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a b s t r a c t 

Dehydroepiandrosterone (DHEA) and the dehydroepiandrosterone sulfate (DHEA-S) are steroids pro-

duced mainly by the adrenal cortex. There is evidence from both human and animal models suggest-

ing beneficial effects of these steroids for obesity, diabetes mellitus, hypertension, and osteoporosis,

conditions associated with the post-menopausal period. Accordingly, we hypothesized that DHEA sup-

plementation in ovariectomized (OVX) female rats fed a high-fat diet would maintain glucose-induced

insulin secretion (GSIS) and pancreatic islet function. OVX resulted in a 30% enlargement of the pan-

creatic islets area compared to the control rats, which was accompanied by a 50% reduction in the

phosphorylation of AKT protein in the pancreatic islets. However, a short-term high-fat diet induced in-

sulin resistance, accompanied by impaired GSIS in isolated pancreatic islets. These effects were reversed

by DHEA treatment, with improved insulin sensitivity to levels similar to the control group, and with

increased serine phosphorylation of the AKT protein. These data confirm the protective effect of DHEA

on the endocrine pancreas in a situation of diet-induced overweight and low estrogen concentrations,

a phenotype similar to that of the post-menopausal period. 
C © 2014 The Authors. Published by Elsevier B.V. on behalf of Federation of European Biochemical

Societies. All rights reserved. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Introduction 

Menopause coincides with an increase in body fatness and asso-

ciated comorbidities such as insulin resistance, diabetes, and cardio-

vascular disease [ 1 , 2 ], which may be explained, at least in part, by

reduced secretion of sex hormones, including estrogen [ 3 ]. Estrogen

has been shown to play a pivotal role in regulating energy expen-

diture, body weight and fat distribution in women. Both human and
� This is an open-access article distributed under the terms of the Creative Com- 

mons Attribution-NonCommercial-No Derivative Works License, which permits non- 

commercial use, distribution, and reproduction in any medium, provided the original 

author and source are credited. 
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sulfate; HFD, high-fat diet; SHAM, sham-operated rats; SHL, sham rats fed a HFD; OVX, 
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murine models provide evidence for estrogen’s protective role against

obesity and type 2 diabetes (T2D) [ 4 –6 ]. Experimental studies have

shown that estrogen and its receptors protect pancreatic islets cells

from lipotoxicity and apoptosis, as well as restores glucose-induced

insulin secretion (GSIS) [ 6 –12 ]. Furthermore, the functions of pan-

creatic β cells, including the regulation of insulin secretion, nutrient

homeostasis, and even survival can be modulated by 17 β-estradiol

[ 13 ]. 

It is suggested that there is a contribution of downstream elements

in the insulin signaling pathway for β cell function and survival. For

example, expression of multiple insulin signaling proteins is reduced

in islets of patients with T2D [ 14 , 15 ]. Several lines of evidence indicate

that activation of phosphoinositide 3-kinase (PI3K) signaling pathway

plays an important role to regulate β cell mass and function. One of

the major targets of PI3-kinase is the serine–threonine kinase Akt

[ 16 , 17 ], which acts as a convergent target of several growth signals

induced by growth factors and insulin. In fact, studies suggest that

selective modulation of the Akt signaling could have positively impact

for the design of pharmaceutical agents that induce β cell function

and proliferation without adverse effect [ 18 ]. 

Dehydroepiandrosterone (DHEA), and its sulfated form DHEA-S,

are synthesized by both adrenal and gonadal glands. These steroids

are precursor of both androgens and estrogens. In humans, circulat-

ing DHEA and DHEA-S levels are markedly decreased with aging [ 19 ].
f European Biochemical Societies. All rights reserved. 
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HEA has been considered an alternative to estrogen replacement 

herapy since it has no effects on breast and endometrium cancer de- 

elopment [ 20 ]. Although no specific receptors for DHEA or DHEA-S 

ave been identified, these steroids have been shown to have antioxi- 

ant and metabolic effects in different tissues [ 21 , 22 ]. Indeed, experi- 

ental evidence from animal models and studies on postmenopausal 

omen has shown that DHEA supplementation improves insulin sen- 

itivity and reduces fat mass gain, and obesity [ 23 –26 ]. In addition, 

n streptozotocin-induced diabetic mice, DHEA was able to preserve 

ancreatic islet cell structure, while the administration of DHEA-S 

mproved the insulin secretion [ 23 , 27 ]. 

We therefore hypothesized that DHEA supplementation in 

variectomized female rats fed a high-fat diet would maintain 

lucose-induced insulin secretion and pancreatic islet function. 

aterials and methods 

xperimental model 

Female Wistar rats (8 weeks of age, weighing 150–180 g at the be- 

inning of the experiments) were obtained from our breeding colony 

t the Institute of Biomedical Sciences. The animals were housed at 

onstant room temperature, 12 h light and 12 h darkness cycle, 60% 

umidity, fed standard rat chow [3.8 kcal / g (63% carbohydrate, 26% 

roteins, and 11% fat), NUVILAB-CR, Colombo, PR, Brazil], and water 

ade available ad libitum. The rats were anesthetized with thiopen- 

al (5 mg / 100 g, i.p.; Crist ́alia, S ̃ ao Paulo, SP, Brazil) and were sub- 

itted to sham surgery or bilateral ovariectomy (OVX). After the sur- 

ical procedure, the rats received standard chow or a high-fat diet 

HFD) [5.4 kcal / g (26% carbohydrate, 15% proteins, and 59% fat), Prag 

olu c ¸ ˜ oes Bioci ̂ encias Ltda, Jau, SP, Brazil] for the next 6 weeks. Half 

f the OVX rats fed a HFD (OHL group) was exposed to a second sur- 

ical procedure 3 weeks from the ovariectomy, which included the 

mplantation of DHEA pellet (50 mg released by 21 days) into the 

ubcutaneous back region (identified as the OHLD group). This study 

as approved by the ethical committee of the Institute of Biomedi- 

al Sciences, University of Sao Paulo (2708 / CEEA). At the end of the 

rotocol period the animals were killed with deep anesthesia, the 

ancreata were excised and the blood was used for the determina- 

ion of DHEA using an ELISA kit. In addition, estradiol (E2), proges- 

erone (P), luteinizing hormone (LH), follicle stimulating hormone 

FSH), testosterone (T) and insulin concentrations were measured by 

adioimmunoassay (RIA). 

aterials 

Reagents for SDS–PAGE and immunoblotting were obtained from 

io-Rad (Richmond, CA). Human biosynthetic DHEA, Tris, aprotinin, 

ithiotreitol, Triton X-100, glycerol, Tween 20, bovine serum albu- 

in (BSA, fraction V), propidium iodide (PI) were obtained from 

igma (St. Louis, MO). Human insulin from Lilly, American; nitro- 

ellulose (0.45 lm) and enhanced chemiluminescence kit were pur- 

hased from Pharmacia (Uppsala, Sweden). Anti-phosphoserine 473 

kt (pSer 473 Akt), anti-Akt and anti- α-Tubulin antibody were pur- 

hased from Santa Cruz Biotechnology (Santa Cruz, CA). Antibody 

gainst ERK1 / 2 was obtained from Millipore antibody (CA, USA), and 

nti-cleaved caspase 3 antibody was obtained from Cell Signaling Tech- 

ology. Biotinylated goat anti-rabbit antibody was obtained from Vec- 

or Laboratories (Burlingame, CA). Rat insulin standards and anti-rat 

nsulin antibodies were a gift from Dr. Leclercq-Meyer, Universit ́e 

ibre de Bruxelles, Belgium. 

nsulin sensitivity and glucose tolerance 

Under anesthesia (Thiopental 0.6 mg kg −1 , i.p; Crist ́alia, S ̃ ao Paulo, 

P, Brazil), 12 h fasting animals underwent a 30-min insulin tolerance 
test (short ITT) and a glucose tolerance test (GTT). Briefly, blood glu- 

cose concentrations were measured using a glucometer (Acue check 

active Roche). The time points for the ITT were basal (0), 5, 10, 15, 

20, 25 and 30 min after the intraperitoneal insulin injection (0.75 U / 
kg). The glucose disappearance rate (Kitt) was calculated as the slope 

of linear regression of glucose concentration from 5 to 30 min af- 

ter insulin administration [ 28 ]. For GTT, the rats received 1 mg / g 
glucose through intraperitoneal injection and glucose concentrations 

was measured at the following time points: basal (0), 15, 30, 45, 60, 

90, and 120 min after the infusion. 

Morphometry of the endocrine pancreas 

The animals were deeply anesthetized with a mixture of ketamine 

(5 mg / 100 g) and xylazine (1 mg / 100 g) intramuscularly, and were 

perfused through the heart with 0.9% PBS and 4% paraformaldehyde 

in 0.1 mol / l phosphate buffer. The pancreas were excised and dis- 

sected free from surrounding tissues and fixed by immersion in 4% 

formaldehyde–PBS solution for 4–6 h, followed by transfer to 30% su- 

crose PBS for cryoprotection. Frozen pancreas sections (12 μm) were 

cut on a cryostat and mounted on gelatin-coated slides. The pancreas 

sections were counter-stained with hematoxylin–eosin for morpho- 

metric analysis. The islet area was calculated by using NIH Image J 

program developed at the US National Institutes of Health and avail- 

able on http: // rsb.info.nih.gov / nih-image / . 

Pancreatic islets isolation 

The islets were isolated by collagenase digestion of the pancre- 

ata using the method described by Lacy and Kostianovsky (1967) 

[ 29 ]. Briefly, the pancreas was inflated with a Hanks solution contain- 

ing 0.7 g / l type IV collagenase (Sigma–Aldrich Chemical, St. Louis, 

MO), excised and then maintained at 37 ◦C for about 25 min. The 

digested tissue was harvested and the islets were hand-picked. A 

Krebs–Henseleit buffer containing 115 mM NaCl, 5 mM KCl, 24 mM 

NaHCO 3 , 1 mM CaCl 2 , and 1 mM MgCl 2 was used for isolation and 

pooling of the islets. Pancreatic islets were subjected to the following 

analysis: glucose-stimulated insulin secretion (GSIS), DNA fragmen- 

tation, and typical immunoblotting. 

Glucose-stimulated insulin secretion (GSIS) assay 

Pre-incubations of 5 islets were carried out at 37 ◦C for 30 min in 

0.5 ml Krebs–Henseleit buffer and 0.2% albumin in the presence of 

5.6 mM glucose. After 5.6 mM glucose pre-incubation, the following 

concentrations of glucose were used for incubation: 2.8 and 16.7 mM 

glucose for 60 min and equilibrated with a mixture of O 2 (95%) and 

CO 2 (5%). At the end of the incubation period, insulin concentrations 

were measured by RIA [ 30 ]. 

DNA fragmentation 

DNA fragmentation was analyzed by flow cytometry after DNA 

staining with PI as described previously [ 31 , 32 ]. Briefly, 30 isolated 

pancreatic islets were suspended in 300 μl of hypotonic solution con- 

taining 50 mg / ml PI, 0.1% sodium citrate, and 0.1% Triton X-100, and 

incubated for 30 min at room temperature protected from light ex- 

posure. Fluorescence was measured in a FACSCalibur flow cytometer 

(Becton Dickinson, Franklin Lakes, NJ) and the FL2 channel (orange / 
red fluorescence at 585 / 42 nm) and analyzed using the Cell Quest 

software (Becton Dickinson). 

Immunoblotting 

Batches of 300 islets from each group were homogenized by son- 

ication (90 s) in 80 μl extraction buffer (100 mM Trizma, 1% SDS, 

http://rsb.info.nih.gov/nih-image/
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Fig. 1. Glucose tolerance test during 120 min after intraperitoneal glucose bolus. 
* Indicates that SHAM is different from SHL ( P < 0.05). # Indicates that OVX is different 

from OHL ( P < 0.05). 

Fig. 2. GSIS of isolated pancreatic islets in SHAM, SHL, OVX, OHL and OHLD groups. 

Panel A is the 60-min insulin secretion at 2.8 mM glucose (basal) and 16.7 mM glucose 

(stimulus). Panel B is the difference between the stimulus and the basal insulin secre- 

tion. Values are mean ± S.E.M., and distinct letters indicates significant differences ( P 

< 0.05). 

 

 

 

 

 

100 mM sodium pyrophosphate, 100 mM sodium fluoride, 10 mM

EDTA and 10 mM sodium vanadate), and boiled for 5 min. The ex-

tracts were then centrifuged at 12,000 rpm at 4 ◦C for 20 min to re-

move insoluble material. Protein determination of the supernatants

was performed by the Bradford dye method (BioRad Laboratories,

Hercules, CA). The proteins were treated with Laemmli sample buffer

containing dithiotreitol and boiled for 5 min before loading onto 8%

SDS–PAGE in a Bio-Rad miniature slab gel apparatus. Similar sized

aliquots (30 μg) were subjected to SDS–PAGE. Electro-transfer of pro-

teins from the gel to nitrocellulose was performed for 1 h at 120 V

(constant) in a Bio-Rad miniature transfer apparatus. Non-specific

protein binding to the nitrocellulose was reduced by preincubation

for 1 h at 22 ◦C in blocking buffer containing 5% nonfat dry milk,

10 mM Tris, 150 mM NaCl, and 0.02% Tween 20. The nitrocellulose

membranes were incubated overnight at 8 ◦C with specific antibod-

ies diluted in blocking buffer added with 3% nonfat dry milk, and

then washed for 30 min in blocking buffer without milk. The blots

were subsequently incubated with peroxidase-conjugated secondary

antibody for 1 h, and processed for enhanced chemiluminescence to

visualize the immunoreactive bands. Band intensities were quantized

by optical densitometry (Scion Image-Release Beta 3b, NIH, USA) of

the developed autoradiography. 

Statistical analysis 

The results were expressed as means ± standard error (SEM). Af-

ter Gaussian distribution analysis, differences in body weights were

assessed by two-way repeated measures ANOVA (6 × 3) considering

time and group as fixed factors and experimental units (female rats)

as random factor (with a Tukey–Kramer test for multiple compar-

isons). Kitt, GSIS, and pancreatic islets area were assessed by one-way

ANOVA. The alpha level of significance was set at P < 0.05. 

Results 

Characteristics of the animals 

Circulating levels of sex hormones in the ovariectomized rats are

presented in Table 1 . Compared to sham-operated rats, ovariectomy

was associated with a 0.5-fold decrease in estradiol, a 0.3-fold de-

crease in P and T concentrations, and a concomitant 6.5-fold increase

in FSH and LH concentrations. In the ovariectomized rats, the DHEA

pellet induced an approximately 2-fold increase in the blood DHEA

levels, with a simultaneous increase in blood estradiol levels to lev-

els similar to those measured in the sham-operated rats. In contrast,

DHEA had no effect on blood LH, FSH, progesterone, and testosterone

concentrations. 

Table 2 describes the effects of HFD, ovariectomy and DHEA on

body weight, insulin sensitivity, glucose tolerance, uterus weight, and

pancreatic islet area of rats. The ovariectomy induced up to 1.9-fold

increase in the body weight gain when compared to sham rats. Neither

the HFD nor DHEA treatment had an effect on changes in body weight

in the OVX and sham groups. OVX induced a 70% reduction in the

uterus weight when compared to the sham group, but uterus weight

was not altered by DHEA supplementation or HFD. The OVX group fed

a HFD had greater insulin resistance and associated hyperinsulinemia

compared to the sham groups, which was reversed by the treatment

with DHEA. Pancreatic islet area was greater in the OVX groups than

the sham groups, but was not altered by DHEA supplementation. 

The area under curve (AUC) of glucose tolerance test was not dif-

ferent between the groups ( P > 0.05). However analyses of the GTT

curve identified 2 time points with significant differences, so that

15 min after glucose load the SHAM group showed lower glucose lev-

els when compared to SHL group ( P < 0.05). Furthermore, 60 min

after glucose load the OHL group showed higher glucose levels than

OVX group ( P < 0.05) ( Fig. 1 ). 
Static insulin secretion 

As expected, insulin secretion from the isolated pancreatic islets

of the SHAM group was 3-fold higher after incubation with 16.7 mM

glucose compared to 2.8 mM glucose ( Fig. 2 A and B). Ovariectomy or

exposure to the HFD alone had no effect on GSIS. In contrast, ovariec-

tomy combined with HFD impaired insulin secretion ( Fig. 2 B), which

was reversed with DHEA treatment. 
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Table 1 

DHEA, E2 (estradiol), P (progesterne), LH (luteinizing hormone), FSH (follicle stimulating hormone) and T (testosterone) concentrations of the SHAM, OVX (ovariectomized) and 

OVX + DHEA rats after 6 weeks ovarian removal. 

SHAM OVX OVX + DHEA P 

DHEA (pg / ml) 22.7 ± 2.1 a 26.3 ± 3.8 a 51.5 ± 3.2 b < 0.001 

E2 (pg / ml) 52.8 ± 4.1 a 28.4 ± 3.7 b 57.5 ± 6.9 a < 0.05 

P (ng / ml) 26.0 ± 5.8 a 9.5 ± 1.6 b 9.7 ± 2.4 b < 0.05 

LH (ng / ml) 9.6 ± 0.5 a 63.2 ± 8.0 b 54.5 ± 5.7 b < 0.01 

FSH (ng / ml) 4.8 ± 0.2 a 31.0 ± 3.7 b 27.1 ± 2.8 b < 0.05 

T (pg / ml) 94.8 ± 16.6 a 29.3 ± 3.4 b 27.6 ± 4.5 b < 0.05 

Values are mean ± S.E.M. n = 8–10. Groups with distinct letters means significant difference ( P < 0.05). 

Table 2 

Changes in body weight and measures of insulin sensitivity in ovariectomized (OVX) or sham-operated (SHAM) rats treated with HFD and DHEA for 3 weeks. 

SHAM SHL OVX OHL OHLD 

� Body weight (g) 49 ± 8.4 a 67 ± 7.5 a 95 ± 8.4 b 102 ± 7.4 b 100 ± 6.7 b 

Weight uterus (g) 2.00 ± 0.30 a 1.70 ± 0.24 a 0.50 ± 0.03 b 0.50 ± 0.09 b 0.55 ± 0.05 b 

Insulin (ng / ml) 0.38 ± 0.06 ab 0.72 ± 0.13 ac 0.26 ± 0.04 b 0.92 ± 0.09 c 0.37 ± 0.03 b 

Glucose (mg / dl) 100 ± 3 a 119 ± 3 ab 103 ± 3 a 121 ± 4 b 108 ± 4 a 

AUC 20.94 ± 7.51 21.12 ± 9.56 20.2 ± 8.91 23.12 ± 5.17 22.2 ± 8.76 

Kitt (%min −1 ) 2.35 ± 0.20 a 2.28 ± 0.07 a 2.00 ± 0.14 a 1.00 ± 0.15 b 2.00 ± 0.14 a 

Islet area ( μm 

2 ) 10.470 ± 825 a 13.270 ± 1.006 ab 15.260 ± 1.225 b 17.230 ± 1.500 b 17.630 ± 1.154 b 

Values are mean ± S.E.M. Similar letters indicate no significant difference, while different letters indicate significant difference ( P < 0.05). � Body weight (BW final − initial); 

AUC: area under curve after 120 min of intraperitoneal glucose bolus; Kitt: glucose disappearance rate induced by 30 min Insulin Tolerance Test; SHL: sham rats fed a HFD; OVX: 

ovariectomized rats; OHL: ovariectomized rats fed HFD; OHLD: ovariectomized rats fed a HFD and treated with DHEA. n = 4–25. 
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NA fragmentation 

The proportion of cells with DNA fragmentation was similar be- 

ween the OVX groups with values around 10% (data not shown). 

mmunoblotting analysis 

Fig. 3 A illustrates the protein expression of phosphoserine Akt 

p-Akt), and the protein expression of Akt, ERK1 / 2, caspase-3, using 

-tubulin as a control. Both HFD and OVX resulted in a 50% reduction 

n the phosphorylation state of Akt, with no additive effect of these 

wo conditions, which was reversed by DHEA treatment ( Fig. 3 B). 

here were no effects of HFD or OVX on protein expression of ERK1 / 2 
nd caspase-3 in the studied conditions ( Fig. 3 C and D). 

iscussion 

The levels of the sex steroid hormone DHEA decrease between the 

ges of 25 and 75 years, and has been related to body weight gain, 

besity and insulin resistance [ 33 ]. Conversely, studies have demon- 

trated that concentrations of DHEA and other sex steroid hormones 

re reduced with obesity and type 2 diabetes [ 34 ]. In addition, nu- 

erous studies using animal models have demonstrated that DHEA 

reatment increases insulin sensitivity [ 35 ] and GSIS [ 27 , 36 ]. 

In our study, despite the mild increase in body weight in OVX 

nimals, OVX in combination with a HFD (OHL rats) had no impact 

n body weight over the study period. However, the combination 

f OVX and HFD resulted in insulin resistance and impaired GSIS of 

he isolated pancreatic islets, which were reversed with DHEA sup- 

lementation. These findings reinforce the known effect of ovarian 

ormones on reducing the susceptibility of females to HFD-induced 

etabolic disturbance [ 37 ]. 

We suggest that DHEA treatment is involved in some aspects of 

athway-selective insulin resistance, which are independent of its 

ffects on body weight. This is supported by a study that showed 

hat a single DHEA injection in rats with streptozotocin-induced di- 

betes improves glucose metabolism-related signaling pathway via 

rotein kinase B (Akt) and reversed impaired GLUT-4-related signal- 

ng in muscle [ 38 ]. In our study OHL rats were the only group that 

resented with insulin resistance and functional beta cell damage, 
the latter probably caused by a defect in insulin signaling in β cells. 

Consistent with these reports, we showed that DHEA supplementa- 

tion, which increased estradiol levels, also increased the p-Akt / Akt 

ratio in pancreatic islets from OHLD animals, suggesting a possible 

role for Akt in normal glucose metabolism and β beta cell function in 

OHLD animals. Indeed, there is evidence showing that protein kinase 

Akt is important for the peripheral actions of insulin, such as glucose 

homeostasis, β cell growth and survival [ 39 ]. 

Studies also have suggested that Akt plays a important role in the 

regulation of distal components of the secretory pathway in the β
cell [ 40 ]. Transgenic mice with diminished Akt activity in their β cells 

present with glucose intolerance due to a defect in insulin secretion 

at the level of exocytosis process, which appears to be independent of 

the function of voltage-gated Ca2 + channels [ 40 ]. Furthermore, acute 

inhibition of PI3K-PDK1-Akt pathway increased GSIS by upregulation 

of specific intracellular fusion events from newcomer granules [ 41 ]. 

On the other hand, inhibition of class IA phosphatidylinositol 3-kinase 

(PI3K) also resulted in glucose intolerance and reduced GSIS [ 42 ]. 

In the present study, extracellular signal-regulated protein ki- 

nases 1 and 2, ERK1 / 2, which is involved on cellular proliferation, 

growth, and differentiation, were not altered by HFD, ovariectomy or 

DHEA treatment. Similarly, pathways related to cell death were not 

involved, since no changes in DNA fragmentation and cleaved caspase 

3 expressions were observed in any of the treatment groups. 

In summary, our study showed that OVX in combination with 

a HFD resulted in a significant increase in body weight, as well as a 

reduction in insulin sensitivity and secretion. Independent of changes 

in body weight, the changes in insulin sensitivity and secretion were 

normalized after 3 weeks of the DHEA pellet insertion. This effect 

was mediated by an increase in the p-Akt / Akt ratio. These findings, 

in addition to the higher prevalence of insulin resistance and type 2 

diabetes in women after menopause, provide support for a potential 

therapeutic role of DHEA in post-menopausal women that have some 

features of the metabolic syndrome. 
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Fig. 3. Protein levels of Akt, ERK1 / 2, and cleaved caspase 3 of isolated pancreatic islets in SHAM, SHL, OVX, OHL and OHLD groups. Panel A is the immunobloting of pAkt, Akt, 

ERK1 / 2, cleaved caspase 3 and α-tubulin. Panel B is the stoichiometric relationship between the serine phosphorylation status of Akt (p-Akt) and the protein expression of Akt 

(pAkt / Akt). Panel C is the protein level of ERK1 / 2. Panel D is the protein level of cleaved caspase-3. The values are expressed as the mean ± S.E.M. and distinct letters indicate 

significance ( P < 0.05). 
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