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Introduction

Colorectal cancer (CRC) is the third most prevalent 
gastrointestinal tract neoplasm and the fourth major cause 
of cancer mortality globally (Mao et al., 2013, Sun et 
al., 2015). CRC development is a multistep process, in 
that several factors are known to be involved including 
environmental and genetic alterations (Zhang et al., 2011). 
The polymorphisms of genes involved in different DNA 
repair pathways may affect repair of bulky DNA lesions 
and maintenance of genomic stability, and thus cancer risk 
(Canbay et al., 2011, Hou et al., 2014). DNA repair protects 
genome damages caused by oxidative DNA compounds 
or DNA adducts. DNA repair pathways responsible for 
fixing DNA damages include base excision repair (BER), 
nucleotide excision repair (NER) (Lefkofsky et al., 2015) 
and homologous recombination repair (HRR) (Kiyohara 
and Yoshimasu, 2007). 

NER is one of the key pathways that contributes 
to UV light-induced DNA damage, and protects a cell 
against a wide spectrum of structurally unrelated DNA 
lesions (Sugasawa, 2016). In the inherited disorder, 
xeroderma pigmentosum, NER deficiency is associated 
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with a 1,000-fold higher occurrence of skin cancer, but 
also a 20-fold increase in internal tumours highlighting 
the NER importance in the repair of endogenous DNA 
damage (Mort et al., 2003; Spivak, 2015). One of 
the key DNA repair enzymes of the NER pathway is 
Xeroderma Pigmentosum complementation group G 
(XPG), which is also known as ERCC5 (excision repair 
cross-complementation group 5) (Chen et al., 2016). XPG 
gene is mapped on chromosome 13q22-q33, and consists 
of 15 exons and 14 introns and is one of the seven XP 
complementation groups (XPA to XPG). It has reported 
that a defective XPG results in DNA repair malfunction 
which leads to genomic instability, gene malfunction and 
initiation of carcinogenesis (Dworaczek and Xiao, 2007; 
Sollier et al., 2014).

Accurate repair of double-strand breaks (DSBs) arising 
during DNA replication or from DNA-damaging agents 
is essential to conserve genomic stability. HRR is the 
key pathway for repairing DSBs and the maintenance 
of genetic stability in mammalians (Griffin, 2002). 
Throughout the HRR process, a sister chromatid works 
as a template and the homologous sequence of DNA is 
aligned. Several numbers of key molecules contribute 
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to the HRR process (Griffin and Thacker, 2004). Recent 
evidence indicated that RAD51 paralogs (RAD51B, 
RAD51C, RAD51D, XRCC2, XRCC3) play key roles 
in the HRR process (Griffin, 2002; Curtin et al., 2009). 
Moreover, coded by X-ray repair cross complementing 
group 2 (XRCC2) gene produces the XRCC2 protein that 
is structurally and functionally associated with RAD51; 
together with each other they form a fundamental complex 
required for chromosome segregation and apoptotic 
response to DSBs (Li et al., 2014). Also over 100-folds 
of HRR reduction in the XRCC2 deficient hamster cells 
compared with the parental cells has been observed which 
highlights the vital role of the XRCC2 protein for the HRR 
process (Johnson et al., 1999).

Growing evidence has explored the role of common 
single nucleotide polymorphism (SNP) located in exon 
15 of XPG (Asp1104His; dbSNP ID rs17655 G/C) in 
the etiology of CRC in various populations (Chen et al., 
2009; Luo et al., 2014; Steck et al., 2014; Zeng et al., 
2015). Additionally, common variants within XRCC2 
(R188H, dbSNP ID rs3218536), and RAD51 (135G/C, 
dbSNP ID rs1801320) have been determined as potential 
cancer susceptibility loci in recent studies (Curtinet et 
al., 2009).  However, the results of some publications are 
contradictory (Bigleret al., 2005; Pardini et al., 2008), 
and some of the individual studies included small sample 
sizes as well as lack of power to identify a mild gene 
effect (Mort et al., 2003; Canbay et al., 2011; Krupa et al., 
2011; Gil et al., 2012; Nissar et al., 2014; Cetinkunar et 
al., 2015). Hence, a comprehensive retrieval of the related 
literature would help obtain a more precise estimation of 
the association with disease susceptibility. Consequently, 
we performed a meta-analysis of case-control studies and 
investigated whether XPG Asp1104His, XRCC2 R188H 
A/G and RAD51 135G/C polymorphisms are associated 
with susceptibility to CRC using multiple genetic models.

Materials and Methods

Study assessment
Our literature search included the electronic databases 

such as PubMed, EMBASE, and MEDICINE. All 
languages were searched, and inclusive search strategies 
included the Mesh term and Keywords: (‘XPG’, 
‘xeroderma pigmentosum group G’, ‘excision repair cross-
complementing group 5’, ‘ERCC5’, ‘RAD51’,’XRCC2‘ 
or ‘NER’), (‘polymorphism’, ‘variant’ or ‘ ‘mutation’) 
along with (colorectal’, ‘rectal’, ‘gastrointestinal’, 
‘colon cancer’.) through Jan 2, 2017. Eligible studies 
were selected and evaluated cautiously. Review articles 
and bibliographies of other relevant studies found were 
hand-searched to find further qualified studies.

Selection of eligible studies
The articles were filtered by two independent 

reviewers (M.H, A.R) to assess the appropriateness of 
the articles selected by using a standardized protocol and 
data collection form. The following inclusion criteria 
were used to determine qualified studies: (a) a human 
case-control study on the association between XPG, 

XRCC2 and RAD51 SNPs and CRC (b) adequate allele 
or genotype data needed for assessing an odds ratio (OR) 
and 95% confidence interval (CI). Exclusion criteria 
were (a) non-human studies, abstracts only, comments, 
reviews, editorials or letters, mechanism studies and cohort 
comprising of a case population; (b) family-based design 
or sibling pair studies, (c) studies with lack of enough 
information for data extraction and (d) unpublished data. 
Discrepancies about inclusion of studies and interpretation 
of data were solved with conversation.

We used following data information from each study: 
authors, year of publication, country, ethnicity, source 
of controls, genotype methods, sample size, allele and 
genotype frequency distribution and Hardy Weinberg 
equilibrium (HWE) (Table 1). 

Statistical analyses 
The risk of CRC associated with the SNPs were 

examined for each study by odds ratio (OR) and 95% 
confidence interval (95% CI). The significance of 
the summary OR was calculated by the Z-test, and 
P<0.05 was applied as statistically significant. Five 
different ORs were computed for XPG Asp1104His: 
the codominant homozygote (His/His vs. Asp/Asp), 
codominant heterozygote (Asp/His vs. Asp/Asp), 
dominant (Asp/His+His/His vs. Asp/Asp), recessive 
model (His/His vs. Asp/Asp+Asp/His), and allelic 
comparison (His vs Asp). As for XRCC2 rs3218536 
A/G, we used codominant heterozygote (A/G vs. A/A), 
codominant homozygote (G/G vs. A/A), dominant (G/G 
+ A/G vs. A/A), recessive (G/G vs. A/G+A/A) and allelic 
comparison (G vs A) to calculate the pooled ORs. For the 
RAD51 135G/C, the codominant heterozygote (G/C vs. 
G/G), codominant homozygote (C/C vs. G/G), dominant 
(C/C + G/C vs. G/G), recessive (C/C vs. G/C + G/G) and 
allelic comparison (C vs G) were chosen to compute the 
pooled ORs. A χ2-test-based Q statistic test was done to 
assess the between-study heterogeneity [24]. We also 
quantified the effect of heterogeneity by I2 test. Once 
a significant Q test (P > 0.05) or I2 < 50% indicated 
homogeneity across studies, the fixed effects model was 
utilized [25]; otherwise the random effects model was 
used [26]. Then, we performed stratification analyses 
on ethnicity (Asian, Caucasian or African) and source 
of control (Population-based or PB, Hospital-based or 
HB and family-based or FB). Analysis of sensitivity was 
performed to assess the stability of the results. Potential 
publication bias was examined using Begg’s funnel 
plot. All analyses were performed using the Cochrane 
Collaboration RevMan 5.3. HWE was calculated for each 
study using an internet-based HWE calculator (http://ihg.
gsf.de/csgi-bin/hw/hwa1.pl).

Results

Characteristics of studies
After preliminary search with duplicates discarded, 

a total of 412 records of publications were yielded. 
Following the predefined inclusion and exclusion criteria, 
eventually 26 case-control studies were included in this 
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meta-analysis (details in Figure 1). These 26 studies 
included a total of 22173 subjects (10,288 cases and 
11,885 controls), and examined the impact of XPG 
Asp1104His, XRCC2 rs3218536 A/G and RAD51 135G/C 
polymorphisms on CRC risk. Fourteen studies comprising 
of 6,728 cases and 7,877 controls assessed the impact of 
XPG Asp1104His polymorphism on CRC (Mort et al., 
2003; Bigler et al., 2005; Huang et al., 2006; Pardini, 
Naccarati et al. 2008, Joshi, Corral et al. 2009, Canbay 
et al., 2011; Gil et al., 2012; Liu et al., 2012; Du et al., 
2014; Li et al., 2014; Steck et al., 2014; Kabzinski et al., 
2015; Paszkowska-Szczur et al., 2015; Sun et al., 2015). 
OF these, 10 were Caucasians, 3 were Asians and one 
was African. After stratification of studies according to 
the source of control, 7 studies were stratified as PB and 
6 were HB and one was a FB study.  

Six studies including 2620 cases and 3092 controls 
examined the association of XRCC2 rs3218536 A/G 
and CRC. OF these 6 studies, 3 were HB and 3 were PB 
studies, but as for ethnicity all were Caucasians. With 
respect to RAD51 135G/C polymorphism in CRC, 6 

Figure 1. Flow Diagram of Included Studies for This 
Meta-Analysis

Figure 2. Forest Plot of the Risk of Colorectal Cancer 
Associated with XPG Asp1104His Polymorphism in 
Allele Comparison

Figure 3. Forest Plot of the Risk of Colorectal Cancer 
Associated with XPG Asp1104His Polymorphism in 
Codominant (Heterozygote) Comparison 
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studies met the inclusion criteria which included 940 cases 
and 926 controls. Of these, 5 studies were Caucasians and 
5 were HB studies. Baseline characteristics of the included 
studies for XPG Asp1104His, XRCC2 rs3218536 A/G 
and RAD51 135G/C polymorphisms on CRC are shown 
in Table 1. 

XPG Asp1104His polymorphism and CRC
The associations of CRC risks with XPG Asp1104His 

polymorphism were indicated in table 2. At allelic level, 
the pooled analysis showed that the His vs Asp allele was 
associated with increased risk of CRC in total studies 
with the overall OR of 1.06 (OR= 1.06; 95% CI =1.01-
1.12; P=0.02) as indicated in fig 2. The subgroup analysis 
indicated that the variant His allele is a risk factor for 
CRC in Asians (OR= 1.12; 95% CI = 1.04-1.21’ P=0.002). 
However, it was not associated with the CRC risk in either 
of Caucasians or Africans (P>0.05). 

At genotypic level and using the codominant model, 
the pooled evidence suggested that His/Asp vs Asp/Asp 
heterozygote genotype distribution between groups was 
different and the association was statistically significant 
in total with the pooled OR of 1.16 (95%CI= 1.02-1.31; 
P=0.02). Similarly, this genotype was a risk factor for 
CRC in Asians with the OR of 1.31 (95%CI= 1.01-1.70; 
P=0.04) but not in Caucasians or Africans (fig 3).

In contrast, the homozygote genotype His/His vs 
Asp/Asp in codominant model was not associated with 
CRC in total (P=0.15). However, the His/His genotype 
was a risk factor for Asians with OR of 1.22 (95%CI= 
1.05-1.43; P=0.01).

In dominant model, the His/Asp+His/His vs Asp/
Asp genotype was not correlated with susceptibility to 
CRC in total (P=0.33) as well as in Caucasians (P=0.35). 
In Asians, however, His/Asp+His/His was a risk factor 
for CRC with the pooled OR of 1.29 (P=0.02; 95%CI= 
1.05-1.60).

In recessive model, the general difference between 
groups for His/His vs His/Asp+Asp/Asp was not 
associated with the risk of CRC either in total (P=0.54) 
or Caucasians (P=0.50) or Asians (P=0.73).

In the subgroup analysis by source of control, the XPG 
Asp1104His polymorphism had statistically significant 
association with elevated CRC risk under allele His vs 
Asp (P=0.01; OR=1.11, 95% CI=1.02-1.20), codominant 
heterozygote His/Asp vs Asp/Asp (P=0.001; OR=1.22, 
95% CI=1.08-1.38) and dominant His/Asp+His/His vs 
Asp/Asp (P=0.001; OR=1.21, 95% CI=1.08-1.37) in the 
HB subgroup.

XRCC2 rs3218536 A/G polymorphism and CRC
As shown in table 2, no significant association was 

found between XRCC2 rs3218536 A/G polymorphism 
and CRC using different genetic models. In allelic 
comparison, the distribution of G vs A allele was not 
different between cases and controls (P=0.49) in total 
or in PB (P=0.91) or HB (P=0.12) subgroups. Similar 
results were found for the polymorphism in total using 
codominant heterozygote (P=0.29), homozygote (0.54), 
dominant (0.76) or recessive genetic model (P=0.83). 

After stratification based on source of controls, no 
significant association was found either in PB or HB 
subgroups using different genetic models (P>0.05). As 
for ethnicity, no stratification was done because all studies 
belonged to the Caucasian populations.

RAD51 135 G/C polymorphism and CRC
Our pooled evidence revealed that the RAD51 135 

G/C polymorphism was a risk factor for CRC in total 
using allele or recessive models. At allelic level, the C vs 
G allele was associated with increased risk of CRC with 
the OR of 1.21 (P=0.001; 95%CI=1.05-1.39). Using the 
recessive genetic model, a significant relationship between 
CC vs GC+GG polymorphism and CRC was observed in 
total (P=0.001; OR=1.62; 95%CI=1.30-2.02). For this 
polymorphism, no stratification based on ethnicity or 
sources of controls was performed due to lack of enough 
data for subgroups.

Heterogeneity and sensitivity analyses
We found heterogeneity in the codominant model for 

XPG His/Asp genotype using codominant heterozygote 
in overall (Ph=0.002; I2=61%), and in Asians (Ph=0.01; 
I2=78%) as well as in PB subgroup (Ph=0.001; I2=75%). 
Similarly, a heterogeneity among total studies in dominant 
model for His/Asp+His/His genotype (Ph=0.005; 
I2=58%), as well as in Asians (Ph=0.04; I2=69%) and in PB 
subgroup (Ph=0.001; I2=88%). For the RAD51 135 G/C, 
a significant heterogeneity was observed for all genetic 
models (Ph<0.05; I2>50%); however, no heterogeneity 
was found for the XRCC2 rs3218536 A/G whether in 
total or PB/HB subgroups (Ph>0.05) as demonstrated in 
Table 2. Sensitivity analysis was performed according 
to heterogeneity. Due to significant heterogeneity across 
some studies, individual studies were sequentially omitted 
to identify the heterogeneity source by sensitivity analysis. 
The results showed that no individual study influenced 
the pooled OR values for XPG Asp1104His, XRCC2 
rs3218536 A/G and RAD51 135G/C polymorphisms.

Publication bias
The funnel plots were used to evaluate the potential 

publication bias of included studies under each comparison 
model. The shape of the funnel plot did not reveal any 
obvious asymmetry for 3 studied polymorphisms.

Discussion

In this meta-analysis, we investigated the potential 
genetic association between XPG Asp1104His, XRCC2 
rs3218536 A/G and RAD51 135G/C polymorphisms 
and CRC susceptibility. Using a meta-analytic approach, 
we synthesized 14 studies from 6 different countries for 
XPG Asp1104His variation including 6728 cases and 
7877 controls. We found that XPG Asp1104His gene 
polymorphism was a risk factor for CRC in overall 
population in allele and codominant model. Besides, 
subgroup analysis stratified by ethnicity and source of 
control indicated that XPG Asp1104His polymorphism 
was associated with CRC susceptibility in Asians and 
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HB subgroups.
The association between XPG Asp1104H is 

polymorphism and CRC has extensively been studied 
but the results have been inconsistent (Kiyohara and 
Yoshimasu, 2007; He et al., 2014). Our pooled evidence 
supports the findings of Du et al., (2014), Liu et al., (2012) 
and Paszkowska-Szczur et al., (2015). Du et al., (2014) 
found a significant increased CRC risk for the His vs 
Asp allele (or C vs G) (OR=1.20), and genotypes under 
the codominant (OR=1.41) and dominant models (OR 
of 1.39). They also performed a meta-analysis on the 
association of the SNP with CRC risk on five studies with 
a total of 2649 CRC cases and 2848 controls included. In 
their meta-analysis, the association between XPG rs17655 
and CRC risk was replicated under the codominant (His/
His: OR=1.24) and dominant model (His/His+Asp/His: 
OR = 1.35). Their finding for dominant model showed lack 
of relationship between rs17655 and CRC which does not 
support our pooled results for this model. Additionally, 
Paszkowska-Szczur K et al., (2015) reported that XPG 
Asp1104His heterozygote His/Asp genotype was a CRC 
risk factor in a polish population, and was associated 
with 1.36-fold higher risk of CRC supporting our pooled 
findings (OR=1.16). 

The XPG Asp1104His (rs17655 G/C) gene variation 
is the most commonly studied XPG polymorphism 
located in the XPG C-terminus, which is essential for 
its interaction with other members of the NER pathway, 
such as XPB, XPD and TFIIH subunits. The XPG rs17655 
G/C polymorphism causes the replacement of Asp amino 
acid to His which may influence these protein–protein 
interactions; however, no functional study has been 
reported to date. Despite lack of functional studies 
for XPG rs17655 G/C, this SNP has been reported to 
contribute to a poorer overall survival (OS) in patients 
with different cancers, e.g. gastric cancer (Li et al., 2014), 
cutaneous melanoma (Schrama et al., 2011), squamous 
cell carcinoma of the oropharynx (SCCOP) (Song et al., 
2013) and CRC (Liuet al., 2012; Sun et al., 2015). In CRC, 
Liu et al., (2012) demonstrated that XPG Asp1104His 
variant genotypes under dominant and codominant 
(heterozygote) models were associated with increased 
risk of CRC.

With respect to RAD51 135G/C polymorphism our 
pooled revealed that this genetic variation is associated 
with increased risk of CRC using allele and recessive 
models. According to our findings, individuals carrying 
the C vs G variant or CC genotype vs GC+GG of RAD51 
135G/C were predisposed to 1.21 or 1.62-fold increased 
risk of CRC, respectively. In line with our findings, 
Romanowicz-Makowska et al., (2012) indicated that the 
variant 135C allele of RAD51 increased the CRC risk in 
a polish population with the OR of 3.59. Additionally, a 
recent meta-analysis (Kong et al., 2015) on six studies 
suggested that RAD51 G135C is associated with increased 
head and neck cancer (HNC) risk in allele comparison 
(OR=1.21) which supports our findings (OR=1.21). 
Another comprehensive meta-analysis (Zhao et al., 2014) 
indicated that the RAD51 G135C significantly increased 
the risk of overall cancers using homozygote, recessive 

and allele models. However, they found no significant 
association between RAD51 and CRC in all models. A 
meta-analysis by Cheng et al., (2014) for RAD51 G135C 
on four types of common cancers revealed that there was 
no relationship between this variation and CRC risk. 
Concerning XRCC2 rs3218536 A/G polymorphism, we 
observed no association between this variation and the 
risk of total cancers or CRC using all models.  

Some limitations of this meta-analysis should 
be acknowledged. First, a common limitation of 
meta-analysis was heterogeneity. In our study, there 
was a considerable heterogeneity of studies for the 
dominant and codominant models of the XPG rs17655 
G/C polymorphism in the overall population. However, 
after performing the analyses by ethnicity and source 
of control, the heterogeneity disappeared in Caucasian 
and hospital-based groups. These results propose that 
the heterogeneity may somewhat result from ethnicity 
or lacking of adequate data, hence large studies with 
subgroup analysis are required. Moreover, considerable 
inherent heterogeneity existed among different studies 
for RAD51 135G/C, which was confirmed by significant 
statistical heterogeneity we obtained.  However, we 
detected no significant heterogeneity when three 
case-control studies Romanowicz-Makowska et al., 
(2012), Cetinkunar et al., (2015) and Krupa et al., (2011) 
in Table 1) were excluded, which implied the likelihood 
of the removed studies being the origins of heterogeneity. 
Second, the small sample size in some subgroups reduced 
the statistical power to examine the association between 
XRCC2 rs3218536 A/G and RAD51 135G/C and CRC 
with great confidence, especially in the Asians or PB 
subgroups. Third, our meta-analysis synthesized only 
published literatures, considering the fact that some 
pertinent important but unpublished studies were missed. 
Thus despite of its limitation, our meta-analysis is valuable 
to be interpreted with caution.  

In conclusion, our meta-analysis suggested that the 
XPG Asp1104His and RAD51 135 G/C polymorphisms 
were risk factors for the pathogenesis of CRC in overall 
population. Besides, subgroup analysis stratified by 
ethnicity and source of control indicated that XPG 
Asp1104His polymorphism was associated with CRC 
susceptibility both in Asians or HB population. Further 
well designed studies with larger sample size on different 
ethnic groups are needed to confirm the risk identified in 
our meta-analysis.
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