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Purpose: This study investigated the diagnostic utility of
nontargeted genomic testing in patients with pediatric heart disease.

Methods: We analyzed genome sequencing data of 111 families
with cardiac lesions for rare, disease-associated variation.

Results: In 14 families (12.6%), we identified causative variants:
seven were de novo (ANKRD11, KMT2D, NR2F2, POGZ, PTPN11,
PURA, SALL1) and six were inherited from parents with no or
subclinical heart phenotypes (FLT4, DNAH9, MYH11, NEXMIF,
NIPBL, PTPN11). Outcome of the testing was associated with the
presence of extracardiac features (p= 0.02), but not a positive
family history for cardiac lesions (p= 0.67). We also report novel
plausible gene–disease associations for tetralogy of Fallot/pulmon-
ary stenosis (CDC42BPA, FGD5), hypoplastic left or right heart
(SMARCC1, TLN2, TRPM4, VASP), congenitally corrected trans-
position of the great arteries (UBXN10), and early-onset

cardiomyopathy (TPCN1). The identified candidate genes have
critical functions in heart development, such as angiogenesis,
mechanotransduction, regulation of heart size, chromatin remodel-
ing, or ciliogenesis.

Conclusion: This data set demonstrates the diagnostic and
scientific value of genome sequencing in pediatric heart disease,
anticipating its role as a first-tier diagnostic test. The genetic
heterogeneity will necessitate large-scale genomic initiatives for
delineating novel gene–disease associations.
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INTRODUCTION
Congenital heart disease (CHD) describes a heterogeneous set
of disorders that affect the structure or function of the
developing heart. With a birth prevalence of 1–3%, CHD is
the most common congenital anomaly in humans.1 Childhood
cardiomyopathies are progressive disorders and a common
cause of heart failure in children.2 The causes of pediatric heart
disease are diverse and often multifactorial. Evidence for major
genetic contributions come from familial recurrence rates, twin
studies, and a higher incidence in consanguineous popula-
tions.3,4 Mendelian forms of idiopathic CHD are considered

rare, and many of the known loci are associated with
incompletely penetrant, variable cardiac, and extracardiac
manifestations. Clinical genetic assessments are not system-
atically offered to families with cardiac lesions, and there are no
formal diagnostic testing protocols. Limited accession of genetic
services and hypothesis-driven approaches may result in
etiological underdiagnoses and/or diagnostic odysseys.
High-throughput (exome or genome) sequencing studies of

cohorts with CHD had reported remarkably disparate
diagnostic rates (5.2–43.3%), which also correlated with the
stringency in variant interpretation.5–8 Compared with less
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comprehensive techniques, genome sequencing allows for an
unbiased analysis of most types of genomic variation, and had
a higher yield than standard of care genetic testing in
clinically heterogeneous cohorts.9 However, variant interpre-
tation may be challenging, particularly for sporadic disease
with limited genotype–phenotype correlations and incomplete
penetrance.
The Cardiac Genome Clinic was established to investigate

the utility of genome sequencing in families with pediatric
heart disease. As part of a pilot study, we obtained genome
sequencing data of 111 unrelated probands (n=
107 sequenced as parent–child trios/quartets/extended
families), and systematically analyzed for rare, predicted
damaging variation (single-nucleotide variants, insertions/
deletions and structural variants). Variants in disease-
associated genes were interpreted according to standard
guidelines,10 and novel candidate genes were prioritized
according to their biological plausibility.

MATERIALS AND METHODS
Study participants
The study was approved by the Research Ethics Board at The
Hospital for Sick Children (REB #1000053844). Informed
consent was obtained from all probands and family members.
Study participants originated from a cohort of families with
pediatric heart disease, recruited through the Ted Rogers
Cardiac Genome Clinic at a single site, The Hospital for Sick
Children, Division of Cardiology (from January 2017 to
December 2018; Fig. 1, S1). By study design, families with
laterality defects, outflow tract obstructions, or cardiomyo-
pathies were preferentially enrolled. Exclusion criteria were
known syndromes, metabolic diseases, or medical
conditions leading to secondary heart failure. Phenotype data
were entered into PhenoTips (https://phenotips.org/), using
the Human Phenotype Ontology (https://hpo.jax.org/). If
possible, we sequenced genomes of parent–child trios/quartets
(n= 103), or multiple affected relatives (n= 4), resulting in a
total of 328 sequenced individuals from 111 families.

Genome sequencing and annotation
DNA was sequenced on the Illumina HiSeq X system at
The Centre for Applied Genomics (TCAG) in Toronto,
Canada (details on sequencing and data analysis as
supplementary information). Genome sequencing was per-
formed under a research protocol, not as a validated clinical
test. Population allele frequencies were derived from 1000
Genomes (https://www.internationalgenome.org/), ExAC
(http://exac.broadinstitute.org/), and gnomAD (https://
gnomad.broadinstitute.org/). Gene constraint metrics were
derived from ExAC (probability of loss-of-function intoler-
ance; pLI) and gnomAD (pLI, observed over expected loss-of-
function variants; o/e). Variant information was queried from
PubMed (https://www.ncbi.nlm.nih.gov/pubmed/), DECI-
PHER (https://decipher.sanger.ac.uk/), the Human Gene
Mutation Database (http://www.hgmd.cf.ac.uk/ac/index.
php), and ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/).

Variant prioritization and interpretation
We analyzed the data for various types of genomic variation
(small variants affecting single genes, copy number, and other
structural aberrations) and Mendelian inheritance patterns
(de novo, recessive, and dominantly inherited, also consider-
ing incomplete penetrance; Fig. 2). Inherited variants were
prioritized according to (1) cosegregation with disease, (2)
previous reports in cardiovascular disease, (3) predicted loss-
of-function of constrained genes (ExAC pLI ≥0.9), and (4)
predicted damaging effects in CHD genes (http://chdgene.
victorchang.edu.au/).8 Variants in genes known to be
associated with cardiac disease were interpreted in accordance
with clinical standards and guidelines of the American
College of Medical Genetics and Genomics (ACMG).10 Likely
pathogenic, pathogenic, and uncertain variants were reviewed
by a clinical geneticist, a genetic counselor, and a cardiologist
in the context of the phenotype and family history. For the
diagnostic yield, we considered variants deemed “causative”
for the CHD by the clinical assessment. For novel candidate
genes, we assessed the biological and experimental plausibility
based on a literature review. Copy-number variants (CNVs)
were interpreted regarding a known or potential role in
cardiovascular disorders. Variants of interest were confirmed
through Sanger sequencing or clinical microarrays. Relevant
findings were reported back to the families through a clinical
geneticist and a genetic counselor, and were sent for clinical
validation.

RESULTS
Cohort characteristics
We prospectively recruited 111 families with congenital heart
disease or childhood-onset cardiomyopathies. Of those, 53
probands (47.7%) had extracardiac features, defined as other
major malformations, intellectual disability, autism, global
developmental delay, or growth deficits not attributable to
heart failure. Thirteen families (11.7%) reported relatives with
clinically relevant cardiac lesions, two probands (1.8%) had a
parent with bicuspid aortic valve, and four parents (3.6%)
were consanguineous (Table 1, S1). Ninety families (81.1%)
were formally assessed by a clinical geneticist, 85 had parental
echocardiography (n= 78 biparental; 70.3%), and 71 (64.0%)
had negative standard of care genetic testing (such as
chromosomal microarrays, targeted gene/panel testing, clin-
ical exome sequencing; Table S1). The spectrum of primary
cardiac phenotypes is displayed in Table 1, phenotypic details
in Table S1.

Clinically relevant variants
To assess the diagnostic utility of genome sequencing in
children with cardiac disease, we interpreted the data for
clinically relevant variants. We identified causative variants in
14 of 111 families (12.6%); Table 2. Ten of the affected genes
were found on a curated list of 107 high-confidence CHD-
associated genes (http://chdgene.victorchang.edu.au/; Decem-
ber 2019). Eleven diagnoses were made in patients with
extracardiac features (11/53 vs. 3/58; Fisher’s exact test (FET):
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p= 0.02), and two in patients with familial heart defects (2/13
vs. 12/98; FET: p= 0.67).

Small nucleotide variants
Seven individuals with prominent extracardiac anomalies and
developmental delay had disease-causing de novo variants,
such as p.(Pro1747Argfs*49) in ANKRD11 (KBG syndrome),
or p.(Arg5225Cys) in KMT2D (Kabuki syndrome). Both
genes are associated with highly penetrant congenital heart
defects. In a patient with ventricular septal defect (VSD),
aortic coarctation, and neurological symptoms, we identified a
de novo missense substitution p.(Val224Asp) in the ligand
binding domain of NR2F2. Missense variants in NR2F2 were
associated with CHD (particularly septal defects) and a broad
spectrum of associated anomalies.11 A de novo variant p.
(Glu1135Argfs*3) in POGZ was found in a proband with
hypoplastic left heart syndrome (HLHS) and developmental
delay, supporting the gene’s pleiotropic effects in brain and
heart development.12,13 A proband with VSD, developmental
delay, hypotonia, respiratory issues, and growth anomalies
had two de novo, recurrent variants p.(Phe271del) in PURA
and p.(Gly132Asp) in PTEN. Both defects contribute to the
phenotype, and a minority of patients with PURA-related
disorders present with structural heart defects.14

In other cases of apparently sporadic CHD, pathogenic
nucleotide variants were inherited from parents with no or

subclinical heart disease (n= 5). A frameshift deletion p.
(Pro30Argfs*3) in FLT4 was identified in a patient with
tetralogy of Fallot (TOF) and her unaffected mother.15 FLT4
haploinsufficiency was recently associated with incompletely
penetrant nonsyndromic TOF.15–17 A patient with aortic
stenosis, valve dysplasia, and developmental delay had a
variant p.(Gly501Valfs*4) in NEXMIF, which was X-linked
inherited from the mother with mild intellectual disability and
epilepsy. Cardiac defects are not common for NEXMIF-
related disease, but valve dysfunctions (pulmonary stenosis,
mitral insufficiency) were infrequently reported.18 In a patient
with hypoplastic right heart, unbalanced septal defect,
developmental delay, and borderline microcephaly, we
identified a pathogenic NIPBL variant c.771+1G>A for
Cornelia de Lange syndrome. The variant was inherited from
the mother, who had short stature, small hands, and delayed
menarche, but normal cognitive and cardiac presentation,
indicating variable expressivity. The broad spectrum of
cardiac lesions associated with NIPBL haploinsufficiency
likely results from subtle transcriptional dysregulations of
hundreds of genes.19 A patient with dysplastic aortic and
pulmonary valve and borderline short stature was identified
with a maternally inherited PTPN11 variant p.(Lys70Arg) for
Noonan syndrome. The mother was considered healthy;
however, a research echo at the time of study enrollment
showed decreased ventricular function of unknown origin. A

Cardiac genome clinic – pilot cohort

Consenting and sample collection
(n = 111 families)

Clinical genetics assessment Cardiac assessment

Clinically relevant variation

Return of results
clinical validation

Genetic counselling
Clinical monitoring
Family screening

Novel gene-disease
associations

“Gene discovery”

Secondary findings,
pharmacogenomics

(data not shown)

Genome sequencing analysis
History, examination, family history Medical chart review

Parental echocardiographies Structural variation (incl. CNVs)
Small nucleotide variants

Clinical testing, if applicable

recruited at SickKids, Division of cardiology

Fig. 1 Concept and process of the Cardiac Genome Clinic. Families with pediatric heart disease (n= 111) were recruited through the Division of
Cardiology at The Hospital for Sick Children. The genome sequencing data was analyzed for small nucleotide and structural variation. Clinically relevant
variants were returned to participants per consent. CNV copy-number variant.
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paternally inherited, pathogenic MYH11 variant c.4578
+1G>A, resulting in an in-frame loss of 71 amino acids,20

was identified in a proband with patent ductus arteriosus
(PDA). Cosegregation testing in four paternal relatives with
PDA and a grandfather with aortic disease in his eighties
could not be performed. The same protein change was
reported in an unrelated family with familial PDA.21 Further
phenotype–genotype correlations are required to provide risk
estimates for aortic disease in such families. In a female

patient with dextrocardia and unbalanced atrioventricular
septal defect, we identified compound heterozygous missense
variants in DNAH9, a gene recently associated with laterality
defects.22 Both variants p.(Asp1474Gly) and (Ile4415Thr)
were rare and predicted to be damaging. Though pathogeni-
city could not be established from a molecular perspective, the
variants were considered causative due to mild respiratory
issues in the proband, and ultrastructural ciliary abnormalities
on electron microscopy of nasal mucosa performed after
clinical reassessment.

Structural variants
Genome sequencing analyses identified two pathogenic
CNVs: A 138-kb deletion, including NOTCH1, was identified
in a proband with TOF and pulmonary atresia, but no
obvious other features of Adams–Oliver syndrome. Cosegre-
gation studies in three family members with VSD or TOF
could not be performed. A patient with interrupted aortic
arch, large VSD, short stature, and dysplastic ears was found
to have a de novo 4.1-Mb deletion including SALL1, causing
Townes–Brocks syndrome.

Variants of uncertain relevance
Variants that did not meet criteria for pathogenicity were
identified in additional families. A family with hypertrophic
cardiomyopathy had a predicted damaging, cosegregating
missense substitution p.(Gly2080Arg) in FLNC, located in a
previously disease-associated transmembrane domain.23 A
patient with dextrocardia and a complex heart defect, short
stature, and failure to thrive was identified with rare,
compound heterozygous missense variants p.(Thr331Ala)
and (Phe3591Leu) in DNAH8, a gene associated with primary
ciliary dyskinesia. This proband also had a maternally
inherited 8.3-Mb deletion at 3p11.2-3p12.3 (including
ROBO1, a candidate gene for TOF and septal defects24). A
paternally inherited 594-kb microdeletion at 2p13.1-2p12,
encompassing 21 coding genes, was found in a patient with
aortic coarctation and bicuspid aortic valve, and a patient with
hypoplastic right heart, tricuspid valve dysplasia, septal defect,

Cardiac genome clinic pilot study:

Genome sequencing analysis of 111 families with congenital heart disease

Single nucleotide variants, insertions/deletions

To assess strategies for genomic sequencing and data analysis

To identify and characterize gene-disease associations

De novo

Recessive
Inherited (dominant) Copy number and

other structural
variation

Co-segregating

LOF, constrained
ClinVar, HGMD

CHD gene list

Homo/hemizygous
Compound

heterozygous

Fig. 2 Systematic analysis of genome sequencing data. Different inheritance patterns were considered to allow a comprehensive assessment of
genomic variation. CHD congenital heart disease, HGMD Human Gene Mutation Database, LOF loss of function.

Table 1 Characteristics of 111 index patients.

Category N

All 111

Male sex 68

Primary cardiac lesion

Aortic stenosis or arch obstruction (non-HLHS) 25

Tetralogy of Fallot 16

HLHS 15

Transposition of the great arteries 13

Univentricular heart (non-HLHS, nonlaterality defect) 10

Pulmonary stenosis/atresiaa 8

Septal defectb 8

Laterality defectc 6

Cardiomyopathy 3

Otherd 7

Cardiac family history

Familial heart defect 13

Bicuspid aortic valve 2

Extracardiac features 53
Twenty-seven probands with univentricular heart: HLHS (15), laterality defect (2),
tricuspid atresia (6), double inlet left ventricle (3), Ebstein anomaly (1).
HLHS hypoplastic left heart syndrome.
aValvar pulmonary stenosis (5), valvar pulmonary atresia with intact ventricular
septum (3).
bAtrioventricular septal defect (4), ventricular septal defect (2), atrial septal
defect (2).
cDextrocardia (5), right atrial isomerism (2), left atrial isomerism (2).
dPatent ductus arteriosus (2), isolated total anomalous pulmonary venous drainage
(2), congenitally corrected transposition of the great arteries (2), common arterial
trunk (1).
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and mild intellectual disability had a maternally inherited
structural aberration involving a 4.3-Mb deletion at 3p26.1-
3pter, and a 1.8-Mb duplication at 3p26.1. A 2.4-Mb
duplication at 15q13.2-15q13.3 in a proband with interrupted
aortic arch, aortic stenosis, and VSD was inherited from the
healthy father; however, six largely overlapping duplications
of 2–2.5 Mb in the DECIPHER database had occurred de
novo, indicating a potential disease locus.
For two variants, though they were classified as likely

pathogenic, the causal link to the presenting cardiac condition
remained uncertain: a de novo 9-kb deletion of the first exon
and promoter region of DSG2 was identified in a 6-year-old
proband with atrial septal defect and dilated right ventri-
cle, but was considered a secondary finding. A pathogenic
PTEN variant p.(Arg15Ser) segregated in a proband with
aortic coarctation and his father with bicuspid aortic valve, yet
was not deemed causative for the heart defect according to
present knowledge. When applying less stringent variant
interpretation principles, the yield of potentially relevant
variants could become higher (up to 19.8%; 22/111; Table 2).

Novel candidate genes
We also analyzed the data for biologically plausible novel
gene–disease associations (Table 3; supplementary informa-
tion). In this respect, we and others15–17 had recently reported
an association of vascular endothelial growth factor (VEGF)
signaling gene(s) and TOF, including two novel variants
identified in this cohort: a missense change p.(Ala1030Thr) in
the protein kinase domain of KDR, and a stopgain variant p.
(Arg766*) in IQGAP1.15 The disease relevance of IQGAP1
was affirmed by an exome sequencing study, which reported
two de novo loss-of-function variants in fetuses with TOF or
transposition of the great arteries, respectively.7 Consistent
with our recently published data, we identified an FGD5
stopgain variant p.(Glu322*) in a proband with critical
pulmonary stenosis and dysplastic valve, adding evidence
for an involvement of the VEGF signaling pathway in
pulmonary valve development. We also identified a de novo
stopgain variant p.(Gln24*) in CDC42BPA in a proband with
sporadic TOF and right aortic arch. The encoded protein has
roles in cytoskeletal remodeling and cell migration, and is a
binding partner of CDC42, a GTPase essential for VEGF
signaling and developmental processes.25,26

In two unrelated families with HLHS, we identified
compound heterozygous variants in VASP or TLN2, respec-
tively (Table 3). Both genes are involved in mechanotrans-
duction of developing cardiomyocytes, linking mechanical
strain and cardiac remodeling. Two siblings with hypoplastic
right heart had an apparently de novo missense variant p.
(Arg171Gln) in TRPM4, though one sequencing read
suggested potential low-level paternal mosaicism (supple-
mentary information). Trpm4 is involved in the determina-
tion of murine heart size, potentially through a regulation of
myocyte proliferation during fetal development.27 In a patient
with atrioventricular septal defect, mild left ventricular
hypoplasia, and extracardiac features, we identified a

frameshift insertion p.(Lys615Ilefs*49) in SMARCC1, a highly
constrained gene encoding a core subunit of the SWI/SNF
chromatin remodeling complex. The variant was inherited
from the father, diagnosed in adulthood with bicuspid aortic
valve. Smarcc1 knockdown in zebrafish was associated with
variable multiorgan defects, whereby cardiovascular anoma-
lies were the most penetrant feature.28 In humans, haploin-
sufficiency for other SWI/SNF subunits is associated with
developmental disorders, including heart defects: ARID1A,
ARID1B, ARID2, SMARCA4, SMARCB1, SMARCC2,
SMARCE1, ACTL6A, and DPF2.29

A TPCN1 missense variant p.(Arg199Gln) had occurred de
novo in a patient with early-onset, devastating dilated
cardiomyopathy. TPCN1 encodes a lysosomal ion channel
(i.e., Ca2+), and increased expression was associated with
dilated cardiomyopathy and heart failure.30 A homozygous
frameshift deletion p.(Ser159Argfs*44) in UBXN10 was found
in a patient with congenitally corrected transposition of the
great arteries, VSD, and pulmonary stenosis. The
encoded protein is required for ciliogenesis, and Ubxn10
depletion caused cardiac laterality defects in zebrafish.31

Predicted loss-of-function variants in GMDS (Ebstein anom-
aly), SRPK2 (HLHS), and TOP2A (HLHS) were also
considered candidates for the cardiac phenotypes (supple-
mentary information).

DISCUSSION
The value of genetic testing in severe, congenital disorders is
widely recognized, as it may specify recurrence risks and
potential comorbidities, and will ultimately support optimized
clinical management and outcomes.32 Implementation of
standardized genetic testing protocols in infants with critical
CHD had resulted in higher diagnostic rates and cost
efficiency.33 Nonetheless, there is presently no consensus on
appropriate genetic testing in families with cardiac lesions,
and the genomic architecture is fairly unknown.
This study set out to investigate the diagnostic utility of

genome sequencing in a cohort of pediatric heart disease.
Although many of the families had undergone prior genetic
testing (Table S1), genome sequencing identified a disease-
causing variant in 14 of 111 probands (12.6%). The majority
of genes were associated with “syndromic disease” (e.g.,
ANKRD11, KMT2D, and POGZ) and were detected in
individuals with extracardiac features. Particularly in young
children, associated features may be nonspecific, or erro-
neously attributed to the cardiac lesion. A further aspect
impeding the recognition of genetic syndromes is the
tremendous clinical variation even of well-defined disorders.
This was evident as pathogenic alleles were inherited from
ostensibly healthy parents (e.g., MYH11, NIPBL, and
PTPN11). By contrast, six of seven variants primarily
associated with transcriptional regulation/chromatin organi-
zation were de novo, potentially due to pleiotropy and a
higher rate of extracardiac features12 (Fig. S2). Immediate
implications on patient management and genetic counseling
were related to variants in ANKRD11, DNAH9, DSG2,
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KMT2D, MYH11, NEXMIF, NIPBL, NOTCH1, PURA, POGZ,
PTEN, PTPN11 (×2), and SALL1.
The variety of clinically unexpected—or formerly unde-

tected—findings supports a role of genome sequencing as a
first-tier diagnostic test in patients with CHD.34 Genome
sequencing was previously shown to have adequate coverage
for clinically relevant gene sets,9 and can overcome several
technical limitations of exome sequencing and chromosomal
microarray analysis, particularly for small structural varia-
tions.35 In this study, we demonstrate the detection and fine-
mapping of a wide size range of potentially disease-related
CNVs (9.1 kb to 8.3 Mb), with reliable detection rates
previously shown to exceed microarrays.36

For the majority of individuals in this study, the etiology of
their heart defects remained unknown. This held true even for
some families where a genetic condition was strongly
suspected. Though genome sequencing has the potential to
capture most types of interindividual genomic differences, our
abilities to identify those that are disease-relevant lag behind.
This particularly applies for noncoding regions and synon-
ymous variants, but also for the multitude of nonsynonymous
alterations with uncertain effects upon protein function.
Genomic curation largely depends on manual data review,
even when applying assisting software to partially automate
the process.37 Variant interpretation in congenital heart
disease can be particularly challenging due to limited
genotype–phenotype correlations and incomplete penetrance.
Disease associations and functional studies from the literature
need to be critically reviewed and potentially reassessed. Even
when applying established guidelines,10 the evaluation of
genomic variation is subjective and potentially discordant
among analysts.38 With stringent application of the ACMG
guidelines, we consider our interpretation to be conservative,
compared with CHD studies with higher diagnostic yields5,8

(Table S3). As for other heterogeneous diseases with
incomplete penetrance, the contribution of rare, inherited
variants is most likely underestimated. A comprehensive
delineation of the genomic spectrum will involve statistical
approaches and functional assays. The full potential of
genomic data analysis will evolve prospectively, and the yield
is expected to increase accordingly.
By study design, findings from this cohort were not

transferable to a general CHD population. We enriched the
cohort for more complex cardiac conditions with a suppo-
sedly stronger genetic etiology, such as outflow tract
anomalies and single functional ventricles,4 though we also
identified relevant diagnoses in families with isolated lesions.
On the other hand, many probands had negative clinical
genetic testing prior to study enrollment (Table S1), which
may account for the relatively low numbers of pathogenic
CNVs, for instance.39 In this study, the outcome of the testing
was associated with the presence of extracardiac features, but
not a positive family history for clinically relevant CHD. As
other data suggested the diagnostic yield to also depend on
the fraction of familial cases,5 larger studies will need to refine
which patients will most likely benefit from genomic testing.

In the attempt to disentangle the genetic basis of pediatric
heart disease, our systematic analysis revealed possible new
candidate genes (Table 3). We prioritized variants based on
known disease mechanisms in cardiac development, such as
disruptions of critical biological functions and pathways, or
altered dosage of constrained signaling genes.3 However, the
validation of novel gene–disease associations is challenged by
the genetic heterogeneity, as recurrence in unrelated families,
or ideally significant enrichment on a variant or gene level,
would require very large cohorts. Small pedigrees and
incomplete penetrance (e.g., through multilocus inheritance
with rare and common modifiers40) further impede classical
linkage or cosegregation evidence. The functional assessment
of candidate genes in animal or cellular models is time-
consuming, and transferability to human heart development
is limited. Sharing potential (unverified) gene–disease asso-
ciations, e.g., in databases and the scientific literature, is
therefore evidentially valuable for the assembly of indepen-
dent evidence and the design of follow-up studies.
Our data outline the diagnostic and scientific utility of

comprehensive (nontargeted) genetic testing in families with
pediatric heart disease, and anticipate that genome sequencing
will ultimately become a first-tier diagnostic test. Many cardiac
disease–gene associations are likely yet to be unraveled, and this
attempt will require large-scale genomic initiatives and inter-
disciplinary efforts for experimental validations.
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