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SUMMARY

Mycobacterium tuberculosis (MTB) displays the remarkable ability to transition in and out of 

dormancy, a hallmark of the pathogen’s capacity to evade the immune system and exploit 

susceptible individuals. Uncovering the gene regulatory programs that underlie the phenotypic 

shifts in MTB during disease latency and reactivation has posed a challenge. We develop an 

experimental system to precisely control dissolved oxygen levels in MTB cultures in order to 

capture the transcriptional events that unfold as MTB transitions into and out of hypoxia-induced 

dormancy. Using a comprehensive genome-wide transcription factor binding map and insights 

from network topology analysis, we identify regulatory circuits that deterministically drive 

sequential transitions across six transcriptionally and functionally distinct states encompassing 

more than three-fifths of the MTB genome. The architecture of the genetic programs explains the 

transcriptional dynamics underlying synchronous entry of cells into a dormant state that is primed 

to infect the host upon encountering favorable conditions.

In Brief

Mycobacterium tuberculosis (MTB) persists within the host by counteracting disparate stressors 

including hypoxia. Peterson et al. report a transcriptional program that coordinates sequential state 
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transitions to drive MTB in and out of hypoxia-induced dormancy. Among varied properties, this 

program encodes advanced preparedness to infect the host in favorable conditions.

Graphical Abstract

INTRODUCTION

Mycobacterium tuberculosis (MTB) kills more people than any other infectious agent, 

causing ~10 million new cases of active tuberculosis (TB) disease and 1.7 million deaths 

each year (Murray et al., 2014). TB remains a major human public health burden, in large 

part because of the sizable reservoir of latently infected individuals, who may relapse into 

active disease decades after acquiring the infection. MTB can persist in a stable, non-

replicative (often termed dormant) state within the host for months or years without 

symptoms and then revive to initiate the production of lesions and active TB disease. 

Moreover, dormant cells may be responsible for the slow treatment response of patients with 

active TB. Elucidation of the factors that affect treatment outcome, latency, and activation 

requires a better characterization of functional states adopted by the pathogen during 

progression of the disease, as well as a mechanistic understanding of the genetic programs 

that orchestrate transitions between these states.

Hypoxia, an environmental stress encountered by MTB within granulomas (Tsai et al., 

2006), is sufficient to shift the pathogen into a defined non-growing survival form, which 
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can be reversed upon aeration of the culture (Chao and Rubin, 2010). Therefore, hypoxia has 

been leveraged as an in vitro approximation to study MTB dormancy and the underlying 

genetic programs. However, previous transcriptional analyses under in vitro hypoxic 

conditions (via the Wayne model, in which MTB cultures are sealed and gradually depleted 

of oxygen (O2) [Wayne and Sohaskey, 2001; Wayne and Hayes, 1996], or the defined 

hypoxia model, in which nitrogen (N2) gas is flowed into the headspace to rapidly deplete 

O2 [Kempner, 1939; Yuan et al., 1998]) were limited to either static snapshots or low-

resolution time course studies (Rustad et al., 2008; Muttucumaru et al., 2004; Sherman et al., 

2001). Moreover, deletion of previously identified transcriptional regulators thought crucial 

to hypoxia-induced dormancy conferred only mild growth defects under hypoxic conditions 

(Rustad et al., 2008, 2009; Boon and Dick, 2002), suggesting a genetic circuit architecture 

that has evolved to withstand environmental and genetic perturbations. Here, we developed 

an experimental platform to characterize MTB’s response to changing O2 levels in 

considerably more depth. We reveal detailed transcriptional dynamics and coordinated 

regulatory circuits that enable the pathogen’s transition into and out of hypoxia-induced 

dormancy.

RESULTS

To discern the genetic programs underlying hypoxia-induced dormancy in MTB, we needed 

to obtain accurate dynamic measurements of genome-wide expression over an O2 gradient. 

Previous experimental models to study O2 tension and growth arrest in MTB were not 

suitable for the accuracy and resolution of measurements needed. In particular, the Wayne 

model has difficulties with reproducibility, and the defined hypoxia model depletes O2 very 

quickly, thereby hindering high-resolution sampling during critical transition periods. 

Moreover, neither model has been performed with real-time monitoring of O2 levels to 

accurately relate the transcriptional state of MTB with a precise O2 measurement. Therefore, 

we designed a programmable multiplexed reactor system, the controlled O2 model, to 

precisely manipulate and monitor O2 levels within the growth medium, even during 

sampling (Figure 1A). The precise control engineered into the system enabled high-

resolution sampling across a time course and an O2 gradient, with minimal disturbance to 

the bacteria and high reproducibility across culture replicates and experiments. Briefly, air 

and N2 gas lines were connected to separate mass flow controllers, which allowed 

programmable gradients of gas mixtures to be streamed into the headspace of spinner flasks 

containing MTB in media. Moreover, we used O2 sensor spots and fiber-optic technology to 

non-invasively measure the dissolved O2 (DO) content of the cultures. Both the mass flow 

controllers and O2 sensor spots were configured for remote management, advantageous for a 

biosafety level 3pathogen. With the controlled O2 model, we performed a time course 

experiment, which involved a steady depletion of DO over 2 days from full aeration (~80% 

DO) to hypoxia (0% DO). This steady depletion was achieved by programming the mass 

flow controllers to produce the desired mixture of air and N2. The cultures were maintained 

in hypoxia for 2 days by streaming only N2, then reaerated over 1 day by a programmed 

increase in air flow (Figure 1B). Over the time course, we harvested samples in triplicate, 

one each from three independent reactors, via sampling ports that prevented aeration of the 

culture. We sampled at high frequency during the period when cultures transitioned from 
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10% to 0% DO, as well as from 0% to 10% DO and at lower but regular frequency across 

the remaining 120 h experiment. An aliquot of the sample was used to measure growth by 

optical density (Figure 1C), and the remaining was flash frozen in liquid N2 and later 

processed for gene expression profiling by RNA sequencing.

Over the course of the experiment, nearly 64% of all genes in the MTB genome were 

significantly differentially expressed with respect to time 0 (2,582 genes with adjusted p < 

0.05 and estimated absolute log2 fold change > 1). The number of differentially expressed 

genes (DEGs) from our controlled O2 system is an order of magnitude greater than the 

number from earlier microarray studies using the Wayne (Muttucumaru et al., 2004) (299 

genes) or defined hypoxia (Rustad et al., 2008) (274 genes) model. Nevertheless, there was 

significant overlap across gene sets among the three models of hypoxia-induced dormancy 

(Table S1A). Interestingly, the controlled O2 model significantly recapitulated differential 

expression observed from intracellular MTB (Peterson et al., 2019) (enrichment test p = 

1.74e-30), whereas the other hypoxia models did not or had a low recall of the DEGs (Table 

S1B). These findings highlight the capability of our model to capture MTB’s transcriptional 

programs during hypoxic conditions that are relevant to MTB within host cells.

To further characterize the MTB transcriptional states over the time course and O2 gradient, 

we applied hierarchical (Suzuki and Shimodaira, 2006), k-means (Macqueen, 1967), and 

ensemble clustering (Sloutsky et al., 2013; Ronan et al., 2016) techniques that allowed us to 

define six groups of tightly clustered samples (Figure S1). Clustering was performed and 

evaluated (quantroStat p = 1e-4) (Hicks and Irizarry, 2015) using all 78 replicates, but for 

simplification, time point median values are shown in a two-dimensional t-distributed 

stochastic neighbor embedding (tSNE) plot (Figure 2A). Each cluster represents a distinct 

transcriptional state and was associated with sets of non-overlapping DEGs: normoxia (81 

genes), depletion (446 genes), early hypoxia (328 genes), mid hypoxia (320 genes), late 

hypoxia (978 genes), and resuscitation (429 genes) (Data S1). Each DEG was assigned to 

the state in which it had the highest mean expression (see Table S2 for assessment of state 

gene assignment by mean squared residue, Pearson correlation, and Boruta recall). The 

average expression profiles for the gene sets reveal that the states transition from one to 

another and that transitions are O2 and time dependent (Figure 2B). As such, the six states 

were also defined with O2 and time intervals, with the exception of 46–49 h, when there was 

oscillation between early hypoxia and late hypoxia states as the culture went below ~3% DO 

(Figure 2). Although this intriguing “flicker” behavior could be experimental noise, these 

anomalous time points (measured roughly 1 h apart) clearly cluster with late hypoxia (Figure 

S1). Such oscillatory expression could be generated by inherent properties of the network 

structure, which we describe later.

Genes associated with the depletion state (DO between 43% and 4%) were enriched for 

growth-related functions, including amino acid metabolism, oxidative phosphorylation, and 

translation (Figure 2B). In early hypoxia, ATP synthase and genes involved in electron 

transport chain and lipid metabolism were highly enriched and expressed, even more so than 

in normoxia. Furthermore, these metabolic genes were then significantly downregulated 

during late hypoxia. This result indicates that early hypoxia is a metabolically active state 

that may exist for MTB to prepare itself for an upcoming metabolically quiescent state (i.e., 
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late hypoxia). Mid hypoxia genes were enriched in stress-response genes, indicating that the 

bacteria are sensing and adapting to the anaerobic environment. In late hypoxia, genes 

essential for MTB to infiltrate host cells were induced. Furthermore, genes for 32 proteins 

that belong to the prolineglutamic acid (PE) and proline-proline-glutamic acid (PPE) family, 

whose functions remain largely unknown (Bottai and Brosch, 2009), were upregulated. 

These PPE family proteins have been proposed to modulate the host’s immune response 

(Tiwari et al., 2012) and generate antigenic variation (Cole et al., 1998) and were shown to 

be secreted by MTB’s ESX-5 export system (Abdallah et al., 2008). Interestingly, genes 

encoding the components of ESX-5 export system were rapidly activated as soon as MTB 

shifted from late hypoxia into resuscitation, minutes after air was introduced back into the 

culture. It is possible that late hypoxia not only engenders quiescence in MTB but also 

sequesters a collection of PPE proteins in anticipation of resuscitation and ESX system 

production. In the resuscitation state, proteases, transposases, and insertion sequences were 

also enriched among activated genes. These functional groups suggest that MTB may 

strategically avert immune recognition through antigenic heterogeneity (via ESX secretion 

of PPE proteins) and simultaneously reorganize its genome (via transposases and insertion 

sequences) to increase its chances for survival and transmission to a new host upon 

resuscitation.

Using the gene expression data, we also analyzed changes in MTB metabolic pathways, as 

reconstructed by Kavvas et al. (2018), along the hypoxia time series. The expression of 

many metabolic pathways reiterated the state transitions described above (Figure S2). MTB 

adaptation to hypoxia involves rewiring of several metabolic pathways, indicating an 

evolutionarily learned and coordinated response to stresses that typically co-exist within the 

host environment, despite the singular in vitro perturbation.

The six-state model across the time course and O2 gradient revealed distinct patterns of 

expression suggestive of intriguing and coordinated regulatory programs. Several methods 

are available for reconstructing gene regulatory networks (GRNs) along time series 

expression data (Luscombe et al., 2004; Bromberg et al., 2008; Baugh et al., 2005). We 

selected Dynamic Regulatory Events Miner (DREM) 2.0 (Schulz et al., 2012), which has 

been successfully applied to various systems (e.g., fly [Roy et al., 2010], yeast [Ernst et al., 

2007], E. coli [Ernst et al., 2008]) and is ideal for identifying dynamic transcriptional events 

over time and perturbations. DREM integrates time series and snapshots of the GRN of 

interest using an input-output hidden Markov model (Ernst et al., 2007). In so doing, DREM 

learns a dynamic GRN by identifying bifurcation points: places in the time series where a 

group of co-expressed genes begins to diverge. These bifurcation points are annotated with 

the proposed transcription factors (TFs) controlling the split, leading to a combined dynamic 

model. Using the hypoxia time course expression dataset and a TF-target gene network 

derived from the chromatin immunoprecipitation sequencing (ChIP-seq) assessment of 154 

TFs overexpressed in MTB (Minch et al., 2015), DREM identified bifurcation points that 

coincide with transitions between the six states (Figure 3A; additional material to recreate 

the DREM output is provided in Data S2). The bifurcation points defined by DREM 

reinforce the importance of transcriptional regulation in the progression between states. 

DREM identified TFs that are known to mediate MTB’s response to hypoxia (e.g., DosR, 

Rv0081, Rv0324) (Galagan et al., 2013), along with additional TFs with potential roles in 
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hypoxia. In particular, Rv1353c stood out for being the only TF linked to the time points that 

precede and mark the end of late hypoxia. In addition, DREM suggests that CsoR (Rv0967), 

a TF that controls MTB’s response to copper stress (Marcus et al., 2016), may also have an 

unappreciated role in hypoxia. Interestingly, DREM associated CsoR with the bifurcation 

points preceding early hypoxia and resuscitation. In the latter point, csoR transcriptional 

level transitioned from its lowest state value to its highest value. This suggests a potential 

bifunctional activity of CsoR in controlling MTB’s transcriptional response both in and out 

of hypoxia. In fact, 87% of DEGs (223 genes) from a csoR-knockout mutant (Marcus et al., 

2016) were differentially expressed at some point during the time course and O2 gradient (p 

= 1.7e-16). Specifically, this set of DEGs was enriched with members of early hypoxia, mid 

hypoxia, and resuscitation, supporting the CsoR bifurcation points predicted by DREM. We 

propose further investigation to evaluate the consequences of perturbing Rv1353c and CsoR 

activity during hypoxia adaptation.

Although DREM implicated key TFs in state transitions with > 0% DO, its inability to 

associate more TFs could be attributed to the absence of bifurcations in co-expressed gene 

sets (e.g., purple path in Figure 3A) and the normoxic conditions used to map protein-DNA 

interactions. The set of TFs identified by DREM included only 16% of the 147 putative TFs 

differentially expressed across the experiment and assigned to the six-state model (Figure 

3B). In fact, late hypoxia contains 32% of all differentially expressed TFs (47 TFs). The 

large number of differentially expressed TFs suggested that complex and combinatorial 

circuitry patterns could be involved in MTB’s adaptation to hypoxic conditions. Figure 3C 

shows the dense TF-TF connectivity within and between transcriptional states, according to 

available protein-DNA binding data (Minch et al., 2015). The key regulatory proteins of the 

TF-TF network were identified on the basis of betweenness centrality, which characterizes 

the connectivity of interacting nodes in the network. The top high-degree nodes were 

Rv0081, Rv3597c (Lsr2), Rv1990c, Rv2034, and Rv0023. As high-degree nodes, drugs 

targeting one or more of these regulatory hubs may have a major impact on MTB survival. 

In support of this, Bartek et al. (2014) showed that deletion of lsr2 significantly 

compromised adaptation of MTB to hypoxic conditions. Notably, Lsr2 had the second and 

third largest outdegree (number of TF targets) and indegree (number of transcriptional 

regulators), respectively. Lsr2 directly controls TFs from all other states (besides normoxia) 

and is itself regulated by mid hypoxia TFs and late hypoxia TFs. The critical role of Lsr2 in 

the coordination between hypoxia-related states offers an explanation for the known 

importance of Lsr2 in hypoxic conditions.

The high connectivity of the TF-TF network revealed regulatory hubs that activate one state 

while repressing another. Interestingly, DREM also identified bifurcation points in DO > 0% 

with downregulated late hypoxia TFs (Rv0324 and Rv1049), indicating a concurrent 

repression of late hypoxia regulators and activation of earlier states. Motivated by these 

findings, we evaluated the enrichment of regulons (on the basis of protein-DNA interaction 

data) of all differentially expressed TFs with members of each transcriptional state. Many 

TF regulons (n = 21) were significantly enriched with genes assigned to the same 

transcriptional state as the regulating TF was assigned to (permutation test p < 1e-3), while 

even more TF regulons (n = 49, permutation test p < 1e-3) were significantly enriched with 

members of other transcriptional states. In other words, TFs seem to activate members of 
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their own state while repressing members of another state (Figure 3C). Such behavior by 

TFs, described as mutual inhibition (Gardner et al., 2000; Glass and Kauffman, 1973; Huang 

et al., 2007), proposes a mechanism for the coordination and cooperation between 

transcriptional states to achieve the proper timing and gene expression levels to successfully 

adapt to changes in O2.

Interactions among TFs can also form specific network motifs that perform defined 

dynamical functions in response to changing environmental conditions (Wu et al., 2011; 

Alon, 2007; Shiraishi et al., 2010). Network motifs, such as feedforward loops (FFLs), 

single-input modules, or bistable toggle switches are recurring gene patterns found within 

GRNs. To unbiasedly search for network motifs that may be involved in hypoxia adaptation, 

we analyzed the experimentally determined MTB TF-target gene interactions from ChIP-seq 

(Minch et al., 2015) using FANMOD (Wernicke and Rasche, 2006) in the MotifNet 

Webserver (Smoly et al., 2017). We found that the MTB ChIP-seq network is significantly 

enriched with FFLs, a common network motif composed of two input TFs, one of which 

regulates the other and both of which jointly regulate target gene(s) (Mangan and Alon, 

2003). We ran extensive permutation tests to confirm the likelihood (p < 1e-3) of 1,690 FFL 

instances emerging in a random network with the same number of nodes and edges. 

Interestingly, Rv0081 is the most frequent regulator at the “top” of the FFLs (40.2% of all 

detected instances) and also has the highest degree connectivity. Rv0081 has been previously 

linked to MTB’s response to hypoxia (Prosser et al., 2017; Galagan et al., 2013) and is itself 

a target gene of the well-characterized regulator of dormancy survival, DosR (Boon and 

Dick, 2002; Sherman et al., 2001; Park et al., 2003). To evaluate the involvement of Rv0081-

centered FFLs in the transcriptional changes observed during hypoxia, we explored some of 

the most frequent TF pairs found in FFL configuration). The top pair, Rv0081-Rv0324, 

controls 134 genes significantly enriched with late hypoxia genes (p = 6.4e-5). Rv0081 also 

frequently pairs with Rv3249c and controls 87 genes enriched with depletion state genes (p 

= 1.1e-5). Another frequent pair combines Rv0023 and Rv0324 to control 70 genes enriched 

in mid hypoxia genes (p = 3e-5). We explored the directionality of these state-specific FFL 

target genes using gene expression data from MTB TF overexpression (TFOE) strains in 

normoxia (Rustad et al., 2014) and a MTB Rv0081 gene deletion (ΔRv0081) strain in 

hypoxia (Sun et al., 2018). For example, the majority of depletion genes with differential 

expression in the ΔRv0081 strain were upregulated, suggesting a negative relationship with 

Rv0081 in hypoxia (Figure 4A). Moreover, we observed that depletion genes controlled by 

the Rv0081-Rv3249c FFL were predominantly downregulated in the Rv0081 TFOE strain 

(Figure 4B). In contrast, there is a positive relationship between Rv0081 and late hypoxia 

genes during hypoxia, as indicated by a largely decreased expression of late hypoxia genes 

in the ΔRv0081 strain (Figure 4C). Furthermore, late hypoxia genes controlled by the 

Rv0081-Rv0324 FFL were significantly upregulated (Figure 4D). Altogether, we generated 

a model of interlocking FFLs whose TFs together upregulate 231 genes corresponding to 

late hypoxia, while also coordinating the repression of mid hypoxia and depletion genes 

(Figure 4E). The overlapping sets of network motifs act to reinforce each other’s function 

and direct the complex physiological state transitions required to adapt to decreasing DO 

levels.
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Three important hypotheses developed from identifying network motif topology. The first 

hypothesis is that Rv0081 plays a pivotal role in the adaptation of MTB to hypoxia, and its 

regulatory activity may be O2 dependent. The bifunctional activity of Rv0081 is based on 

comparison between the normoxic TFOE data and hypoxic ΔRv0081 data (Figure S3A). The 

regulatory targets of Rv0081 had very little concordance of fold change expression in these 

different conditions. Most genes that were significantly downregulated in the ΔRv0081 

strain in hypoxia showed no fold change difference in the TFOE data. This observation 

supports recent work demonstrating that Rv0081 had altered DNA-binding ability under 

hypoxic conditions, with evidence that formate ion accumulation and/or post-translational 

modifications may be involved in the conditional regulatory activity (Kumar et al., 2019). 

Furthermore, dual activity of Rv0081 seems to be necessary for coordinating the repression 

of late hypoxia TFs in early hypoxic time points and their upregulation in late hypoxia 

(Figure S3B).

The second hypothesis is that Rv0081 may be involved in the state oscillations observed as 

the DO dropped below 3%. Under these low-O2 conditions, the MTB transcriptome 

oscillated between two states: late hypoxia genes were expressed (T8 and T9), then early 

hypoxia genes (T10), then back to late hypoxia (T11), before ultimately committing to early 

hypoxia (T12–T15). This “flicker” between early hypoxia and late hypoxia, measured 

roughly 1 h apart, could emerge from oscillatory mechanisms involving an Rv0081-directed 

incoherent FFL (I-FFL) (Geva-Zatorsky et al., 2006; Kholodenko, 2000; Novák and Tyson, 

2008). In I-FFLs, one TF acts positively while the other TF acts negatively, resulting in a 

pulse of target gene(s) expression. Interestingly, the peak height between the first and second 

pulse of late hypoxia genes had roughly equal normalized expression (Figures S4A–S4C), 

suggesting a potential detection of fold change on the basis of the I-FFL, as described by 

Goentoro et al. (2009). Fitting Rv0081 and early hypoxia TFs (excluding Rv0081) between 

T7 and T20 with three configurations of I-FFLs (cooperative, independent, and exclusive; 

see STAR Methods), cooperative TF binding most closely modeled the observed average 

expression of late hypoxia genes (Figures S4A–S4C). Importantly, all three I-FFL 

configurations were able to reproduce the oscillatory expression of late hypoxia genes when 

DO dropped below 3%, concluding that the I-FFL motif can explain the observed “flicker” 

between early and late hypoxia states. Furthermore, we tested how well the I-FFL motif can 

replicate the experimental measurement across the three replicates during the “flicker” 

period. Using parameter optimization (see STAR Methods), we statistically compared the 

model simulations with the experimental data (Figures S4D and S4E). The I-FFL model 

significantly reflects the experimental finding across replicates, with the independent and 

cooperative models being the best configurations. Although this analysis does not exclude 

other network motifs from producing the “flicker” in late hypoxia gene expression, it does 

confirm that the oscillatory behavior is reproducible and significantly fits the inherent 

properties of an Rv0081-directed I-FFL. Although the role of the I-FFL as a fold change 

detector requires further exploration (parameters were not in the fold detection region 

according to Goentoro et al., 2009), it is intriguing to hypothesize that as the culture nears 

hypoxia, a potentially variable and “noisy” period of gene expression, the I-FFL circuit 

could serve to synchronize the hypoxic response across all cells in the population.
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Finally, the third hypothesis is that the I-FFL controlled by Rv0081 also regulates the 

transition to late hypoxia. Late hypoxia accounts for the largest change in expression and the 

transcriptional state most characteristic of dormant (i.e., nonreplicating) MTB 

(Schnappinger et al., 2003; Voskuil et al., 2003). In addition to reproducing the “flicker,” all 

three I-FFL configurations modeled a delay in late hypoxia gene expression after entering 

hypoxia. The timescale of the delay element, about 40 h from entering 0% DO to late 

hypoxia transition, is consistent with delayed translation observed in slow-growing MTB in 

response to nitric oxide (Cortes et al., 2017). It was recently demonstrated that delayed 

regulatory interactions within I-FFLs (with mutual inhibition present) produced state 

transitions related to T cell exhaustion, after a fixed time post-stimulation (Bolouri et al., 

2019). As such, the delay element may function in MTB to incorporate robustness into the 

hypoxic response, ensuring that late hypoxia (with large-scale expression changes) is not 

activated prematurely. Further investigation is required to determine whether the duration of 

the delay element is fixed or variable in a manner dependent on how MTB enters hypoxia. 

The shift to late hypoxia, after 40 h in hypoxia and following transition through two 

intermediate hypoxic states, is one of the most intriguing revelations from this study and 

required the development of a reactor system and the high-resolution profiling that was 

performed here. The elucidation of regulatory circuits that control the large, altered 

transcriptome of late hypoxia offers novel drug targets that could block the underlying 

mechanisms that contribute to replication suppression, alternative respiratory/metabolic 

pathways, and phenotypic tolerance associated with dormant MTB.

DISCUSSION

In this report, we present the high-resolution system-wide gene expression profiling of MTB 

across a 5 day time course of hypoxia and reaeration. A reactor system was designed to 

allow exquisite control and monitoring of O2 levels, thereby uncovering intermediate 

transcriptional states and dynamic expression patterns, not previously described. Gene 

expression profiling revealed that three-fifths of all genes in the MTB genome are 

differentially expressed and associated with six distinct transcriptional states as MTB enters 

into and exits from hypoxia. Moreover, there is strong evidence that the six-state model 

described in this paper relates to adaptations of MTB in vivo. The response to hypoxia is 

accompanied by other host-related stress mechanisms (e.g., alternative carbon use, iron 

limitation, copper stress), as a result of MTB’s evolutionary history as an intracellular 

pathogen. The large-scale expression changes demonstrate the importance of O2 as a major 

force in the evolution of MTB and reveals that the pathogen alters gene expression in 

anticipation of future conditions and challenges. For example, the increased production of 

PE/PPE proteins during late hypoxia in preparation for ESX export system production upon 

resuscitation foresees the benefit of PE/PPE protein secretion for dissemination to other host 

cells. Integrating high-resolution and longitudinal profiling with experimentally determined 

TF-gene interactions enabled inference of key regulators and intricate circuit architecture 

that explain how the state transitions unfold (Figure 4F). Regulatory programs with 

characteristic motifs and properties were identified that serve to incorporate robustness (e.g., 

time delay ensures state transition only upon proper conditions), synchronization (e.g., I-

FFL might uniform response across all cells during “flicker” period), and coordination 
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across the states (e.g., interlocking FFLs, bifunctional Rv0081, mutual inhibition) as MTB 

transitions across time and O2 gradient. This study reveals that MTB encodes abundant 

network motifs, presumably with functions that cannot be carried out by simpler circuits, to 

successfully tailor MTB physiology to stresses within the host environment. It is interesting 

to speculate that these regulatory interactions have evolved in MTB as an adaptive response 

to ineffective immunity and failure to clear the pathogen. One of the most important 

challenges for antibiotic research will be to overcome these overlapping and redundant 

regulatory mechanisms with novel combinatorial interventions. This study presents 

significant steps toward apprehending these genetic programs in MTB, paving the way for 

predictive and rational strategies to improve clinical outcomes of TB treatment.

STAR★METHODS

RESOURCE AVAILABILITY

Lead Contact—Further information and requests may be directed to, and will be fulfilled 

by, the Lead Contact Nitin Baliga (Nitin.Baliga@isbscience.org).

Data and Code Availability—The datasets generated during this study are available at 

GEO: GSE116353.

Materials Availability—This study did not generate new unique reagents.

Experimental Model and Subject Details

Culturing conditions for in vitro system: Experiments were performed using 

Mycobacterium tuberculosis H37Rv (kind gift of David Sherman) grown at 37°C in 

Middlebrook 7H9 supplemented with ADC and 0.05% Tween in spinner flasks. For hypoxia 

time-course experiment, a 50 mL culture was grown to mid-log phase, and diluted in 700 

mL 7H9 media within each bioreactor to a starting A600 of 0.01. Cultures were stirred 

throughout the experiment.

Method Details

Controlled O2 model design and operation: An Oxygen Sensor Spot (PreSens, 

Regensburg, Germany) was adhered within a 1L disposable spinner flask with two side arms 

(Corning, Corning, NY) using vacuum tweezers (Excelta, Buelton, CA). A velcro belt with a 

screw-on port for the fiber optic cable (PreSens) was wrapped around the flask. The fiber 

optic cable connected the Oxygen Sensor Spot to a Fibox 4 oxygen meter (PreSens). A gas 

line input was fastened on one arm of the flask, and a luer-lock/filter sampling port was 

connected to the other arm. Air and N2 gas lines were run into the Biological safety 

laboratory and connected to gas-specific mass flow controllers (Alicat Scientific, Tucson, 

AZ), whose outputs were connected downstream through a Y-connector that led into an 

incubator. Three separate flasks, all prepared as described above, were placed onto a stir 

plate inside an incubator at 37°C. The mixed gas line was split via additional Y-connecters, 

streamed through 0.2 um filters, and attached to the gas line inputs of each flask. Media was 

incubated overnight and checked for contamination before inoculated with MTB.
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The mass flow controllers and oxygen sensor were linked to a computer, which could be 

remotely accessed and monitored in real-time. After inoculation, we programmed the mass 

flow controllers using Flow Vision software (Alicat Scientific) to achieve a changing gas 

mixture gradient, which allowed us creating a steady two-day depletion, followed by two-

days of sustained hypoxia, and reaeration by flowing pure air into the headspace of the 

vessels and increasing the speed of the stir bars in each vessel. Adobe Illustrator CS6 and 

Inkscape 0.91 were used to generate figures including the diagram of the controlled O2 

model in Figure 1A.

RNA isolation: Samples were collected by a luer-lock syringe to the sampling port. Sample 

volumes varied from 5 mL to 25 mL across the time course, depending on OD but were 

consistent across replicates of a time point. Samples were centrifuged at high speed for 5 

min, supernatant was discarded and cell pellet was immediately flash frozen in liquid 

nitrogen. Cell pellets were stored at −80°C until all samples collected and then resuspended 

in 600 μL of fresh lysozyme solution in TE pH 8.0 (5 mg/mL). The resuspended cells were 

transferred to a tube containing Lysing Matrix B (MP Biomedicals, Santa Ana, CA) and 

incubated at 37°C for 30 min. Following incubation, 60 μL (1/10th volume of lysate volume) 

of 10% SDS was added and then tubes were vigorously shaken at max speed for 30 s in a 

FastPrep 120 homogenizer (MP Biomedicals) three times. Tubes were centrifuged for 1 min 

(max speed), then 66 μL of 3 M sodium acetate pH 5.2 added and mixed well. Acid phenol 

(pH 4.2) was added at 726 μL and tubes were inverted to mix well (~60 times). Samples 

were incubated at 65°C for 5 min, inverting tubes to mix samples every 30 s. Then, 

centrifuged at 14000 rpm for 5 min and upper aqueous phase was transferred to a new tube. 

3M sodium acetate (pH 5.2) was added at 1/10th volume along with 3x volumes of 100% 

ethanol. Sample was mixed well and incubated at −20°C for 1 hr or overnight. Following 

incubation, samples were centrifuged at 14000 rpm for 30 min at 4°C, ethanol was discarded 

and 500 μL of 70% ethanol was added. Samples were centrifuged again at 14000 rpm for 10 

min at 4°C, supernatant discarded, and any residual ethanol removed using pipet. Pellet was 

allowed to air dry, resuspended in 30–40 μL of RNase free water and quantified by 

Nanodrop (Thermo Scientific). This was followed by in solution genomic DNA digestion 

using RQ1 Dnase (Promega) following manufacturer’s recommendation. RNA quality was 

analyzed in a 2100 Bioanalyzer system (Agilent Technologies). Total RNA samples were 

depleted of ribosomal RNA using the Ribo-Zero Bacteria rRNA Removal Kit (Illumina, San 

Diego, CA).

Quantification and Statistical Analysis—Statistical details of particular analyses 

(including whether data met assumptions of statistical approaches) are detailed in the 

sections below.

Processing and analysis of RNA-seq data: Sample collection and RNA-extraction was 

performed as described above. Quality and purity of mRNA samples was determined with 

2100 Bioanalyzer (Agilent, Santa Clara, CA). Samples were prepared with TrueSeq 

Stranded mRNA HT library preparation kit (Illumina, San Diego, CA) and multiplexed into 

a single run. All samples were sequenced on the NextSeq sequencing instrument in a high 

output 150 v2 flow cell. Paired-end 75 bp reads were checked for technical artifacts using 
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Illumina default quality filtering steps. Raw FASTQ read data were processed using the R 

package DuffyNGS as described previously (Vignali et al., 2011). Briefly, raw reads were 

passed through a 3-stage alignment pipeline: (i) a prealignment stage to filter out unwanted 

transcripts, such as rRNA, mitochondrial RNA, albumin, and globin; (ii) a main genomic 

alignment stage against the genome(s) of interest; and (iii) a splice junction alignment stage 

against an index of standard and alternative exon splice junctions (Lakshmanan et al., 2015). 

Reads were aligned to M. tuberculosis H37Rv (ASM19595v2) with Bowtie2 (Langmead and 

Salzberg, 2012), using the command line option “verysensitive.” BAM files from stages (ii) 

and (iii) were combined into read depth wiggle tracks that recorded both uniquely mapped 

and multiply mapped reads to each of the forward and reverse strands of the genome(s) at 

single-nucleotide resolution. Gene transcript abundance was then measured by summing 

total reads landing inside annotated gene boundaries, expressed as both RPKM and raw read 

counts. Two stringencies of gene abundance were provided using all aligned reads and by 

just counting uniquely aligned reads.

Differential expression: We used the raw read counts, estimated with DuffyNGS as 

described above, as input for DESeq2 (Love et al., 2014). We compared the transcriptional 

profile of each time point respect to T0. Genes with adjusted P-value < 0.05 and estimated 

absolute log2 fold-change > 1 were considered differentially expressed.

Identification of transcriptional states adopted by MTB in the controlled O2 

model: After normalizing the full transcriptional dataset with DESeq2 (Love et al., 2014), 

we used Principal Component Analysis (PCA) to reduce the dimensionality and to inspect 

the structure of our normalized data. In a three dimensional PCA plot, multiple groups of 

consecutive time points and similar O2 concentrations seemed to emerge (Figure S1A). To 

determine the transcriptional states adopted by MTB during entry to and exit from hypoxia, 

we first applied hierarchical clustering with bootstrapping, implemented in the Pvclust R 

package (Suzuki and Shimodaira, 2006), on the median (of each time point replicates) 

normalized transcriptional dataset. Clusters in the dendrogram were defined at the maximum 

height with 100% bootstrap support and more than two clusters were found. The second 

requirement was motivated by inspection of the PCA plot mentioned above. Six clusters 

were identified (Figure S1B). Then, we repeated this analysis using all replicates (Figure 

S1C). T15 had a total of 6 replicates, two from each reactor, taken 1 h apart. The average of 

the two samples from each reactor was used for T15. Each time point was assigned to the 

group that contained at least two (out of the three) replicates. Remarkably, there was 

significant overlap between the clusters generated with this approach in the full dataset and 

the six clusters previously defined on the median profiles. P-values associated with overlap 

hypergeometric tests are shown in parentheses in Figure S1C. To assess the robustness of the 

proposed six states model to clustering algorithm selection, we compared the predictions 

made with hierarchical clustering and k-means. We observed a strong agreement between 

both methods. In fact, five out of the six clusters identified by k-means with k = 6 were 

identical to the hierarchical clustering-based clusters (Figures S1C and S1D). In support of 

the six state model, we observed that k = 2 and k = 6 gave the highest quality clusters based 

on the Silhouette metric for k-means (Figure S1E). Notably, only nine replicates out of the 
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78 replicates (11.5%) did not cluster with other replicates of the same time point (in any of 

the two methods).

To measure the robustness of our six states definition to the (biological and technical) noise 

present in the collected transcriptional data, we used ensemble clustering as suggested by 

Naegle and collaborators (Sloutsky et al., 2013; Ronan et al., 2016). First, we used 

permutation sampling (5,000 permutations) to create time series (without replicates) with all 

26 time points. To do so, for each time point, we randomly selected one of the three 

available replicates. Then, we applied k-means clustering (1 < k < 11) to group the time 

points in the generated time course. Next, we evaluated how often any pair of time points 

clustered together in the 45,000 k-means runs (9 different k values by 5,000 time courses; 

Figure S1F). From this analysis, we could confirm the presence of six clusters (pink/red 

squares, that represent co-clustering in 50% or more of the cases, in the heatmap) with 

significant overlap with our states’ definition (described in the previous paragraph). After 

confirming the presence of six clusters, we performed a second ensemble clustering (using 

the same bootstrapping strategy) with 200,000 permutations. This time we applied k-means 

with k = 6 on each generated time course (Figure S1G). 24 out of the 26 time points 

clustered more than 50% of the time with the expected time points (according to the six 

states model). T16 did not pass the 50% co-occurrence threshold with the other two 

members of Mid hypoxia (T17 and T18). Nonetheless, T17 and T18 are the two points that 

T16 most frequently clustered with (46.5% and 48.6%, respectively). So, the only time point 

that was not unequivocally assigned to any specific cluster was T9. The other two time 

points of the flicker (T8 and T11) did indeed cluster with the other Late hypoxia time points 

(T19, T20) as expected.

As more direct approach to compare within- and between-state variation, we used the 

quantro R Bioconductor package (Hicks and Irizarry, 2015). Quantro performs a statistical 

test (quantroStat) to compare the within- and between-groups variation. Using quantro in the 

expression dataset with all replicates, we obtained a quantroStat P-value < 1e-04. Overall, 

our observations indicated that noise is higher at the inter-state that within-state level. 

Finally, we visualized the six defined transcriptional states with the t-distributed stochastic 

neighbor embedding (tSNE) algorithm (Figure 2A).

Connecting differentially expressed genes with the six hypoxia-related transcriptional 
states of MTB: To understand the functional implications of the transcriptional states 

adopted by MTB during entry and exit from hypoxia, each differentially expressed gene was 

assigned to the state in which it had the highest average transcription level. In this step, we 

used the median normalized transcriptional profiles. We obtained similar gene assignment 

when we used the average among all replicates and time points of each cluster. As an 

unsupervised alternative, we used the Boruta R package (Kursa and Rudnicki, 2010), that 

implements random forest to select all features (in our case transcriptional profiles), to 

identify the genes that distinguish any given state from the rest. There was statistically 

significant overlap between the groups of genes associated to any given transcriptional state 

by the two approaches (Table S2). Because Boruta only selected 590 genes (out of 2,582 

differentially expressed genes), we decided to use the average transcriptional profile based 

gene assignment. In this way we tried to capture the biological processes active in the 
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different states without excluding any differentially expressed gene. To evaluate the quality 

of the resulting sets of genes, we computed the mean squared residue (MSR) of each gene 

cluster (Table S2). The MSR is widely used as a metric of performance of biclustering 

methods (which cluster both genes and conditions) (Reiss et al., 2006). A low MSR value 

indicates that individual gene profiles do not deviate from the average profile of the bicluster 

(in our case, the group of genes in the relevant time points/state). We also computed the 

mean Pearson correlation among the genes assigned to each transcriptional state (Table S2). 

In support of our gene assignment, the sets of genes associated to MTB transcriptional states 

had MSR values smaller than 0.1 In fact, for the Depletion and Late hypoxia genes the MSR 

values were smaller than 0.05. The average Pearson correlation values were equal to or 

greater than 0.4 for all gene clusters but Normoxia.

Metabolic pathway analysis: We mapped the measured gene expression data against the 

most recent genome-scale metabolic network construction of M. tuberculosis H37Rv 

iEK1011 (Kavvas et al., 2018) using COBRApy (Ebrahim et al., 2013). We used the 

subsystem definitions outlined in iEK1011 to explore pathway usage at the network level. 

See also Figure S2.

MTB ChIP-seq derived TF-gene network: The initial ChIP-seq derived MTB network 

consisted of 6,581 interactions occurring in the −150bp to +70bp region of genes promoters 

reported by Minch et al. (2015). We expanded that MTB ChIP-seq network by taking into 

account operon organizations. For a given TF-gene interaction, if the target gene is part of an 

operon, we included all other members of the operon as potential targets of the 

corresponding TF. The expanded MTB ChIP-seq network contained 12,188 interactions. The 

ChIP-seq derived protein-DNA interactions were used to establish connections between 

differentially expressed genes from the controlled O2 model using Biotapestry (Paquette et 

al., 2016).

Detection of network motifs in the MTB ChIP-seq network: To identify network motifs 

in the MTB transcriptional network, we used the MotifNet webserver (Smoly et al., 2017). 

We scanned for all potential three and four nodes motifs with maximum P-value ≤ 0.01 (in 

1000 random networks) and with 100 or more instances in the analyzed network. For this 

analysis, we constrained the ChIP-seq derived network by excluding genes that were not 

differentially expressed in our time course. This network filtering was done to improve 

detection of motifs most relevant to the actual changes in transcript levels we observed.

DREM analysis: DREM2.0 (Schulz et al., 2012) was run with default parameters. The input 

TF-gene network was the MTB ChIP-seq network described above. The input expression 

data contained the median transcriptional profiles of the 2,582 differentially expressed 

genes. The minimum absolute expression change parameter was set to 0.75. The 

supplemental Data S2 contains all the files required to recreate the DREM output, without 

the need of running DREM again.

Permutation test for evaluating significance of overlap between TF regulons and sets of 
genes associated with identified transcriptional states: The 2,582 differentially expressed 

genes in the controlled O2 model were permutated 1000 times to generate shuffled gene 
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clusters (corresponding to the six transcriptional states). In each permutation, the produced 

shuffled gene clusters had the same size as the original ones. Then, significance of the 

overlap between regulons of differentially expressed TFs and the shuffled gene sets was 

evaluated using a hypergeometric test. Hypergeometric test P-values below 0.05 were 

considered significant. The overall permutation test P-value was computed as the proportion 

of cases (out of 1000 permutations) in which the number of enriched regulons was equal or 

higher than the observed values in the original data.

Differential expression analysis of transcriptional data collected with the defined 
hypoxia model: We downloaded the transcriptional profile data of MTB at day 0, day 1, day 

2, day 3, day 5, day 7 and day 8 (reaeration) collected by Galagan et al. (2013) using the 

defined hypoxia model (GEO accession number: GSE43466). We performed a Bayesian t 

test using Cyber-T (Baldi and Long, 2001) to compare the gene expression profiles at each 

time point respect to T0. Genes with adjusted P-value < 0.05 and absolute log2 fold-change 

> 1 were considered differentially expressed. See Tables S1A and S1B.

Modeling of Rv0081-directed I-FFL with Late hypoxia gene expression: The IFFL motif 

is commonly modeled by the following equations (Goentoro et al., 2009):

dY
dt = β1X − α1Y

dZ
dt = β2G(X, Y ) − αzZ

where Z is the output of the motif which in our case represents the average expression of 

Late hypoxia genes between T7-T20. X and Y represent the expression of Rv0081 and 

average expression of Early hypoxia TFs (excluding Rv0081), respectively. Goentoro et al. 

(2009) analyzed three possible models of the I-FFL motif representing three configurations 

in which Late hypoxia genes could be regulated. Their focus was to identify conditions for 

which the I-FFL motif works as fold change detection. The models correspond to exclusive 

binding (Figure S4A), independent binding (Figure S4B), and cooperative binding (Figure 

S4C) which are represented by the following equations (Goentoro et al., 2009):

Exclusive binding : Ge(X, Y ) =

X
K1

1 + X
K1

+ Y
K2

Independent binding : Gi(X, Y ) =

X
K1

1 + X
K1

1 + Y
K2

Peterson et al. Page 15

Cell Rep. Author manuscript; available in PMC 2020 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Cooperative binding: Gc(X, Y ) =

X
K1

1 + X
K1

+ Y
K2

+ XY
K3

where Ge, Gi, and Gc are functions that determine the rate change of Late hypoxia genes (Z); 

K1 is the binding rate between Rv0081 and Late hypoxia genes; K2 is the binding rate 

between Early hypoxia TFs and Late hypoxia genes; and K3 is the cooperative binding rate 

of Rv0081 and Early hypoxia TFs with the Late hypoxia genes. α2, β2, K1, K2, and K3 were 

estimated by an optimization procedure using the average experimental values of X, Y, Z at 

different time points. We used the Nelder-Mead simplex algorithm for optimization (Nelder 

and Mead, 1965) as implemented in MATLAB R2014a. The objective function used for 

minimization is the root-mean-squared deviation (RMSD) between experimental and 

estimated values of Late hypoxia gene expression is given by:

S = N−1∑
i

N
Zexp ti − Zmod ti

2

where Zexp(ti) is the average expression of Late hypoxia genes at time ti obtained 

experimentally, and Zmod(ti) is the corresponding model estimate. Similarly, α1 and β1 were 

estimated by a similar optimization procedure using the average experimental values of Y 
and X. The objective function in this case is given by:

S = N−1∑
i

N
Yexp ti − Ymod ti

2

where Yexp(ti) is the average expression of repressors at time ti obtained experimentally, and 

Ymod(ti) is the corresponding model estimate.

In addition, we also tested the reproducibility of the I-FFL model during the “flicker” period 

across the experimental replicates by including 6 additional parameters (in addition to the 

model parameters) in the fitting process, which correspond to the initial values of Y and Z 
for the three replicates. In total we optimized 12 parameters for the cooperative model, and 

11 parameters for the independent and exclusive binding models. It is worth noting that the 

same values of the model parameters (β1,β2,α2,K1,K2and K3) are used to test a model with 

the three experimental replicates. By using this strategy, we find a mathematical model that 

includes the potential differences between the measurements of the replicates. Moreover, the 

strategy helps avoiding parameter over-fitting because a model of 12 (11) parameters is 

fitted to 48 experimental data points.

We used the routine pwFitBoost available in the MATLAB toolbox PottersWheel for 

parameter optimization (Maiwald and Timmer, 2008). pwFitBoost is a hybrid approach that 

combines a stochastic simulated annealing algorithm, which performs a global search of the 

parameter space, and a deterministic algorithm for local search. We used the following 
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function as a measure of how good the IFFL models reproduces experimental gene 

expression:

χ2(θ) = ∑
r = 1

R
∑

j = 1

M
∑

k = 1

T yrjk
exp − yrjmodel θ, tk

σrjk
exp

2

Where R, M, T are the number of replicates (3), the number of observables (2 for Y and Z), 

and the number of time points (8 por the considered time window), respectively. θ is the 

parameter set which includes the model parameters (α2,β1, β2, K1, K2, and K3) and the 

initial conditions of Y and Z for the three experimental replicates. yrjk
exp are the experimental 

data, yrjmodel θ, tk  are the values of the model at the times points when the experimental data 

are measured, σrjk
exp are the measurement error of the experimental data at each time point. 

These errors were estimated as half the standard deviation of the gene expression of the set 

of Repressor and S2 genes. To ensure that we approach the global minimum of χ2 as close 

as possible, we repeated the parameter optimization 500 times varying the initial values of 

the parameters. The initial values of the parameters were selected randomly from a Latin 

Hypercube sampling using a range of 10×10−2 to 1×103 for α2, β1, β2, K1, K2, and K3, 7–12 

for the initial Y in the three replicates, and 4–8 for the initial value of Z in the three 

replicates. The parameters of the best cooperative and independent models are presented in 

Figure S4D along with the summary statistics (Figure S4E). The p(N–d) value of the 

exclusive binding models was close to the rejection value of 0.05, therefore the parameter 

values are not reported.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGMENTS

We thank members of the Baliga and Shmulevich labs for critical discussions, Lee Hiner (Airgas), and Seattle 
Children’s Research Institute for the BSL3 facilities. The granuloma formation shown in the graphical abstract was 
adapted from Ehlers and Schaible (2013). Funding was provided by the National Institute of Allergy and Infectious 
Diseases: R01AI128215, U19AI135976, and a pilot project grant awarded to Christopher Plaisier and E.J.R.P 
through U19AI106761. Funding was also provided by the National Science Foundation (DBI-1565166).

REFERENCES

Abdallah AM, Savage ND, van Zon M, Wilson L, Vandenbroucke-Grauls CM, van der Wel NN, 
Ottenhoff TH, and Bitter W (2008). The ESX-5 secretion system of Mycobacterium marinum 
modulates the macrophage response. J. Immunol 181, 7166–7175. [PubMed: 18981138] 

Alon U (2007). Network motifs: theory and experimental approaches. Nat. Rev. Genet 8, 450–461. 
[PubMed: 17510665] 

Baldi P, and Long AD (2001). A Bayesian framework for the analysis of microarray expression data: 
regularized t -test and statistical inferences of gene changes. Bioinformatics 17, 509–519. [PubMed: 
11395427] 

Bartek IL, Woolhiser LK, Baughn AD, Basaraba RJ, Jacobs WR Jr., Lenaerts AJ, and Voskuil MI 
(2014). Mycobacterium tuberculosis Lsr2 is a global transcriptional regulator required for 
adaptation to changing oxygen levels and virulence. MBio 5, e01106–e01114. [PubMed: 24895305] 

Peterson et al. Page 17

Cell Rep. Author manuscript; available in PMC 2020 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Baugh LR, Hill AA, Claggett JM, Hill-Harfe K, Wen JC, Slonim DK, Brown EL, and Hunter CP 
(2005). The homeodomain protein PAL-1 specifies a lineage-specific regulatory network in the C. 
elegans embryo. Development 132, 1843–1854. [PubMed: 15772128] 

Bolouri H, Young M, Beilke J, Johnson R, Fox B, Huang L, Costa Santini C, Hill CM, van der Vuurst 
de Vries A-R, Shannon P, et al. (2019). Integrative network modeling reveals mechanisms 
underlying T cell exhaustion. Sci. Rep 10, 1915.

Boon C, and Dick T (2002). Mycobacterium bovis BCG response regulator essential for hypoxic 
dormancy. J. Bacteriol. 184, 6760–6767. [PubMed: 12446625] 

Bottai D, and Brosch R (2009). Mycobacterial PE, PPE and ESX clusters: novel insights into the 
secretion of these most unusual protein families. Mol. Microbiol 73, 325–328. [PubMed: 19602151] 

Bromberg KD, Ma’ayan A, Neves SR, and Iyengar R (2008). Design logic of a cannabinoid receptor 
signaling network that triggers neurite outgrowth. Science 320, 903–909. [PubMed: 18487186] 

Chao MC, and Rubin EJ (2010). Letting sleeping dos lie: does dormancy play a role in tuberculosis? 
Annu. Rev. Microbiol 64, 293–311. [PubMed: 20825351] 

Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry 
CE 3rd., et al. (1998). Deciphering the biology of Mycobacterium tuberculosis from the complete 
genome sequence. Nature 393, 537–544. [PubMed: 9634230] 

Cortes T, Schubert OT, Banaei-Esfahani A, Collins BC, Aebersold R, and Young DB (2017). Delayed 
effects of transcriptional responses in Mycobacterium tuberculosis exposed to nitric oxide suggest 
other mechanisms involved in survival. Sci. Rep 7, 8208. [PubMed: 28811595] 

Ebrahim A, Lerman JA, Palsson BO, and Hyduke DR (2013). COBRApy: Constraints-Based 
Reconstruction and Analysis for Python. BMC Syst. Biol 7, 74. [PubMed: 23927696] 

Ehlers S, and Schaible UE (2013). The granuloma in tuberculosis: dynamics of a host-pathogen 
collusion. Front. Immunol 3, 411. [PubMed: 23308075] 

Ernst J, Vainas O, Harbison CT, Simon I, and Bar-Joseph Z (2007). Reconstructing dynamic regulatory 
maps. Mol. Syst. Biol 3, 74. [PubMed: 17224918] 

Ernst J, Beg QK, Kay KA, Balázsi G, Oltvai ZN, and Bar-Joseph Z (2008). A semi-supervised method 
for predicting transcription factor-gene interactions in Escherichia coli. PLoS Comput. Biol 4, 
e1000044. [PubMed: 18369434] 

Galagan JE, Minch K, Peterson M, Lyubetskaya A, Azizi E, Sweet L, Gomes A, Rustad T, Dolganov 
G, Glotova I, et al. (2013). The Mycobacterium tuberculosis regulatory network and hypoxia. 
Nature 499, 178–183. [PubMed: 23823726] 

Gardner TS, Cantor CR, and Collins JJ (2000). Construction of a genetic toggle switch in Escherichia 
coli. Nature 403, 339–342. [PubMed: 10659857] 

Geva-Zatorsky N, Rosenfeld N, Itzkovitz S, Milo R, Sigal A, Dekel E, Yarnitzky T, Liron Y, Polak P, 
Lahav G, and Alon U (2006). Oscillations and variability in the p53 system. Mol. Syst. Biol 2, 
2006.0033.

Glass L, and Kauffman SA (1973). The logical analysis of continuous, nonlinear biochemical control 
networks. J. Theor. Biol 39, 103–129. [PubMed: 4741704] 

Goentoro L, Shoval O, Kirschner MW, and Alon U (2009). The incoherent feedforward loop can 
provide fold-change detection in gene regulation. Mol. Cell 36, 894–899. [PubMed: 20005851] 

Hicks SC, and Irizarry RA (2015). quantro: a data-driven approach to guide the choice of an 
appropriate normalization method. Genome Biol 16, 117. [PubMed: 26040460] 

Huang S, Guo YP, May G, and Enver T (2007). Bifurcation dynamics in lineage-commitment in 
bipotent progenitor cells. Dev. Biol 305, 695–713. [PubMed: 17412320] 

Huang DW, Sherman BT, and Lempicki RA (2009). Systematic and integrative analysis of large gene 
lists using DAVID bioinformatics resources. Nat. Protoc 4, 44–57. [PubMed: 19131956] 

Kavvas ES, Seif Y, Yurkovich JT, Norsigian C, Poudel S, Greenwald WW, Ghatak S, Palsson BO, and 
Monk JM (2018). Updated and standardized genome-scale reconstruction of Mycobacterium 
tuberculosis H37Rv, iEK1011, simulates flux states indicative of physiological conditions. BMC 
Syst. Biol 12, 25. [PubMed: 29499714] 

Kempner W (1939). Oxygen tension and the tubercle bacillus. Am. Rev. Tuberc 40, 157–168.

Peterson et al. Page 18

Cell Rep. Author manuscript; available in PMC 2020 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Kholodenko BN (2000). Negative feedback and ultrasensitivity can bring about oscillations in the 
mitogen-activated protein kinase cascades. Eur. J. Biochem 267, 1583–1588. [PubMed: 10712587] 

Kumar A, Phulera S, Rizvi A, Sonawane PJ, Panwar HS, Banerjee S, Sahu A, and Mande SC (2019). 
Structural basis of hypoxic gene regulation by the Rv0081 transcription factor of Mycobacterium 
tuberculosis. FEBS Lett 593, 982–995. [PubMed: 30941756] 

Kursa MB, and Rudnicki WR (2010). Feature selection with the Boruta package. J. Stat. Softw 36 
(11).

Lakshmanan V, Fishbaugher ME, Morrison B, Baldwin M, Macarulay M, Vaughan AM, Mikolajczak 
SA, and Kappe SH (2015). Cyclic GMP Balance Is Critical for Malaria Parasite Transmission 
from the Mosquito to the Mammalian Host. mBio 6 10.1128/mBio.02330-14.

Langmead B, and Salzberg SL (2012). Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 
357–359. [PubMed: 22388286] 

Love MI, Huber W, and Anders S (2014). Moderated estimation of fold change and dispersion for 
RNA-seq data with DESeq2. Genome Biol 15, 550. [PubMed: 25516281] 

Luscombe NM, Babu MM, Yu H, Snyder M, Teichmann SA, and Gerstein M (2004). Genomic 
analysis of regulatory network dynamics reveals large topological changes. Nature 431, 308–312. 
[PubMed: 15372033] 

Macqueen J (1967). Some methods for classification and analysis of multivariate observations. In 
Proceedings of the 5th Berkeley Symposium of Mathematical Statistics and Probability 1, 281–
297.

Maiwald T, and Timmer J (2008). Dynamical modeling and multi-experiment fitting with 
PottersWheel. Bioinformatics 24, 2037–2043. [PubMed: 18614583] 

Mangan S, and Alon U (2003). Structure and function of the feed-forward loop network motif. Proc. 
Natl. Acad. Sci. USA 100, 11980–11985. [PubMed: 14530388] 

Marcus SA, Sidiropoulos SW, Steinberg H, and Talaat AM (2016). CsoR is essential for maintaining 
copper homeostasis in Mycobacterium tuberculosis. PLoS ONE 11, e0151816. [PubMed: 
26999439] 

Minch KJ, Rustad TR, Peterson EJ, Winkler J, Reiss DJ, Ma S, Hickey M, Brabant W, Morrison B, 
Turkarslan S, et al. (2015). The DNA-binding network of Mycobacterium tuberculosis. Nat. 
Commun 6, 5829. [PubMed: 25581030] 

Murray CJ, Ortblad KF, Guinovart C, Lim SS, Wolock TM, Roberts DA, Dansereau EA, Graetz N, 
Barber RM, Brown JC, et al. (2014). Global, regional, and national incidence and mortality for 
HIV, tuberculosis, and malaria during 1990–2013: a systematic analysis for the Global Burden of 
Disease Study 2013. Lancet 384, 1005–1070. [PubMed: 25059949] 

Muttucumaru DG, Roberts G, Hinds J, Stabler RA, and Parish T (2004). Gene expression profile of 
Mycobacterium tuberculosis in a non-replicating state. Tuberculosis (Edinb.) 84, 239–246. 
[PubMed: 15207493] 

Nelder JA, and Mead R (1965). A simplex method for function minimization. Comput. J 7, 308–318.

Novák B, and Tyson JJ (2008). Design principles of biochemical oscillators. Nat. Rev. Mol. Cell Biol 
9, 981–991. [PubMed: 18971947] 

Paquette SML, Leinonen K, and Longabaugh WJ (2016). BioTapestry now provides a web application 
and improved drawing and layout tools. F1000Res 5, 39. [PubMed: 27134726] 

Park HD, Guinn KM, Harrell MI, Liao R, Voskuil MI, Tompa M, Schoolnik GK, and Sherman DR 
(2003). Rv3133c/dosR is a transcription factor that mediates the hypoxic response of 
Mycobacterium tuberculosis. Mol. Microbiol 48, 833–843. [PubMed: 12694625] 

Peterson EJ, Bailo R, Rothchild AC, Arrieta-Ortiz ML, Kaur A, Pan M, Mai D, Abidi AA, Cooper C, 
Aderem A, et al. (2019). Path-seq identifies an essential mycolate remodeling program for 
mycobacterial host adaptation. Mol. Syst. Biol 15, e8584. [PubMed: 30833303] 

Prosser G, Brandenburg J, Reiling N, Barry CE 3rd, Wilkinson RJ, and Wilkinson KA (2017). The 
bacillary and macrophage response to hypoxia in tuberculosis and the consequences for T cell 
antigen recognition. Microbes Infect 19, 177–192. [PubMed: 27780773] 

Reiss DJ, Baliga NS, and Bonneau R (2006). Integrated biclustering of heterogeneous genome-wide 
datasets for the inference of global regulatory networks. BMC Bioinformatics 7, 280. [PubMed: 
16749936] 

Peterson et al. Page 19

Cell Rep. Author manuscript; available in PMC 2020 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Ronan T, Qi Z, and Naegle KM (2016). Avoiding common pitfalls when clustering biological data. Sci. 
Signal 9, re6. [PubMed: 27303057] 

Roy S, Ernst J, Kharchenko PV, Kheradpour P, Negre N, Eaton ML, Landolin JM, Bristow CA, Ma L, 
Lin MF, et al.; modENCODE Consortium (2010). Identification of functional elements and 
regulatory circuits by Drosophila modENCODE. Science 330, 1787–1797. [PubMed: 21177974] 

Rustad TR, Harrell MI, Liao R, and Sherman DR (2008). The enduring hypoxic response of 
Mycobacterium tuberculosis. PLoS ONE 3, e1502. [PubMed: 18231589] 

Rustad TR, Sherrid AM, Minch KJ, and Sherman DR (2009). Hypoxia: a window into Mycobacterium 
tuberculosis latency. Cell. Microbiol 11, 1151–1159. [PubMed: 19388905] 

Rustad TR, Minch KJ, Ma S, Winkler JK, Hobbs S, Hickey M, Brabant W, Turkarslan S, Price ND, 
Baliga NS, and Sherman DR (2014). Mapping and manipulating the Mycobacterium tuberculosis 
transcriptome using a transcription factor overexpression-derived regulatory network. Genome 
Biol 15, 502. [PubMed: 25380655] 

Schnappinger D, Ehrt S, Voskuil MI, Liu Y, Mangan JA, Monahan IM, Dolganov G, Efron B, Butcher 
PD, Nathan C, and Schoolnik GK (2003). Transcriptional adaptation of Mycobacterium 
tuberculosis within macrophages: insights into the phagosomal environment. J. Exp. Med 198, 
693–704. [PubMed: 12953091] 

Schulz MH, Devanny WE, Gitter A, Zhong S, Ernst J, and Bar-Joseph Z (2012). DREM 2.0: Improved 
reconstruction of dynamic regulatory networks from time-series expression data. BMC Syst. Biol 
6, 104. [PubMed: 22897824] 

Sherman DR, Voskuil M, Schnappinger D, Liao R, Harrell MI, and Schoolnik GK (2001). Regulation 
of the Mycobacterium tuberculosis hypoxic response gene encoding alpha -crystallin. Proc. Natl. 
Acad. Sci. U S A 98, 7534–7539. [PubMed: 11416222] 

Shiraishi T, Matsuyama S, and Kitano H (2010). Large-scale analysis of network bistability for human 
cancers. PLoS Comput. Biol 6, e1000851. [PubMed: 20628618] 

Sloutsky R, Jimenez N, Swamidass SJ, and Naegle KM (2013). Accounting for noise when clustering 
biological data. Brief. Bioinform 14, 423–436. [PubMed: 23063929] 

Smoly IY, Lerman E, Ziv-Ukelson M, and Yeger-Lotem E (2017). MotifNet: a web-server for network 
motif analysis. Bioinformatics 33, 1907–1909. [PubMed: 28165111] 

Sun X, Zhang L, Jiang J, Ng M, Cui Z, Mai J, Ahn SK, Liu J, Zhang J, Liu J, and Li Y (2018). 
Transcription factors Rv0081 and Rv3334 connect the early and the enduring hypoxic response of 
Mycobacterium tuberculosis. Virulence 9, 1468–1482. [PubMed: 30165798] 

Suzuki R, and Shimodaira H (2006). Pvclust: an R package for assessing the uncertainty in 
hierarchical clustering. Bioinformatics 22, 1540–1542. [PubMed: 16595560] 

Tiwari BM, Kannan N, Vemu L, and Raghunand TR (2012). The Mycobacterium tuberculosis PE 
proteins Rv0285 and Rv1386 modulate innate immunity and mediate bacillary survival in 
macrophages. PLoS ONE 7, e51686. [PubMed: 23284742] 

Tsai MC, Chakravarty S, Zhu G, Xu J, Tanaka K, Koch C, Tufariello J, Flynn J, and Chan J (2006). 
Characterization of the tuberculous granuloma in murine and human lungs: cellular composition 
and relative tissue oxygen tension. Cell. Microbiol 8, 218–232. [PubMed: 16441433] 

Vignali M, Armour CD, Chen J, Morrison R, Castle JC, Biery MC, Bouzek H, Moon W, Babak T, 
Fried M, et al. (2011). NSR-seq transcriptional profiling enables identification of a gene signature 
of Plasmodium falciparum parasites infecting children. J. Clin. Invest 121, 1119–1129. [PubMed: 
21317536] 

Voskuil MI, Schnappinger D, Visconti KC, Harrell MI, Dolganov GM, Sherman DR, and Schoolnik 
GK (2003). Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis 
dormancy program. J. Exp. Med 198, 705–713. [PubMed: 12953092] 

Wayne LG, and Hayes LG (1996). An in vitro model for sequential study of shiftdown of 
Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect. Immun 64, 
2062–2069. [PubMed: 8675308] 

Wayne LG, and Sohaskey CD (2001). Nonreplicating persistence of mycobacterium tuberculosis. 
Annu. Rev. Microbiol 55, 139–163. [PubMed: 11544352] 

Wernicke S, and Rasche F (2006). FANMOD: a tool for fast network motif detection. Bioinformatics 
22, 1152–1153. [PubMed: 16455747] 

Peterson et al. Page 20

Cell Rep. Author manuscript; available in PMC 2020 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Wu M, Liu L, and Chan C (2011). Identification of novel targets for breast cancer by exploring gene 
switches on a genome scale. BMC Genomics 12, 547. [PubMed: 22053771] 

Yuan Y, Crane DD, Simpson RM, Zhu YQ, Hickey MJ, Sherman DR, and Barry CE 3rd. (1998). The 
16-kDa alpha-crystallin (Acr) protein of Mycobacterium tuberculosis is required for growth in 
macrophages. Proc. Natl. Acad. Sci. U S A 95, 9578–9583. [PubMed: 9689123] 

Peterson et al. Page 21

Cell Rep. Author manuscript; available in PMC 2020 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights

• Reactor enables high-resolution transcriptomics of M. tuberculosis across O2 

gradient

• 147 TFs drive MTB into and out of hypoxia-induced dormancy via distinct 

sub-states

• Robustness, time delay, and anticipatory behavior encoded in transcriptional 

program

• Rv0081-directed feedforward loops play a pivotal role in adaptation to 

hypoxia
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Figure 1. Schematic, Dissolved Oxygen, and Growth Profiles of the Controlled O2 Model Reactor 
System
(A) Schematic of controlled O2 model reactor system. Four reactors were multiplexed and 

individually monitored for DO levels to obtain biological replicates.

(B) DO levels across the 120 h time course.

(B and C) Points are the average of three biological replicates and error bars represent 

standard deviation; the yellow shading indicates the periods of controlled O2 depletion and 

reaeration, whereas the gray background indicates a sustained 2 day immersion in hypoxia.

(C) Growth of H37Rv in fully aerated cultures (triangles, dashed line) or cultures from the 

controlled O2 model reactor system (circles, solid line). Growth was monitored daily 

(aerated cultures) or at each sampling time points (controlled O2 model cultures) by optical 

density at 650 nm.
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Figure 2. The ControlledO2 Model Captures Distinct Cell States over Time Course and O2 
Gradient
(A) t-SNE visualization of all samples (time point median values) across the time course and 

hypoxia gradient.

(B) Average expression profiles for state-specific gene sets across the time course and 

hypoxia gradient. The yellow shading indicate the periods of controlled O2 depletion and 

reaeration, whereas the gray background indicates a sustained 2 day immersion in hypoxia. 

General theme of significant functional term clusters defined by DAVID (Huang et al., 2009) 
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in each state is indicated. Asterisk indicates the most enriched term at the individual term 

level in the resuscitation state.

See also Figure S1 and Data S1.
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Figure 3. Transcriptional Circuits Controlling the Six Transcriptional States Adopted by MTB 
during Entry and Exit from Hypoxia
(A) DREM output. Transcription factors (TFs) associated with selected branching points 

(white nodes) are shown. Each line represents a set of co-expressed genes with similar 

expression behavior until a branching point. Time points and TFs are colored on the basis of 

transcriptional states membership (TFs in black were not differentially expressed). See also 

Data S2.

(B) Heatmap with transcriptional profiles of 147 differentially expressed MTB TFs; number 

in parentheses indicates the number of TFs associated with each state.

(C) TF-TF network of differentially expressed TFs in the controlled O2 model. Only TFs 

with one or more differentially expressed targets were included in the diagram. For TFs in 

late hypoxia, outgoing edges to early and mid hypoxia (right gray box) are shown only for 

TFs with two or more TF targets in those states. The diagram was generated with 

Biotapestry (Paquette et al., 2016).
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Figure 4. Data Supporting Rv0081-Controlled Interlocking FFLs and Overview of the 
Transcriptional Dynamics across the Six-State Model
(A) The log2 fold change (FC) distribution of depletion genes with significant differential 

expression (adjusted p < 0.05, absolute log2 FC > 1) from ΔRv0081 strain in hypoxia.

(B) Boxplots representing log2 FC of various gene groups related to depletion state from 

Rv0081 overexpression. The number in parentheses indicates the number of genes evaluated 

in each group. Horizontal black lines in each box indicate median values. Boxes cover the 

25th-75th percentile ranges.

(C) The log2 FC distribution of late hypoxia genes with significant differential expression 

(adjusted p < 0.05, absolute log2 FC > 1) from ΔRv0081 strain in hypoxia.

(D) Boxplots representing log2 FC of various gene groups related to late hypoxia state from 

Rv0081 overexpression. Horizontal black lines in each box indicate median values. Boxes 

cover the 25th-75th percentile ranges.

(E) Model of Rv0081-controlled interlocking FFLs that together upregulate a significant 

number of genes corresponding to late hypoxia, while also repressing mid hypoxia and 

depletion genes. The p values for enrichment of the FFL-controlled genes from each state 

are indicated below the state name, as evaluated using a hypergeometric test.
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(F) Summary overview of the transcriptional dynamics, inferred key regulators, and 

regulatory circuits that were revealed from the high-resolution and longitudinal gene 

expression profiling across the O2 gradient.

See also Figures S2–S4. *p < 0.05 and **p < 0.01.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

H37Rv (M. tuberculosis) D. Sherman lab N/A

Critical Commercial Assays

Ribo-Zero magentic kit bacteria Illumina Cat # MRZB12424

TruSeq stranded mRNA library prep kit Illumina Cat # RS-122-2103

Deposited Data

Hypoxia/reaeration RNA-Seq data Peterson et al., 2019 GEO: GSE116353

TF-target gene network Peterson et al., 2019 http://networks.systemsbiology.net/mtb/data-center

Software and Algorithms

DuffyNGS Vignali et al., 2011 http://networks.systemsbiology.net/mtb/data-center

DESeq2 Love et al., 2014 https://github.com/mikelove/DESeq2

DREM Schulz et al., 2012 https://sb.cs.cmu.edu/drem/

Biotapestry Paquette et al., 2016 http://www.biotapestry.org/

MATLAB R2014a N/A N/A

Adobe Illustrator CS6 N/A N/A

Inkscape 0.91 N/A N/A

Other

Fibox 4 oxygen meter with display PreSens Cat #200001478

Polymer Optical Fiber for use with oxygen sensor PreSens Cat # 200000241

Oxygen Sensor Spot PreSens Cat # 200000023

Mass flow controller for Air Alicat Scientific Cat # MCW-100ACCM-D/5M,4IN, GAS: Air

Mass flow controller for Nitrogen Alicat Scientific Cat # MCW-100SCCM-D/5M,4IN, GAS: N2

R notebook with scripts for performing computation analyses 
under “mtb hypoxia dormancy”

This paper https://github.com/baliga-lab
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