but
mental constraints imposed on neurocranial shape (26). In  both are endocranially most distant from living humans. The
adult H. sapiens, we observe that the viscerocranium underwent endocranial morphology of the Skhul 5 fossil, likely male, is at
remarkable size reduction over the past ~160 ka, but only  the border of endocranial variation of living humans. An alter-
moderate change in shape (Figs. 3B and 4B) (24, 27). During ~ native hypothesis is that maxillofacial reduction and the con-

the same time period, the endocranium underwent moderate ~ comitant endocranial shape change reflect major changes in
reduction in size, but substantial change in shape (Figs. 34 and techno-culture, subsistence strategy and food processing, result-
4A) (24, 27). Given the current dearth of fossil evidence from ing from a trend toward softer diets and less extensive mastica-
>100 ka, various hypotheses about the functional significance ~ tion. Studies on model animals have revealed both short-term
of this complex pattern remain to be tested. as well as long-term effects of softer diets on craniofacial size

One possible explanation is that pronounced neurocranial  and shape (28-30), and field studies on primate species (31)
sexual dimorphism in fossil H. sapiens is no longer present in  suggest an important, although complex, influence of dietary dif-
living human populations. However, Herto 1 and Qafzeh 9 are ferentiation on craniofacial morphological differentiation among
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Fig. 5. Changes of endocranial and viscerocranial morphologies after
completion of brain growth (from dental stage M1 to M3) in fossil (Upper
row) and recent (Lower row) H. sapiens. (A) Endocranial shapes are shown
for adults, endocranial shape change is visualized by positive (yellow) ver-
sus negative (blue) allometric expansion of local surface area. Note more
intense shape change in fossil compared to recent H. sapiens. (B) Changes
in viscerocranial shape and size are illustrated with mean shapes at dental
stages M1 (left) and M3 (right, adult), respectively, while viscerocranial size is
scaled relative to the smallest group-mean size, that of M1 recent H. sapiens
(lower left graph). Note larger viscerocranium at stage M1, and more intense
viscerocranial growth in fossil compared to recent H. sapiens.

taxa. The general pattern is that softer diets are associated with
relatively shorter but wider faces and more rounded neurocrania.
Craniodental data from recent human populations during the
transition from Upper Paleolithic hunter-gatherer to Neolithic
agricultural lifestyles also indicate that subsistence on softer diets
is correlated with increased neurocranial globularity and decreased
facial size (15, 32-35). A further hypothesis is that viscerocranial
size reduction and concomitant endocranial shape change reflect
reduced metabolic demands, given that oxygen uptake is con-
strained by the dimensions of the nasal passageways (36, 37).

Opverall, the Upper Paleolithic to Neolithic pattern of neuro-
viscerocranial size and shape change is similar to the one described
here for the Middle to Upper Paleolithic transition (Figs. 3 and 4),
although less significant in magnitude. Diet-related adaptation,
changes in metabolic demands, and developmental plasticity might
have contributed to the marked changes in viscerocranial size and
in endocranial/brain shape at the transition from Middle to Upper
Paleolithic lifestyles. More fossil evidence is required to address
these questions. Meanwhile, the restored Herto fossils confirm that
endocranial shape in H. sapiens has long been related to nonbrain
factors, such that shape alone should not be used as an indicator of
the brain’s functional evolution in the human lineage during the
past 200,000 y.
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