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The Attention Deficit Hyperactivity Disorder (ADHD) affects the school-age population and
has large social costs. The scientific community is still lacking a pathophysiological model
of the disorder and there are no objective biomarkers to support the diagnosis. In 2011
the ADHD-200 Consortium provided a rich, heterogeneous neuroimaging dataset aimed
at studying neural correlates of ADHD and to promote the development of systems for
automated diagnosis. Concurrently a competition was set up with the goal of addressing
the wide range of different types of data for the accurate prediction of the presence of
ADHD. Phenotypic information, structural magnetic resonance imaging (MRI) scans and
resting state fMRI recordings were provided for nearly 1000 typical and non-typical young
individuals. Data were collected by eight different research centers in the consortium. This
work is not concerned with the main task of the contest, i.e., achieving a high prediction
accuracy on the competition dataset, but we rather address the proper handling of such a
heterogeneous dataset when performing classification-based analysis. Our interest lies in
the clustered structure of the data causing the so-called batch effects which have strong
impact when assessing the performance of classifiers built on the ADHD-200 dataset. We
propose a method to eliminate the biases introduced by such batch effects. Its application
on the ADHD-200 dataset generates such a significant drop in prediction accuracy that
most of the conclusions from a standard analysis had to be revised. In addition we propose
to adopt the dissimilarity representation to set up effective representation spaces for
the heterogeneous ADHD-200 dataset. Moreover we propose to evaluate the quality of
predictions through a recently proposed test of independence in order to cope with the
unbalancedness of the dataset.
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1. INTRODUCTION
The advance of computational methods for data analysis is open-
ing new perspectives for exploiting of structural and functional
magnetic resonance imaging (fMRI) data in the field of neuro-
science. The statistical learning framework (Hastie et al., 2009),
and specifically multivariate pattern analysis, is a prominent
example of these methods. In this framework the approaches are
data-driven, i.e., they do not require the complete and explicit
modeling of the underlying physiology of the brain. For this
reason these methods are referred to as model free or non-
parametric.

The most intuitive application of multivariate pattern analysis
to the domain of clinical studies is diagnosis. In diagnosis a sam-
ple of brain images is collected both from a population of typically
developing subjects (controls) and from non-typically developing
subjects (patients). A classification algorithm is trained on the
data to produce a classifier that discriminates between patients
and controls. The challenge is to achieve accurate prediction on
future subjects. Since this approach is data-driven, a success-
ful detection of the disease does not always correspond to a
deeper understanding of the pathology. The classifier acts as an

information extractor and the basic inference that is derived from
an accurate classifier is that the data actually carry information
about the condition of interest.

The adoption of this kind of approach for diagnosis has some
drawbacks. Model free approaches are sensitive to the size of the
training sample. The collection of a large amount of data, i.e., of
a large number of controls and patients, is often a premise for a
successful study based on multivariate pattern analysis.

In 2011 the ADHD-200 Initiative 1 promoted the collection
of a very large dataset about the Attention Defict Hyperactivity
Disorder (ADHD) in the young population. Concurrently a
related competition, called ADHD-200 Global Competition, was
set up to foster the creation of automatic systems to diagnose
ADHD. The motivation of the ADHD-200 Initiative was that,
despite a large literature of empirical studies, the scientific com-
munity had not reached a comprehensive model of the disorder
and the clinical community lacked objective biomarkers to sup-
port the diagnosis.

1http://fcon_1000.projects.nitrc.org/indi/adhd200
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The main aspect of the ADHD-200 dataset is its size. It repre-
sents one of the major efforts in the area of publicly available neu-
roimaging datasets concerned with a specific aim. The large size
of the dataset is structured along two lines: the number of sub-
jects and the types of data available for each subject. The dataset
includes nearly 1000 subjects divided among typically developing
controls and patients with different levels of ADHD, i.e., inat-
tentive, hyperactive, and combined. Each subject is described by
a heterogeneous set of data such as structural MRI, resting state
fMRI and phenotypical information.

Analyzing the heterogeneous ADHD-200 dataset for the goal
of the competition generates many difficulties. First of all the dif-
ferent types of data have to be transformed into a homogeneous
vectorial representation space because this is a requirement for
the majority of the most popular classification algorithms (Hastie
et al., 2009). Secondly, the aggregation of datasets recorded from
different institutions generates a clustered structure within the
data. One example is that the data from each institution create
a cluster. The effect of this clustered structure is usually prob-
lematic during the analysis phase and goes under the name of
batch effect. The presence of batch effects conflicts with one of
the basic assumptions of the statistical learning theory, i.e., that
the data are independent and identically distributed (iid). Non-
iid data may lead to sub-optimal training. More importantly,
non-iid data within the test set lead to biased estimates of the
performance of the classifier. Last but not least, if the data of
the test set are not independent from those of the training set
then the estimated performance of the classifier becomes opti-
mistically biased. Nevertheless the presence of a specific structure
in the data can also be exploited to get a more accurate clas-
sification (Dundar et al., 2007). The third kind of difficulty in
analyzing the ADHD-200 dataset is its unbalanced distribution of
the subjects in the diagnostic groups. Table 1 reports that in the
ADHD-200 dataset there are 575 typically developing subjects,
144 inattentive, 9 hyperactive, and 204 combined. In section 3

Table 1 | Subjects distribution of the ADHD-200 dataset with respect

to the sites.

Site 0 1 2 3 All

PKGU 146 67 2 30 245

BHBU 21 5 0 0 26

KKI 48 23 0 23 94

NIMP 26 8 0 14 48

NYU 132 72 2 47 253

OHSU 73 17 1 20 111

UPIT 89 2 0 6 97

WUSL 40 10 4 4 58

575 204 9 144 932

The columns indicate the diagnostic group: 0 typically developing control, 1

ADHD combined, 2 ADHD hyperactive, and 3 ADHD inattentive. The acronyms

of sites are as follows: PKGU, Peking University; BHBU, Bradley Hospital Brown

University; KKI, Kennedy Krieger Institute; NIMP, Neuroimage Multi-Center

Project; NYU, New York University; OHSU, Oregon Hospital Science University;

UPIT, University of Pittsburgh; and WUSL, Washington University Saint Louis.

we will show that in unbalanced cases the standard statistic of
prediction accuracy can be misleading to understand the actual
performance of the classifier and that new methods should be
adopted.

In this work we propose solutions for the three issues just
described. We propose the use of the dissimilarity representa-
tion (Pekalska et al., 2002; Balcan et al., 2008; Chen et al., 2009)
as a mean to construct a common representation space for all the
heterogeneous types of data available in the ADHD-200 dataset.
In the dissimilarity space representation the data from a given
source, e.g., the structural MRI scan of a subject, are projected
into a vector just by providing a source-specific distance func-
tion. Once the data of all sources of a subject are transformed into
vectors, they can be concatenated into a larger vector that repre-
sents a homogeneous description of the subject over multiple data
sources.

We propose to address the issue of the batch effect by following
some of the ideas presented in Dundar et al. (2007). The struc-
ture of the ADHD-200 dataset presents the same two levels of
batch effect modeled in Dundar et al. (2007), i.e., a site-level and
a subject-level. The site-level is due to the site specificities in the
data collection process. The subject-level is due to the availability
of multiple fMRI recordings for some subjects. Besides imple-
menting the solution presented in Dundar et al. (2007), which
is tailored to the improvement of the classification accuracy, we
propose to conduct three different estimation processes of the
classification performance in order to avoid the potential biases
explained above.

The third issue, i.e., assessing the performance of the classi-
fier on the unbalanced ADHD-200 dataset, is addressed by testing
the statistical dependence between the predictions and the actual
diagnostic group of each subject. We draw from the statistics lit-
erature and adopt a recent Bayesian test of independence for con-
tingency tables (Casella and Moreno, 2009; Olivetti et al., 2012a).

The structure of this paper is the following. In section 2 we
describe the ADHD-200 dataset and part of the publicly available
pre-processing pipelines from which we started our analysis. In
section 3 we describe the three main ingredients of our work, i.e.,
the dissimilarity representation, the model of the batch effects and
the test of independence to assess whether and how the proposed
classification system was able to discriminate ADHD subjects
from healthy subjects. In section 4 we illustrate the experiments
we conducted with all the necessary details to implement the pro-
posed methods. To conclude, in section 5 we discuss the results
of our experiments and we show that the postulated batch effects
are the major contribution in the apparently positive classification
results.

2. MATERIALS
Our study refers to the ADHD-200 initiative and dataset. The
initiative is dedicated to support the scientific community in
studying and understanding the neural basis of ADHD. The eight
member institutions collected imaging datasets from almost 1000
young subjects (age 7–26) with and without ADHD, see Table 1
for details.

The diagnosis of ADHD was segmented in four different lev-
els: typically developing, hyperactive, inattentive, and combined
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subjects. For each subject multiple types of data were col-
lected: phenotypic data, structural (T1) MRI data, and fMRI
resting-state data. For many subjects multiple fMRI resting state
recordings were available. Accompanying phenotypic informa-
tion included: age, gender, handedness, and IQ measure 2. The
ADHD-200 dataset is publicly available and freely distributed
with the support of the International Neuroimaging Data-sharing
Initiative3.

In 2011 the ADHD-200 initiative set up a global competition
to develop diagnostic classification systems for ADHD diagno-
sis based on structural and fMRI data of the brain. Even though
the ADHD-200 dataset comprised three different levels of the
ADHD disorder and the healthy subjects, the competition was
designed to discriminate only among three categories: typically
developing, ADHD combined, and ADHD inattentive 4. In this
work we restrict our analysis to discriminating two diagnos-
tic categories, i.e., controls and ADHD patients, by aggregating
ADHD combined and inattentive patients into one class. This
choice is motivated by the inherent difficulty of discriminating
even just the two main categories. Moreover the aim of this work
is eminently methodological and our claims are appropriately
addressed even with such a simplifying restriction.

In 2011 the ADHD-200 dataset was delivered in two stages
the first part to be considered as the train set for the construc-
tion of classifiers and the second part as test set for performance
evaluation. In this work we consider only the aggregation of the
two parts as a single dataset. We will discuss how we split it into
train set and test set only in section 4 after the introduction of
the batch effect model and the related performance estimation
processes.

In the following we refer to the whole dataset comprising the
data of 923 subjects where the diagnostic classes are distributed as
follows: 62% typically developing control, 38% ADHD combined
or inattentive. For a few subjects the structural (T1) magnetic
resonance imaging or the resting state fMRI recording were not
available or corrupted. These subjects were excluded from our
study.

Some sites provided multiple recordings of resting state fMRI
for many of their subjects. In our analysis we considered all the
recordings in order to improve the training process without dis-
carding or aggregating part of them. Table 2 shows the range of
multiple resting state fMRI recordings with respect to the differ-
ent sites. Different acquisition protocols were adopted by distinct
sites. For example, in some sites the subjects were asked to keep
their eyes closed while in other sites eyes were kept open. In this
last case some sites proposed a fixation cross while others did not.

For the initial preprocessing of neuroimaging data we refer to
the Neuro Bureau initiative5 that provides high-quality and pub-
licly available preprocessed versions of the ADHD-200 dataset in
order to facilitate the development of algorithms for data analy-
sis. Among the different pipelines supported by the Neuro Bureau

2We did not consider other available phenotypic information because of the
too many missing values.
3http://fcon_1000.projects.nitrc.org/indi/adhd200
4The hyperactive categories included only a few subjects.
5http://neurobureau.projects.nitrc.org/ADHD200/Introduction.html

Table 2 | Details on resting state fMRI recordings in the ADHD-200

dataset with respect to the sites.

Site PKGU BHBU KKI NIMP NYU OHSU UPIT WUSL

fMRI 1 1 1 1 1–2 1–4 1 1–6

Eyes O O C C O O O O

Screen N F - - F F N F

The first row shows the range of multiple recording sessions. The second row

refers to the eye condition: O, open; C, closed. The third row shows the screen

setup: F, fixation; N, no fixation.

initiative we focused on the data computed by the Burner and
the Athena pipelines 6. The Burner pipeline was managed by
Carlton Chu using the Dartel toolbox from SPM8. The Athena
pipeline was managed by Cameron Craddock using AFNI and
FSL running on the Athena computer cluster at Virginia Tech’s
ARC.

The Burner pipeline created normalized gray matter maps.
Structural images were segmented into gray matter and white
matter probability maps. Then inter-subject registration was
implemented through voxel-based morphometry (Ashburner
and Friston, 2000) to the group average. The description of the
pipeline reports this note which supports our investigation on
batch effects: “there are systematic biases in the segmented gray
matters across different centers”7.

The Athena pipeline is primarily focused on resting state
fMRI data processing. The pre-processing of fMRI data included
the registration into MNI space at 4 × 4 × 4 mm voxel resolu-
tion, slice time correction, a band pass filter between 0.009 and
0.08 Hz, and the removal of nuisance variance. For the analysis
in the present study we focused on two alternative computational
methods for encoding the information in fMRI signal: the former
based on the notion of region of homogeneity (REHO), the latter
based on spatial multiple regression for functional connectivity
(SMR). Both of them are part of the Athena pipeline.

REHO (Zang et al., 2004) is a computational method that
measures the similarity of the time series of a given voxel to
those of its nearest neighbors. The Kendall’s coefficient concor-
dance is proposed as a measure of similarity. The output is a
volume per subject where the value of each voxel is an esti-
mate of the homogeneity of the BOLD signal during the resting
state fMRI recording. We refer to these 10 volumes, which we
denote as SMR0-9, when building the related representation space
described in section 4.

The functional connectivity maps for the resting state network
(SMR) were constructed using a modified approach based on dual
regression proposed in Smith et al. (2009). A multiple regression
was computed to extract the time courses of voxels correspond-
ing to spatial templates of resting state network. The computation
considered 10 distinct spatial templates. For each template the
output is a volume where the value of a voxel is the correlation
measure between the original and the extracted time courses. We

6http://neurobureau.projects.nitrc.org/ADHD200/Data.html
7http://www.nitrc.org/plugins/mwiki/index.php?title=neurobureau:
BurnerPipeline
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refer to these volumes when building the representation spaces
described in section 4.

In addition to all data reported above we considered also
the information on head motion during the fMRI scan sessions.
For each fMRI recording we referred to the motion parame-
ters estimated during the computation of the head movement
correction.

3. METHODS
The proposed method consists of four main components: the
construction of homogeneous representation spaces for all data
sources, the batch effect model, a classification algorithm meant
to extract information from the data and a statistical test to
make inferences about the classification process. In this section
we describe three of the four components while the actual classifi-
cation algorithm and all the details necessary for implementation
will be described in section 4. In the following we describe the
dissimilarity representation technique together with the explicit
model of the batch effects that we considered for building the
representation spaces of all data sources. Then we introduce
recently proposed a Bayesian test of independence between the
predicted and the true class labels to assess whether the classi-
fier built from the data is able to discriminate the two diagnostic
groups.

3.1. THE DISSIMILARITY REPRESENTATION
The dissimilarity representation (Pekalska and Duin, 2005) is
a Euclidean embedding technique, i.e., a method to represent
general objects, e.g., structural (T1) MRI scans, as vectors. It is
defined by first selecting a set of those objects, called prototypes,
from their native space, e.g., a set of MRI scans from the available
dataset. Then each new object, e.g., any new structural MRI scan,
is mapped into the vector of distances from the prototypes. This
representation (Pekalska et al., 2002; Balcan et al., 2008; Chen
et al., 2009) is usually presented in the context of classification
and clustering problems and was proven to keep the separation
between classes when present in their original space (Balcan et al.,
2006).

The dissimilarity representation is a lossy transformation in
the sense that some information is lost when projecting the
data into the dissimilarity space. In Pekalska et al. (2006) the
approximation was studied to decide among competing proto-
type selection policies only for classification tasks. In Olivetti
et al. (2012b) the approximation was characterized in the unsu-
pervised setting and a scalable prototype selection policy was
described.

Let X be the space of the objects of interest, e.g., structural
(T1) MRI scans, and let X ∈ X . Let d : X × X �→ R

+ be a
distance function between objects in X , e.g., the correlation dis-
tance. Note that d is not assumed to be necessarily metric. Let
� = {X̃1, . . . , X̃p}, where ∀i X̃i ∈ X and p is finite. Each X̃i is
called prototype or landmark. The dissimilarity representation or
projection, is defined as φd

�(X) : X �→ R
p s.t.

φd
�(X) = [d(X, X̃1), . . . , d(X, X̃p)] (1)

and maps an object X from its original space X to a vector of R
p.

3.1.1. Number and selection of the prototypes
The degree of approximation of the dissimilarity representation
depends on the choice of the prototypes. In order to achieve a
compact but accurate representation we need to define both the
number of the prototypes and their selection process. First we
illustrate a procedure to measure how accurate a given represen-
tation is. Then we describe the adopted procedure to select the
prototypes. By using these two ingredients, in section 4 we will
show how we selected the desired number of prototypes.

Following Olivetti et al. (2012b), we define the distance
between projected objects as the Euclidean distance between
them: �d

�(X, X′) = ||φd
�(X) − φd

�(X′)||2, i.e., �d
� : X × X �→

R
+. Other distances may be considered but we note that many

learning algorithms rely on the Euclidean distance (Hastie et al.,
2009) and for this reason we adopt it. It is intuitive that, in order
to have an accurate dissimilarity representation, �d

� and d must
be strongly related. As a measure of the quality of approximation
of the dissimilarity representation we adopt the Pearson correla-
tion coefficient r between the two distances over all possible pairs
of objects in the dataset. An accurate approximation of the rela-
tive distances between objects in X results in values of ρ far from
zero and close to 1.

The definition of the set of prototypes with the goal
of minimizing the loss of the dissimilarity projection is an
open issue in the dissimilarity space representation literature.
Following Pekalska et al. (2006) and Olivetti et al. (2012b), we
adopt the farthest first traversal (FFT) selection algorithm, also
known as k-center algorithm. This algorithm selects the proto-
types sequentially: the first prototype is drawn at random from
the dataset. Then any further prototype is defined as the point
in the dataset maximizing the sum of the distances from the pre-
viously selected prototypes. This algorithm is both accurate and
effective (Pekalska et al., 2006; Olivetti et al., 2012b).

3.2. MODELLING THE BATCH EFFECTS
The ADHD-200 dataset is the aggregation of datasets collected by
multiple institutions. Moreover in the ADHD-200 dataset mul-
tiple fMRI resting state recordings are available for many of the
subjects involved in the study. These facts motivate why at least
two levels of batch effects should be expected. First each site is
expected to have its own specificity about the collected MRI data
and the specific sample of subjects selected for the study. MRI
hardware specifications of each site, the actual MRI sequences
used, the local ADHD and healthy population addressed and
the local best practices at each step of the collection process are
examples of the site specificity. A second-level of batch effect
arises because in this work we consider each available run of
fMRI recordings as a new example to be used for improving the
classification step. This choice virtually increases the number of
subjects from 923 to 1339. The availability of multiple record-
ings for some of the subjects creates a second-level of batch effect
because the variability within subject is expected to be much
lower than the variability across different subjects, even within the
same site.

In data analysis the identification, modeling and removal of
batch effects is mainly addressed by the literature in statistics
and in the applied fields of epidemiology and genomics. To the
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best of our knowledge there is no neuroimaging literature on
the issue of batch effects within data. In statistics and epidemi-
ology the issue is also referred to as correlated samples, meaning
that samples from the same batch share a certain degree of cor-
relation not related to the phenomenon of interest of the study.
Well known models to deal with correlated samples are the ran-
dom effect model (Ishwaran, 2000) and the generalized linear mixed
effect model (GLMM) (McCulloch et al., 2008). In genomics the
batch effect literature was recently reviewed in Chen et al. (2011)
where six algorithms for batch effect removal were compared.
In this field the identification of batch effects is usually done
by means of the principal variation component analysis (PVCA)
algorithm (Boedigheimer et al., 2008). It is our understanding
that the algorithms in the field of genomics are mainly devoted
to removing the batch effects, while in the statistics literature
there is more emphasis into modeling their effects. Moreover
the techniques of the genomics literature are tightly related to
the specificity of the genomic data, e.g., high variance in gene
expression microarray data is usually related to a high degree of
information, and not all the assumptions of that field of appli-
cation might be transferred to the fields of neuroimaging and
of disorder diagnosis in a straightforward way. In addition, the
present work is concerned with statistical classification and we
note that the issue of exploiting the batch effect structure within
a dataset in classification problems has almost been neglected in
the machine learning literature. To the best of our knowledge
only in Dundar et al. (2007) a method was proposed to account
for the two-level batch effect mentioned above, i.e., the site-
level and the subject-level. The algorithm proposed in Dundar
et al. (2007) is related to the GLMM algorithm, but while the
GLMM is meant for explanatory data analysis, the algorithm we
adopted is meant for predictive modeling, which is the aim of this
paper.

The method of Dundar et al. (2007) is based on the simple
idea of creating new binary variables, one for each site, where each
variable indicates whether the given resting state run belongs to
that site or not. Moreover even the second-level of the batch effect
is modeled by additional binary variables, one for each subject,
indicating to which subject the resting state run belongs to. The
whole set of binary variables defines a binary vector where only
two values at a time are set to 1 and all the other values are set to
0. This vector describes the two-level batch effect information for
each available recording.

We notice that considering and modeling the batch effect
structure has two potential effects on the analysis. First, we pro-
vide explicit information about natural structures present within
the data. This may improve the classification performance when
predictions are made from data belonging to the same batch.
Second, we reduce the optimistic bias in the estimate of the
performance of prediction if we account for these dependency
structure when building the test set. It is straightforward to notice
that if examples in the test set are not drawn independently from
those of the train set, then the estimated performance of the clas-
sifier is optimistically biased. Moreover if the samples in the test
set are not drawn independently from each other, then the esti-
mated performance of the classifier is biased, even though not
necessarily in an optimistic way.

3.3. EVALUATION OF THE CLASSIFICATION RESULTS
We used the dissimilarity representation to create a vectorial
description of each subject of the ADHD-200 dataset for each
available data source. A classification algorithm was then trained
to assess the ADHD-related information in each data source. In
a further group of experiments the vectors from multiple data
sources of each subject were concatenated into a higher dimen-
sional vector to extract information about the joint effect of
multiple data sources. In all cases the evaluation of the classifier
for discriminating among the classes of interest, i.e., controls and
ADHD patients, was assessed through a statistical test.

As noted in Olivetti et al. (2012a), when the dataset is unbal-
anced with respect to the class-label distribution, the accuracy (or
the error rate) of a classifier can be a misleading statistic to assess
whether the classifier actually discriminated the classes. For exam-
ple, given a test set of 100 instances where 90 are of class 0 and
10 of class 1, a classifier that incurs in 10 misclassification errors,
i.e., the estimated error rate is ε̂ = 10/100 = 0.1, could be either
highly accurate in discriminating the two classes or completely
inaccurate. These two extreme cases are illustrated in Figure 1 by
means of their confusion matrices. A confusion matrix reports
the joint results of the predictions and the true class-labels. The
table on the left shows a classifier that always predicts the most
frequent class, i.e., class 0, thus providing no evidence of learn-
ing the discrimination problem. Conversely, the table on the right
shows evidence that the classifier correctly discriminates between
the two classes and incurs in 10 errors over 90 examples but just
for the frequent class. A solution to the issue of evaluating classi-
fiers through the estimated accuracy in unbalanced cases is testing
the full confusion matrix, as described in the next section.

3.3.1. The bayesian test of independence
The literature answering the question “did the classifier learn to
discriminate the classes?” was recently reviewed in Olivetti et al.
(2012a) and a novel approach based on the analysis of the sta-
tistical independence between predicted and true class labels was
proposed based on the work of Casella and Moreno (2009). In
this work we adopt this latest approach that we summarize here.
The intuitive idea is that, following the definition of statistical
independence between random variables, in the case of a classi-
fier predicting at random the predicted class labels are statistically
independent from the true class labels. Conversely, the more the
predictions match the true class labels, the stronger is the sta-
tistical dependence between them. The Bayesian test of indepen-
dence between categorical variables first proposed in Casella and

FIGURE 1 | Two examples of confusion matrices with true class labels

on the rows and predicted class labels on the columns. Both confusion
matrices have the same estimated prediction accuracy, i.e.,
P̂A = 90+0

100 = 80+10
100 = 0.1. Nevertheless in the first case there is no

evidence that the classifier is able to discriminate 0 from 1, while in the
second one there is.
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Moreno (2009) computes the ratio of the posterior distribution
of the following two hypotheses:

• H0: the predictions are statistically independent from the true
class labels.

• H1: the predictions are statistically dependent from the true
class labels.

According to the Bayesian hypothesis testing framework (Kass
and Raftery, 1995) that ratio can be rewritten as

P(H1|data)

P(H0|data)
= P(H1)

P(H0)

P(data|H1)

P(data|H0)
= P(H1)

P(H0)
B10 (2)

Where B10 is called Bayes factor and measures the evidence of
the data in favor of H1 with respect to H0. When B10 ≫ 1 the
evidence in favor of H1 against H0 is strong. More detailed guide-
lines for the interpretation of these values are reported in Kass and
Raftery (1995).

In order to compute B10 for the hypotheses of interest of this
work it is necessary to define a sampling model for the confusion
matrix under each hypothesis. Following Olivetti et al. (2012a)
and Casella and Moreno (2009), we adopt the multinomial sam-
pling model. A matter of debate of the computation of B10 is the
definition of the prior distribution of the parameters under each
hypothesis, namely p(θ0|H0) in p(data|θ0, H0) and p(θ1|H1) in
p(data|θ1, H1). For this reason Casella and Moreno (2009) pro-
posed the use of the intrinsic prior class (Berger and Pericchi,
1996) which concentrates the mass of p(θ1|H1) around p(θ0|H0)

and creates multiple priors according to the observed data. Here
we provide the approximate formula for B10 as derived in Casella
and Moreno (2009)8:

B10(y, t) = (t + c2 − 1)!
(t + m + c2 − 1)!

[
�(m + c)�(m + c)

�(t + c)�(t + c)

]
1

M

M∑
k = 1

(
∏

ri(xk)!)(∏ cj(xk)!)
(
∏

ri(y)!)(∏ cj(y)!) ×
∏

(xkij + yij)!∏
xkij !

1∏
ij θ̂

xkij

ij

(3)

where y is the confusion matrix, m = ∑
ij yij is the size of the test

set, c is the number of classes (c = 2 in our case), θ̂ij = yij + 1

m + c2

and x = (xij) ∼ Multinomial(t, θ11, . . . , θab), M is the number
of iterations of the sampling approximation, ri() and cj() are
operators that return the i-th row and j-th column of a matrix
and t is an integer parameter. Note that we define B10(y) =
mint∈{0...m} B10(y, t).

4. EXPERIMENTS
In this section we describe the detailed implementation of the
methods illustrated in section 3 on the ADHD-200 dataset for
the goal of discriminating typical from non-typical subjects.
We first describe the pre-processing steps to create preliminary
representations of the initial measurements, i.e., T1 structural

8Here we take into account the corrections described in Olivetti et al. (2012a).

MRI, REHO, and SMR volumes from resting state fMRI record-
ings, motion and phenotypic information, as described in sec-
tion 2. Then we describe the distance function for each data
source that was used to create the dissimilarity representation
along with the selection of the number of prototypes. After the
construction of the representation space we mention the classifi-
cation algorithm that we used in this work and we describe the
three train/testing processes that we designed to assess the impor-
tance of each data source for the prediction of the clinical group
and the importance of the batch effects.

4.1. PREPROCESSING
Each structural (T1) MRI volume was first smoothed using a
Gaussian filter with 3 voxels diameter and then downscaled such
that each dimension was reduced by half. Then the transformed
volume was flattened into a vector after removing the voxels out-
side the brain. A common brain mask was defined as the set of
voxels for which at least 5% of the subjects had a non-zero value.
Each resulting vector consisted in approximately 1.5 × 103 values.

Each volume coming from the analysis of fMRI data through
the Athena pipeline, i.e., REHO and SMR, was flattened into a
vector after removing the voxels presenting no activity across 95%
of the subjects. Each vector consisted in approximately 2.5 × 103

values.
Following Dundar et al. (2007) and section 3, the batch effect

information was encoded at two levels leading to a vector of
binary variables. The first 10 binary variables corresponded to
the 10 sites involved in the ADHD0-200 data collection process.
The remaining 923 binary variables were one for each subject. For
each measurement available in the dataset, e.g., MRI scan, rest-
ing state run, this binary random vector indicated the site and
subject to which it belonged to by setting the corresponding site-
variable and subject-variable to 1 and keeping all the remaining
values at 0.

Phenotypic and motion data were z-scored.

4.2. DISSIMILARITY REPRESENTATION: SOURCE-SPECIFIC DISTANCES
AND PROTOTYPES

For each data source we created the dissimilarity representa-
tion in order to have a compact representation. The distances
adopted were:

• Distance among volumes (T1 MRI, REHO, and SMR): corre-
lation distance, d(a, b) = 1 − r(a, b), where r is the Pearson
correlation coefficient, of the related preprocessed vectors.
This distance is the most common one in the neuroscience
literature, see for example Kriegeskorte et al. (2008).

• Distance among vectors (phenotypic, motion, and batch
effect): Euclidean distance.

The selection of the prototypes was done through the FFT
algorithm described in section 3.1.1. We defined the number of
prototypes by inspecting the correlation between the distances
in the original space and the distances in the projected space.
We observed high correlation, always r > 0.85, with p = 40 pro-
totypes for all data sources. In all cases correlation reached the
maximum value with such a number of prototypes or less. For
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this reason we selected that number of prototypes for all data
sources.

4.3. CLASSIFICATION ALGORITHM AND TESTING SCHEMA
In this work we adopted an ensemble learning method based
on model averaging and decision trees known as extremely ran-
domized trees (Geurts et al., 2006). This classification algorithm
is a variation of the popular random forest algorithm (Breiman,
2001). Extremely randomized trees aim at reducing the variance
of the resulting model. This class of algorithms is not influenced
by different scaling in the data and it is known to fit both linear
and non-linear aspects of the data.

In the following subsections we illustrate the classification
experiments we conducted on the datasets resulting from the dis-
similarity projection described above. The experiments aim at
discriminating typical from non-typical developing subjects by
estimating the classification performance. We conducted three
groups of experiments with different cross-validation schemes
to evaluate the importance of the batch effects. We describe the
three groups of experiments and illustrate the classification results
according to the common metric of the estimated classification
accuracy, to the Bayesian test of independence introduced in
section 3.3.1 and to the actual values of the confusion matrices.

All experiments were implemented in Python language on top
of the numerical libraries NumPy and SciPy9, the machine learn-
ing library Scikit-Learn (Pedregosa et al., 2011)10 and the NiBabel
library11 to access neuroimaging data formats.

4.3.1. Information extraction from single source
In the first group of experiments a standard 10-fold stratified
cross-validation scheme was used on each of the source-specific
datasets. In this set of experiments subjects from the same site
could appear in both the train and test sets of each cross-
validation step. As mentioned in section 3.2 this fact should
introduce optimistic bias if the batch effect at the site-level is
strong. Moreover some subjects appeared multiple time in the
dataset because multiple recordings were available for them. In
this first group of experiments the same subject could appear
both in the train set and the test set of each cross-validation step,
causing the second-level of batch effect and the potential bias
described in section 3.2. Table 3 presents the classification results
for this first group of experiments, describing each data source in
terms of log of the Bayes factor of H1 over H0, estimated accu-
racy, and the four values of the aggregated confusion matrix. The
confusion matrix was computed by summing up the confusion
matrices of each fold of the cross-validation.

In the second group of experiments the 10-fold stratified cross-
validation scheme was modified such that the train/test sets split
was done on the subjects. The aim was to remove part of the
potential batch effect due to the presence of multiple recordings
for some of the subjects. In each fold 1/10 of the subjects were
drawn uniformly at random for the test set and the remaining
9/10 for the train set. In this way each subject would appear either

9http://www.scipy.org
10http://scikit-learn.org
11http://nipy.sourceforge.net/nibabel/

Table 3 | Single source standard k-fold cross-validation.

Data log(B10) PA TP TN FP FN

PHEN 10.17 0.61 178 651 170 340

STRU 31.19 0.66 112 776 45 406

MOT −1.73 0.60 71 733 88 447

REHO 28.10 0.66 158 729 92 360

SMR0 3.95 0.61 90 737 84 428

SMR1 −0.66 0.60 78 731 90 440

SMR2 2.98 0.61 77 750 71 441

SMR3 1.72 0.61 80 741 80 438

SMR4 7.40 0.62 86 753 68 432

SMR5 0.46 0.60 77 739 82 441

SMR6 1.94 0.61 89 730 91 429

SMR7 4.50 0.61 110 713 108 408

SMR8 1.68 0.60 94 722 99 424

SMR9 3.95 0.61 90 737 84 428

BAEF 12.21 0.63 134 713 108 384

The table presents the results of the diagnosis from classifiers built upon a single

type of data. The columns report the log of the Bayes factor for the hypoth-

esis of dependence vs. independence [log(B10)], the prediction accuracy (PA),

the number of true positive ADHD diagnosis (TP), the number of true negative

ADHD diagnosis (TN), the number of false positive ADHD diagnosis (FP), and

the number of false negative ADHD diagnosis (FN). The data considered in the

analysis are: phenotypic data (PHEN), the structural MRI data (STRU), the motion

parameters (MOT), the region of homogeneity of fMRI resting state (REHO), the

spatial multiple regression of fMRI resting state (SMR0-9), and the batch effect

(BAEF). Note that TP + TN + FP + FN = 1339 because multiple recordings are

available for many subjects virtually increasing the total number of subjects.

in the train set or in the test set but not in both. Moreover we con-
strained the test set to have no more than one fMRI recording per
subject by choosing one of them uniformly at random when nec-
essary. Following this procedure we eliminated the possible bias
due to non-independent examples within the test set. The results
of classification for each data source are reported in Table 4. As
expected the values of log(B10) were significantly reduced with
respect to the values in Table 3, confirming the presence of the
batch effect. We note that the accuracy values change marginally
while the log(B10) values decrease significantly.

The third group of experiments was meant to remove both
levels of the postulated batch effect. We implemented leave-one-
site-out cross-validation so that subjects from each site were either
in the train or in the test set but not in both. Moreover this
avoided the possibility of having recordings of the same subjects
both in the train and test set. Additionally, as in the second group
of experiments, we constrained the test set to have no more than
one fMRI recording per subject by choosing one of them uni-
formly at random when necessary. Table 5 illustrates the single
source results for this group of experiments. As expected most of
the log(B10) values were significantly lower than those in Table 4
and Table 3 confirming the presence of the site batch effect.

4.3.2. Information extraction from multiple sources
In order to collect additional evidence of the presence of the batch
effects within the data we conducted a further set of experiments
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Table 4 | Single source 10-fold cross-validation on subjects.

Data log(B10) PA TP TN FP FN

PHEN −2.37 0.56 101 415 149 255

STRU −0.97 0.61 42 520 44 314

MOT −2.32 0.60 43 509 55 313

REHO 17.05 0.65 101 504 60 255

SMR0 1.64 0.61 68 497 67 288

SMR1 0.12 0.60 65 494 70 291

SMR2 −0.02 0.61 55 507 57 301

SMR3 −1.75 0.60 49 505 59 307

SMR4 −0.58 0.60 50 511 53 306

SMR5 −0.65 0.60 49 512 52 307

SMR6 −0.63 0.60 57 501 63 299

SMR7 −2.32 0.59 57 487 77 299

SMR8 5.21 0.62 73 503 61 283

SMR9 1.64 0.61 68 497 67 288

BAEF 10.37 0.64 99 489 75 257

The table reports the results of diagnosis for the classifiers built upon each single

type of data. The columns report the log of the Bayes factor for the hypoth-

esis of dependence vs. independence [log(B10)], the prediction accuracy (PA),

the number of true positive ADHD diagnosis (TP), the number of true negative

ADHD diagnosis (TN), the number of false positive ADHD diagnosis (FP), and

the number of false negative ADHD diagnosis (FN). The data considered in the

analysis are: phenotypic data (PHEN), the structural MRI data (STRU), the motion

parameters (MOT), the region of homogeneity of fMRI resting state (REHO), the

spatial multiple regression of fMRI resting state (SMR0-9), and the batch effect

(BAEF).

Table 5 | Single source leave-one-site-out cross-validation.

Data log(B10) PA TP TN FP FN

PHEN −1.37 0.53 77 416 148 279

STRU −0.87 0.56 29 494 70 327

MOT 1.41 0.55 29 482 82 327

REHO −1.45 0.56 41 477 87 315

SMR0 −1.97 0.56 42 480 84 314

SMR1 −0.56 0.56 28 494 70 328

SMR2 −2.88 0.58 42 495 69 314

SMR3 −2.22 0.57 32 499 65 324

SMR4 −1.86 0.57 36 489 75 320

SMR5 −2.63 0.58 33 502 62 323

SMR6 −2.60 0.57 42 488 76 314

SMR7 −2.80 0.57 48 484 80 308

SMR8 −2.42 0.57 46 479 85 310

SMR9 −2.18 0.56 44 479 85 312

BAEF 3.10 0.50 82 376 188 274

The table shows the results of diagnosis from classifiers built upon each single

type of data. The columns report the log of the Bayes factor for the hypoth-

esis of dependence vs. independence [log(B10)], the prediction accuracy (PA),

the number of true positive ADHD diagnosis (TP), the number of true negative

ADHD diagnosis (TN), the number of false positive ADHD diagnosis (FP), and

the number of false negative ADHD diagnosis (FN). The data considered in the

analysis are: phenotypic data (PHEN), the structural MRI data (STRU), the motion

parameters (MOT), the region of homogeneity of fMRI resting state (REHO), the

spatial multiple regression of fMRI resting state (SMR0-9), and the batch effect

(BAEF).

Table 6 | Multi source analysis.

Data log(B10) PA TP TN FP FN

10-fold CV TOP4 147.78 0.80 351 719 102 167

ALL 72.04 0.72 245 722 99 273

10-fold CV on subjects TOP4 24.53 0.67 174 442 122 182

ALL 22.57 0.67 140 476 88 216

Leave-one-site-out TOP4 0.04 0.50 94 375 189 262

ALL −1.75 0.57 97 432 132 259

The table reports the results of diagnosis from classifiers built upon multiple

sources of data. The table shows three different kind of analysis: standard 10-

fold CV, 10-fold CV on subjects, and leave-one-site-out. The columns report log of

the Bayes factor for the hypothesis of dependence vs. independence [log(B10)],

the prediction accuracy (PA), the number of true positive ADHD diagnosis (TP),

the number of true negative ADHD diagnosis (TN), the number of false positive

ADHD diagnosis (FP), and the number of false negative ADHD diagnosis (FN).

The data considered in the multi sources analysis are: all the available sources of

data (ALL) and the four most predictive in single source analysis (TOP4), respec-

tively phenotypic data, the structural MRI data, and the region of homogeneity

of fMRI resting state and the batch effect.

combining multiple data sources. We set up the three experi-
ments analogous to those described above for the single source
case. This time we used two new datasets: one combining all
data sources and one combining the four most informative data
sources according to Table 3, i.e., phenotypic, structural, REHO,
and batch effect. Table 6 confirms the importance of the batch
effects showing the drastic decrease in the log(B10) and accuracy-
level when the batch effects are gradually removed. The appar-
ent positive results [80% accuracy and log(B10) > 100] of the
first group of experiments, i.e., of basic 10-fold cross-validation,
becomes null [50% accuracy and log(B10) ≈ 0] in the third group
of results where the two-level batch effect is removed.

5. DISCUSSION
Table 3 reports the results of the investigation on single sources to
recognize what kind of data is more informative and effective for
the diagnosis of ADHD with the proposed classification method.
The analysis of Table 3 does not consider the batch effects and the
violation of the iid assumption. The estimate of prediction accu-
racy is computed by standard 10-fold cross-validation but only
the Bayes factor clearly shows for which data source the classi-
fier is learning the discrimination problem, i.e., phenotypic data
(PHEN), structural data (STRU), regional homogeneity of fMRI
resting state (REHO), and the batch effect data (BAEF). For these
sources the log(B10) is above 10, which is considered (see Kass
and Raftery, 1995) very strong evidence in support of H1 with
respect to H0. The value of the prediction accuracy is instead
less informative. For example, the prediction accuracy of 61% for
phenotypic data is close to that of many other sources that are not
significant, like SMR0, SMR2, SMR3, SMR6, SMR7, and SMR9.

The results presented in Table 4 show the effects of removing
part of the postulated batch effects through the proposed method.
The independence between train set and test set is kept at the
subject-level by avoiding data from the same subject to appear
in both of them. Moreover the presence of multiple records
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belonging to the same subject is avoided in the test set to eliminate
the related bias. Both the prediction accuracy and the log(B10)

drop with respect to the values of Table 3. While the change in
accuracy is marginal (0–5%), the reduction of log(B10) is very
strong12, which is evidence for the sensitivity of this param-
eter. These changes are clear evidence of the presence of the
subject-level batch effect within the data.

In Table 5 all the postulated batch effects are removed by using
the leave-one-site-out cross-validation scheme together with the
constraint of one record per subject in the test set. The results
show a drop in the values of prediction accuracy and log(B10)

with respect to Table 4. Again the decrease in accuracy is marginal
(0–5%) while the reduction of log(B10) is very strong. This fact is
clear evidence in support of the presence of the batch effect at site-
level, in addition to the one at subject-level. Moreover we observe
that, for the single source analysis, no single data source is suffi-
cient to support the hypothesis of discriminating controls from
ADHD patients.

The joint analysis of multiple data sources is addressed in
Table 6. The results show the impact of removing the batch effects
in analogy to what was done for the single source analyses. In
a broad sense the results in Table 6 also address the ADHD-200
Global Competition by using all available data sources for ADHD
diagnosis. The analysis is conducted both for the whole set of data
sources jointly and for the set of the four most informative data
sources according to Table 3. The results show a significant drop
in prediction accuracy and log(B10) when considering the batch
effects in the estimation process. The prediction accuracy reaches
an extreme value of 80% when the batch effects are not taken
into account, which drops to 50% when all the batch effects are
removed. The Bayes factor values show the same trend decreasing
from log(B10) > 100 to log(B10) ≤ 013.

6. CONCLUSIONS
Our results show that taking the batch effects into account and
adopting a non-standard measure of the performance of the
classifier, like the Bayesian test of independence, can prevent

12Notice that this quantity is even in the log scale.
13According to Kass and Raftery (1995) when log(B10) ≤ 0 the evidence
supports H0.

misleading conclusions in the analysis of large multi-site
datasets. Nevertheless our results do not prove the absence
of ADHD-related information within neuroimaging data. Our
results are specific to the proposed representation spaces, i.e., of
the dissimilarity representation, and of the proposed classification
algorithm, i.e., extremely randomized trees. Different choices of
the representation space and of the classification algorithm might
lead to different results. What this work provides is a methodol-
ogy to investigate the classification results in more detail.

In conclusion we argue that the assumptions on which the sta-
tistical learning framework relies may be violated by the presence
of the batch effect and the consequence of these violations may
lead to significant drawbacks during the analysis and may produce
wrong inferences. In our study the estimated prediction accuracy
decreased from 80% to chance level by taking two levels of batch
effect into account. Moreover the value of log(B10) for the batch
effect encoded data can be used as an effective tool to detect when
the batch effect structure may affect the inference. The very high
values in the “BAEF” entry of Table 3 and of Table 4 are evidence
of this.

We claim that the major challenges of having large datasets
in the neuroscience domain, like the ADHD-200 dataset, are not
just related to the inherent difficulties of data collection but they
also involve the analysis and the interpretation of the results. This
work provides some of the essential tools for moving toward the
successful analysis of such datasets.

We speculate that the topic of batch effects in neuroimaging
data analysis is not confined to site and subject levels but can
extend to many other aspects of the neuroimaging data produc-
tion cycle. Moreover many other approaches, different from the
proposed one, should be attempted in order to deal with them.
To the best of our knowledge this topic is lacking literature and
we welcome future work in this direction.
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