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Abstract: A new software package, ISEtools, is introduced for use within the popular open-source
programming language R that allows Bayesian statistical data analysis techniques to be implemented in
a straightforward manner. Incorporating all collected data simultaneously, this Bayesian approach naturally
accommodates sensor arrays and provides improved limit of detection estimates, including providing
appropriate uncertainty estimates. Utilising >1500 lines of code, ISEtools provides a set of three core
functions—loadISEdata, describeISE, and analyseISE— for analysing ion-selective electrode
data using the Nikolskii-Eisenman equation. The functions call, fit, and extract results from Bayesian
models, automatically determining data structures, applying appropriate models, and returning results
in an easily interpretable manner and with publication-ready figures. Importantly, while advanced
statistical and computationally intensive methods are employed, the functions are designed to be
accessible to non-specialists. Here we describe basic features of the package, demonstrated through a
worked environmental application.
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1. Introduction

The R programming language [1] has transformed modern data analysis, allowing free access to its
core features and thousands of contributed packages. Here, we introduce ISEtools [2], a new package
for the statistical analysis of data from ion-selective electrodes (ISEs) available on the Comprehensive R
Archive Network (CRAN) [1] and easily installed within R. We also note notation, where R packages
are in boldface, while R functions or commands are in Courier New font. ISEtools implements
Bayesian models described by Dillingham et al. [3] that allow analyses to be conducted with single
ISEs or jointly using data from sensor arrays. Its intent is to be a resource for the ISE community
enabling statistical best practices, with new features added over time according to community demands
and needs.

Advances in our understanding of the mechanisms of ISE response has led to increased sensitivity,
miniaturisation, and simplified experimental protocols. This has enabled their application in
challenging areas, including environmental analysis, wearable sensors, and medical applications [4-7].
These demanding applications require more sophisticated data analysis techniques, which can
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accommodate both the multivariate data that arises from sensor arrays and the underlying non-linear
response of ISEs. ISEtools implements advanced techniques in a straightforward manner, making these
analyses accessible to researchers and practitioners alike.

Currently, there is a wide range of reporting practices and methodologies employed by the ISE
community, often related to the statistical and computational knowledge of researchers. While best
practice should include reporting point estimates of parameters and estimates of their uncertainty [8],
it is common in the ISE community to only provide point estimates of important parameters such
as slopes, analyte activities, or limits of detection (LOD). Moreover, uncertainty estimates should be
expressed through confidence or credible intervals, rather than simply as standard errors, to incorporate
the uncertainty due to sample size or the asymmetric shapes of confidence intervals for some ISE
parameters. The statistical skills required to implement these best practices depends on the parameter
being estimated and the data collected. Examples of advances in estimation include non-linear
regression [9], Bayesian techniques that simultaneously utilise measurements from two different ISEs
for source separation [10] or arrays of redundant sensors to improve precision [3], and neural networks
that incorporate environmental patterns [11].

These statistical approaches add value by synthesising all available data. For example, consider the
relatively simple case of estimating the slope of the Nernstian portion of the ISE response curve using
linear versus non-linear regression. If using linear regression, uncertainty in the slope is linked to
a t-distribution with n — 2 degrees of freedom (df) for the linear case, or n — 3 df for the nonlinear
case. However, 1 in linear regression is restricted to calibration data in the Nernstian region, while n
in non-linear regression is based on all calibration data. This means that a seven-point calibration
with three points in the linear range would have a t-based multiplier of t; = 12.7 for a 95% confidence
interval if using linear regression, but ¢ = 2.4 for non-linear regression. That is, when employing linear
approximations that use only a subset of the data collected, information is lost and uncertainty increases.
Often, a follow-on result is that uncertainty is neither estimated nor reported. Similar issues arise when
estimating the activities of experimental samples, compounded by asymmetric sampling distributions
in some regions of the response curve or when using standard addition techniques. Similarly, if defined
in a probabilistic manner in accordance with IUPAC recommendations [12], the LOD is a highly
non-linear function of three parameters resulting in a skewed distribution that may have substantial
uncertainty [13].

The goal of ISEtools is to make implementing best practices [8,12,14] as simple as possible, for as
wide a range of data as possible, and for as many researchers as possible. The version introduced
here (Version 3.1.1) implements statistical methods described by [3,13] for single ISEs or ISE arrays of
redundant sensors, allowing the estimation of model parameters, experimental activities, and LODs.
Additional functionality will be introduced in future versions (e.g., current projects include developing
methods to accommodate sensor arrays measuring multiple analytes, estimating LOD for an entire
sensor array, and improving statistical methods for estimating selectivity coefficients).

Substantial automation means that researchers can simply load data stored in a text file
(e.g., typically from a spreadsheet) using the command loadISEdata. Once loaded, the ISE(s)
can be characterised using the command describeISE. If the data includes experimental samples,
activities can be estimated using the command analyseISE. In the background, the software package
determines the structure of the data (e.g., the number of ISEs or whether standard addition was used,
which Bayesian model is appropriate for analysis, and the initial values for numerical procedures).
It also calls specialist software to implement the model and processes results for easy interpretability
and clear graphical representation.

2. Materials and Methods

This section describes the basic statistical model used, data structures supported, a computational
overview, and implementation of an analysis of lead in soil. Technical details, definitions, and numerous
options are not presented. Instead, readers are referred to the vignette for a detailed description
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of the package and help files for individual functions. The vignette (ISEtools.pdf) is available from
https://CRAN.R-project.org/package=ISEtools, and is also accessible after installing R and loading the
ISEtools library. Individual help files (e.g., for loadISEdata) are also available once the ISEtools
library is loaded. These are accessed via:

library (ISEtools); vignette("ISEtools"); help(loadISEdata)

2.1. ISE Response Model

Ion-selective electrodes convert analyte activity to an electrical signal [15], with the response
described by the empirical version of the Nikolskii-Eisenman equation [3,16] and parameterised as:

y =a+blog(x + c) + error, 1)

where y is the electromotive force (emf) response of the ISE; x is the activity of the ion of interest; a is
a baseline emf; b is the slope, whose theoretical value is determined by the valence of the primary
ion, temperature, and natural constants; ¢ is a parameter linked to the interfering ions within the
chemical matrix and the selectivity of the ISE to those ions; and the random emf noise follows a normal
distribution (i.e., error ~ normal(0, sigma)). Figure 1 shows the expected response of a single ISE,
including the flat region (when activity x << c) that cannot reliably be distinguished from a blank,
and the Nernstian region (when x >> ¢) in which linear regression methods may be usefully employed.
ISEtools was specifically developed for applications with data across the full response curve, but also
works for datasets entirely within the Nernstian region.

emf
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log x

Figure 1. Ion-selective electrode (ISE) response as parameterized in ISEtools. The curvilinear portion
of the response curve is determined by ¢, while the slope in the Nernstian region is b (mV/decade).

2.2. Computational Overview

ISEtools implements Bayesian methods described by [3,13], and operates within R [1] or the related
RStudio [17], interfacing with an additional programme to run the Bayesian analyses, OpenBUGS [18]
or jags [19], both based on the BUGS [20] language. Users with basic familiarity of R or other scripting
languages will have an advantage getting started, but will not need familiarity with the Bayesian
programmes. Installation requires R or RStudio as well as OpenBUGS or jags, all of which are
free, easily accessible through simple web searches, and straightforward to install. We recommend
OpenBUGS, but include a jags option for macOS users. Users must also install R packages ISEtools,
Xmisc [21], coda [22], and either RZWinBUGS [23] and BRugs [18] (if using OpenBUGS) or rjags [24]
(if using jags) through the built-in interface in R or RStudio. Xmisc and coda are often installed
automatically as dependencies of ISEtools, depending on user settings in R.

Users use three core functions: 1oadISEdata toimportand process the ISE data, describeISEto
characterise ISEs using calibration data (e.g., to estimate model parameters, LODs, and their uncertainty),
and analyseISE to estimate unknown activities of experimental samples. In conjunction with each
function are print, summary, and plot commands to summarise and visualise model output.
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2.3. Data Structures and Estimation

ISEtools is designed to work with calibration data, where x and y are both observed, to estimate
model parameters a, b, ¢, and sigma. This also allows estimation of LOD, g based on rates of false
positives (a) and negatives () as recommended by IUPAC [12], using defaults of a = § = 0.05. We note
that this is not the commonly used LOD calculation for ISEs [25], which is based on the intersection of
the Nernstian line with a blank but does not meet general IUPAC recommendations for LODs.

When combined with experimental data, where y is observed but x is unknown, inverse methods [3]
are used to estimate unknown activities (x), conditional on the model parameters estimated from the
calibration data. ISEtools accommodates experimental data in Basic format, where an emf is recorded
for each experimental sample, or in Standard Addition format, where an aliquot with known activity
and volume is added to each experimental sample and emf is recorded before and after the addition.

The structure of the data files for an array of three ISEs is shown for calibration data (Figure 2a),
experimental data in the Basic format (Figure 2b), and experimental data in the Standard Addition
format (Figure 2c).

(a) A B c (b) A B c (c) A B c D | E F G

| ISEID logl0x emf 1| ISEID SamplelD emf } ISEID SamplelD emfl emf2 V.s V.add conc.add
-9.000116 8.558784 1 25.49 1 25.49 51.14 25 0.02 0.1
-6.99685 8.941667 1 -7.69 1 -7.69 19.31 25 0.02 0.1
-5.962362 13.82427 1 -284.32 1 -284.32 -246.38 25 0.02 0.1
-4.970696 32.16092 2 29.61 2 29.61 52.78 25 0.02 0.1
-3.996123 56.68302 2 -3.4 2 -3.4 21.52 25 0.02 0.1
-3.076335 85.45835 2 -274.83 2 -27483 -243.84 25 0.02 0.1
-9.000116 -28.3812 3 32.19 3 32.19 57.68 25 0.02 0.1
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Figure 2. Structure of the (a) calibration data and (b,c) experimental data for three ISEs measuring lead
in soil. Typically, users would record experimental data in either (b) Basic or (c) Standard Addition
formats. Both are shown for illustrative purposes.

Variable definitions are intuitive and fully described in the ISEtools vignette and help files.
The calibration data includes variables ISEID (indicating which ISE recorded the data), 1ogl10x
(the log of the known activity of the calibration samples), and emf (the recorded emf in mV). The
experimental data in the Basic format has variables ISEID, emf, and SampleID (indicating which
sample is being measured). The experimental data in the Standard Addition format has variables
ISEID, SampleID, emfl (the emf before the aliquot is added), emf2 (the emf after the aliquot is
added), V. s (the volume of the original sample), V. add (the volume of the aliquot), and conc.add
(the activity of the aliquot).

ISEtools employs Bayesian methods rather than alternatives such as non-linear regression via
least squares or maximum likelihood. Briefly, any prior knowledge about random variables (e.g., model
parameters or analyte activity) is updated by a probability model linking observed data to those
parameters. The probability model is based on the Nikolskii-Eisenman equation (Equation (1)),
with adaptations for sensor arrays or standard addition data where appropriate. This provides a
posterior probability distribution for the random variables via Bayes’ theorem, typically presented
as credible intervals that are broadly analogous to confidence intervals. Relative to other ISE data
analysis approaches, the key benefit of Bayesian methods is their ability to incorporate all data into a
single model and maximise information. Particularly, computational tools such as OpenBUGS and jags
allow consistent implementation of both simple and complex models. Further details of the statistical
models are available in the Supporting Information of [3], particularly Equations S-1 through S-3,
with OpenBUGS code shown in Figures S-2 through S-4.

For the simplest case of characterising ISE parameters using calibration data, Bayesian methods
produce point estimates and uncertainty intervals very similar to those from non-linear regression.
Similarly, if only one ISE is used and experimental data are in Basic format, inversion of a prediction
interval from non-linear regression produces similar estimates and intervals. If all data are in
the Nernstian region, these both simplify to linear regression results. However, in other contexts
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the Bayesian approach has clear advantages including supporting complex sampling distributions,
non-standard data sources, and multivariate data from sensor arrays [3,10,13].

These advantages revolve around: (1) LOD estimation, where the ability to sample from the
joint posterior distribution of model parameters allows straightforward calculation of its distribution;
(2) estimation of activity when standard addition is used and the sampling distribution may be highly
asymmetric; and (3) estimation of activity when multiple sensors are used in an array. For this final
case, the Bayesian treatment of unknown activity x as a random variable allows all available data
(e.g., multiple ISEs of varying quality measuring the same sample) to be used simultaneously to find
the posterior distribution for x and calculate its 95% credible interval. Further, the model appropriately
weighs data based on individual sensor quality (i.e., noisy sensors are automatically down-weighted).
ISEtools currently accommodates sensor arrays of the same type of ISE, and future versions will
accommodate arrays of different ISEs.

2.4. Analysis of Lead in Soil

Next, we show a worked example using ISEtools from an array of three solid-contact ISEs
measuring lead in soil. The purpose of this example is to demonstrate the implementation and
relative ease of analysis using ISEtools. Manufacturing methods for the ISE array have been described
previously [26]. Briefly, the Pb?*-selective membrane was prepared by dissolving 5 mmol kg~! sodium
tetrakis[3,5-bis(trifluoromethyl)] phenylborate, 12 mmol kg~ lead ionophore IV, 32 wt% poly(vinyl
chloride) (PVC) and 66 wt% of bis(2-ethylhexyl)sebacate in tetrahydrofuran. This composition was
based on a membrane developed for trace-level measurement of lead in rivers, lakes, and tap water [27].
Three solid-contact electrodes were prepared from Teflon-coated copper rods (3 mm diameter). The face
of the sensing end was polished and sputter-coated with gold before adding a protective sleeve of PVC
tubing. The gold was then coated with a drop-cast layer of a polyoctylthiophene conducting polymer
before drop casting the Pb?*-selective membrane onto the conducting polymer layer (Figure 3).

1 A

(©

Figure 3. Each of the Pb?* solid-contact ISEs were prepared from gold-coated copper rods in a sheath

of Teflon tubing (a). PVC tubing was then added to provide a protective sleeve for the sensing face
(b). Next, a conducting polymer layer was drop cast onto the gold surface (c), before drop casting the
Pb2*-selective membrane (d). Finally, three Pb2*-selective membranes were combined into a three-ISE
array (e).

Soil samples, collected at abandoned mining sites near Silvermines, County Tipperary, Ireland,
were dried and ground before extraction of exchangeable metals through sonication in 1.0 x 1073 M
HNOs. A four-channel, high-input impedance data acquisition system (World Precision Instruments,
Sarasota, FL) was used to simultaneously measure the differences in potential between the three ISEs
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and a silver/silver chloride reference electrode. After the ISE array was calibrated, Pb?* activity in
each sample was estimated using a standard addition approach. All emf values were corrected for
liquid-junction potential using the Henderson equation, and ion activities were calculated according
to the Debye-Hiickel approximation. Here, we used the calibration data and standard addition data
from the 17 soil samples to estimate the Pb?* activity and characterise the three ISEs.

Data were first stored in an Excel file but subsequently saved as tab-delimited text files in the format
expected by ISEtools and are included with the ISEtools package in the “/extdata” sub-folder of
the ISEtools library (e.g., <pathname to R libraries>/ISEtools/extdata). Inthe example
below, the pathname was “C:/Program Files/R/R-3.5.2/library/”. In addition to
calibration data (Lead_calibration.txt), the experimental data are available in the Basic
(Lead_experimentalBasic.txt)and Standard Addition (Lead_experimentalSA.txt) formats
(Figure 2).

3. Results

Computational details, syntax, and analysis results for the analysis discussed previously are
described below, demonstrating the three key functions of ISEtools.

3.1. Loading Lead Data

After installing all required software and R packages, the ISEtools library was called and the lead
data was loaded using 1oadISEdata. This simply required specifying the locations of the calibration
and experimental data files:

library (ISEtools)
lead.example = loadISEdata (
filename.calibration =
"C:/Program Files/R/R-3.5.2/1library/
ISEtools/extdata/Lead_calibration.txt",
filename.experimental =
"C:/Program Files/R/R-3.5.2/1library/
ISEtools/extdata/Lead_experimentalSA.txt")

The 1oadISEdata function imports and processes the data, determining that multiple ISEs were
used, and experimental data were present in Standard Addition format. Data can be further examined
using print (lead.example) orplot (lead.example) to ensure there are no data entry errors or
unusual datapoints, where print and plot functions have been customised for ISEdata objects.

3.2. Characterising the ISEs

Once satisfied with the data quality, ISE model parameters are estimated via describeISE.
The describeISE function takes data loaded using 1oadISEdata, the valence (Z) of the primary
ion (here, 2 for Pb?*) and (optionally, if much different from room temperature) the temperature:

lead.analysisl = describelSE (lead.example, Z=2, temperature=21)

Because loadISEdata pre-processes the text files, calibration data and the number of ISEs
are automatically passed to describeISE. This allows describeISE to automatically apply the
appropriate Bayesian model when it calls OpenBUGS or jags; users also have the option to specify
their own model. At this point, OpenBUGS or jags implements Markov chain Monte Carlo methods,
returning results to R and saved as 1ead.analysisl. Parameter estimates and the LOD, as well as
lower and upper values from 95% credible intervals, are displayed using the print command, again
customised to print relevant output for each ISE. For ISE #1, print (lead.analysisl) produces:
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Non-linear parameter estimates and 95% CIs for
y = a + b log(x + c)

ISE #1:

S Parameter estimate Lower limit Upper limit

a 1.76e+02 1.60e+02 1.93e+02

b 2.95e+01 2.56e+01 3.43e+01

c 2.18e-06 1.03e-06 4.66e-06

sigma 1.42e+00 6.12e-01 5.94e+00

Estimated log LOD{alpha=0.05, beta=0.05} (95% CI): -6.03 (-6.44, -5.03)

From this, we see that ISE #1 had close to the ideal Nernstian slope, estimated as b = 29.5 mV/decade
(95% CI 25.6-34.3 mV/decade), with an LOD near 107°. This information can be used when developing
new ISEs and when testing whether they are fit for purpose [13]. For example, lead activity for some of
the experimental soil samples (Figure 4) was near this LOD, indicating that, by itself, ISE #1 would
struggle to distinguish the lower activities at this site from a blank. If the full distribution of the
parameters was of interest, plot (lead.analysisl) would be used instead.

t
. N 1 t ¥
ettt

o + %% t ff{}f

rFrrrrrrrrr-1rTr T 1T T T
1 2 3 4 5 6 7 8 9 10 12 14 16

Sample ID
Figure 4. Analysis of 17 experimental soil samples from Silvermines, Ireland using an array of three
solid-contact ISEs with Standard Addition data. The 95% (thin lines) and 50% (thick lines) credible
intervals and point estimates (-) are shown. The analysis and plot were produced using the R
package ISEtools.

3.3. Estimating Activity of Experimental Samples

To estimate analyte activity in experimental samples, analyseISE was used. Here, we used the
three ISEs to analyse the 17 experimental soil samples measured using standard addition:

lead.analysis2 = analyseISE (lead.example, 7Z=2, temperature=21)

As with describeISE, the structure of the data informs the Bayesian model to use with
analyseISE and engages OpenBUGS or jags. Again, print and plot commands can be applied
to the results. Here, we plot the estimated activities, combining data from three ISEs (Figure 4),
and include options to produce appropriate axis labels, specify the plot range, and set the colour using
standard R options:

plot (lead.analysis?2,
ylab=expression (paste("log ", italic(a) [Pb"{paste("2","+")}1)),
ylim=c (-7, -3), col="steelblue")
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4. Discussion

One of the key benefits of the ISEtools package is that it provides access to advanced statistical
models for the non-specialist. These models utilise all data (i.e., data beyond just the linear portion
of the response) to provide improved activity estimates, particularly in the context of sensor arrays
or standard addition data. They also estimate the limit of detection following recommendations by
IUPAC and provide uncertainty for those estimates.

This manuscript introduced the ISEtools package. Additional detail, including information
on data formatting, numerical details, and advanced options, are described in the ISEtools vignette.
We recommend that interested researchers read the vignette prior to running any analyses. For researchers
and practitioners experienced with R, implementation of ISEtools should be straightforward. For those
without experience, there is an R learning curve to overcome. Fortunately, with millions of users and its
open-source nature, there are many “getting started” tutorials available on the web, along with numerous
books. We note that many new users prefer RStudio to the base version of R.

Finally, we reiterate that this is a developing package, and look to the ISE community for feedback
and future development needs.
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