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Microbes in various aquatic ecosystems play a key role in global energy fluxes
and biogeochemical processes. However, the detailed patterns on the functional
structure and the metabolic potential of microbial communities in freshwater lakes
with different trophic status remain to be understood. We employed a metagenomics
workflow to analyze the correlations between trophic status and planktonic microbiota
in freshwater lakes on Yun-Gui Plateau, China. Our results revealed that microbial
communities in the eutrophic and mesotrophic-oligotrophic lake ecosystems harbor
distinct community structure and metabolic potential. Cyanobacteria were dominant
in the eutrophic ecosystems, mainly driving the processes of aerobic respiration,
fermentation, nitrogen assimilation, nitrogen mineralization, assimilatory sulfate reduction
and sulfur mineralization in this ecosystem group. Actinobacteria, Proteobacteria
(Alpha-, Beta-, and Gammaproteobacteria), Verrucomicrobia and Planctomycetes,
occurred more often in the mesotrophic-oligotrophic ecosystems than those in the
eutrophic ecosystems, and these taxa potentially mediate the above metabolic
processes. In these two groups of ecosystems, a difference in the abundance of
functional genes involved in carbohydrate metabolism, energy metabolism, glycan
biosynthesis and metabolism, and metabolism of cofactors and vitamins significantly
contribute to the distinct functional structure of microbiota from surface water.
Furthermore, the microbe-mediated metabolic potentials for carbon, nitrogen and
sulfur transformation showed differences in the two ecosystem groups. Compared
with the mesotrophic-oligotrophic ecosystems, planktonic microbial communities in the
eutrophic ecosystems showed higher potential for aerobic carbon fixation, fermentation,
methanogenesis, anammox, denitrification, and sulfur mineralization, but they showed
lower potential for aerobic respiration, CO oxidation, nitrogen fixation, and assimilatory
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sulfate reduction. This study offers insights into the relationships of trophic status to
planktonic microbial community structure and its metabolic potential, and identifies the
main taxa responsible for the biogeochemical cycles of carbon, nitrogen and sulfur in
freshwater lake environments.

Keywords: metagenomics, trophic status, taxonomic diversity, community structure, metabolic potential,
planktonic microbiota, lake ecosystem, Cyanobacterial bloom

INTRODUCTION

The microbiota in aquatic ecosystems plays an important role
in elemental cycling and global energy fluxes (Falkowski et al.,
2008; Clark et al., 2018; Cronan, 2018). The relations between
the taxonomic structure of microbial communities in aquatic
environments and complex environmental factors such as trophic
status (Llirós et al., 2014; Wan et al., 2017), seasons (Zhu
et al., 2019), elevation gradient (Li H. et al., 2017), and salinity
(Eiler et al., 2014) have been well studied. However, little is
known about the correlations of these factors with community
functions. Therefore, improving our knowledge about the link
between taxonomy and function of microbial communities can
contribute to a better understanding of the response mechanisms
of microbiota to key environmental changes and gradients
(Logue et al., 2015; Arora-Williams et al., 2018).

The Yun-Gui Plateau Lake Zone is the smallest of the five
lake-zones in China (Ma et al., 2011). About half of the lakes
in this zone, accounting for 90% of the lake area, are located in
Yunnan Province which is a biodiversity hotspot (Zhou et al.,
2019), and these lakes are sensitive areas for recording regional
ecology and global climate change (Li et al., 2015). The plateau
lake ecosystems are vulnerable and not easily restored once
damaged because of the relatively low rate of water exchange and
resilience, and the steep and little-developed lakeshores (Wang
and Dong, 1998; Liao et al., 2016). In the past few decades, some
of these lakes have been seriously damaged by intensification of
human activities, leading to deterioration of water quality and
degradation of ecosystem function (Li W. et al., 2017; Liu et al.,
2017; Gao et al., 2018; Wu et al., 2019). Eutrophication is one
of the biggest of such challenges; it changes the diversity and
composition of lake organisms and poses a serious threat to
ecosystem service function (Liu et al., 2012; Shi et al., 2016; Dong
et al., 2018). To date, most studies have concentrated on microbial
communities in sediment from Yun-Gui Plateau lakes with
different trophic levels (Bai et al., 2012; Dai et al., 2016; Yang et al.,
2017a,b). Only a few studies have focused on microbiota in lake
surface waters, in which the microorganisms are more sensitive
to lake eutrophication than those in sediment (Zeng et al., 2019).
Bacterioplankton compositions in eutrophic Lake Dianchi (Wen
et al., 2012; Dai et al., 2016; Han et al., 2016), mesotrophic
Lake Erhai (Hu et al., 2013) and oligotrophic Lake Haixihai
(Dai et al., 2016) were investigated by analyzing 16S rRNA gene
sequences. Dai et al. (2016) and Han et al. (2016) demonstrated
that trophic status may play important roles in shaping the
taxonomic structure of bacterioplankton communities in the
Yun-Gui Plateau freshwater lakes. Nevertheless, the relations of
lake trophic status to the functional structure of the microbial

communities and the ecological processes within freshwater
systems have seldom been examined.

Because of decreased cost and increased throughput of
sequencing technology (Neufeld, 2017; Quince et al., 2017),
the powerful approach of metagenomics is now widely applied
in studies of microbial communities from many diverse
environments, including soil (Diamond et al., 2019), sediment
(Vavourakis et al., 2018), hosts (Rothschild et al., 2018),
seawater (Sunagawa et al., 2015), and freshwater (Arora-Williams
et al., 2018). A curated set of metabolic marker genes was
used to quantify the genetic potential for microbe-mediated
biogeochemical cycles in a meromictic lake by Lauro et al.
(2011). This method has since been widely used in different
types of ecosystem, including salt marsh (Dini-Andreote et al.,
2016), sediments (Hamilton et al., 2016), an estuary (Kieft
et al., 2018), and a stratified euxinic lake (Llorens-Marès et al.,
2015). Therefore, besides the characterization of community
structure and reconstruction of genomes in individual samples,
comparative analysis of the samples at multiple time points or of
parallel samples across different environmental gradients using
metagenomics facilitates the elucidation of complex microbial
processes in the community, which are difficult to simulate
in the laboratory.

In this study, we applied shotgun metagenomics to examine
the taxonomic and functional structure of surface-water
microbial communities from five freshwater lakes on the Yun-
Gui Plateau. These lakes had four trophic levels: eutrophic, meso-
eutrophic, oligo-mesotrophic and oligotrophic. The relative
abundance of metabolic marker genes was used to assess the
genetic potential for each conversion step of the carbon, nitrogen,
and sulfur cycles in the freshwater lake ecosystems. We explored
the links between microbial composition and metabolic potential,
and inferred the response mechanisms of microbe-mediated
carbon, nitrogen, and sulfur cycles to lake trophic-level changes.
We addressed the following two questions: (a) How does trophic
status relate to distinct taxonomic and functional structures of
planktonic microbial communities? (b) To what extent is it
related to trophic status that each conversion step of microbe-
mediated biogeochemical cycling pathways?

MATERIALS AND METHODS

Study Sites and Sampling
To investigate the relationship of trophic status and the microbial
communities in a plateau lake ecosystem, five lakes with
different trophic status were selected in Yunnan Province, China
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(Supplementary Figure S1 and Table 1). Dianchi Lake (DCL)
and Xingyun Lake (XYL) are eutrophic lakes, turbid with
abundant algae (Yang et al., 2010; Gao et al., 2018). Erhai Lake
(EL) has undergone alteration from mesotrophic to eutrophic
conditions owing to excessive usage of chemical fertilizers and
severe destruction of wetland vegetation along the lakeshore
(Hu et al., 2014; Wang et al., 2015a). Fuxian Lake (FXL)
is oligo-mesotrophic (Cui et al., 2008). Lugu Lake (LGL) is
oligotrophic, and clear with abundant submerged plants (Liao
et al., 2015). Water samples were collected from the surface layer
(0–0.5 m depth) of each lake between June 2014 and September
2017. Our study focused on the planktonic microbes in water
samples, and the methods of sample collection are described in
Supplementary Table S1 and Supplementary Figure S2. Two
samples (DCL-1 and XYL-1) from eutrophic lakes during the
algal bloom period were filtered to enrich the “Cyanobacteria-
attached” fraction (CA, >64 µm) (Li et al., 2011), and the
other samples were collected with mixed-size fractions (>0 µm,
>0.2 µm, and 0.2–64 µm). The volume of water sampling water
was determined by the abundance of the planktonic microbial
community and the size-fraction of filtration to ensure sufficient
biomass for metagenomic DNA extraction. Collected biomass
was stored at −80◦C until processing. The sampling dates,
sampling locations and physicochemical properties of lake water
are shown in Table 1. A flow diagram describing the data analysis
process is shown in Supplementary Figure S3, and scripts used
in this study are available in a public GitHub repository1.

DNA Extraction, Sequencing, and
Assembly
Total community DNA extraction was conducted following a
modified phenol-chloroform method from Xie et al. (2016).
Metagenome sequencing was performed on an Illumina Genome
Analyzer IIx, and yielded > 40 GB per library (>276 M reads,
150 bp paired-end, insert size ∼300 bp). Reads from the same
lake were then co-assembled with MEGAHIT assembler (Li
et al., 2016) (v.1.1.1, with preset meta-large). Coding sequences
(CDSs) were predicted using Prodigal v2.6.3 (-p meta) in all
contigs > 500 bp long (Hyatt et al., 2012). In each sample,
clean reads were aligned back to the contigs using Bowtie2
(Langmead and Salzberg, 2012) and counted by featureCounts
(Smyth et al., 2013). The number of reads for each CDS was
normalized to “transcripts per million” (TPM) as described
elsewhere (Ribicic et al., 2018).

Taxonomic and Functional Assignment
of Metagenome
Two main approaches were chosen for taxonomic annotation,
involving assembly free and assembly based methods (Quince
et al., 2017). The clean reads from each sample were classified
for community composition analysis by using the assembly free
approach. The Kaiju classifier (Menzel et al., 2016) was used to
assign metagenomic reads against the subset of NCBI-NR protein
database (bacteria, archaea, virus) (E-value 0.05). Then, the

1https://github.com/shenmengyuan/Yun-Gui_plateau_lake

kaijuReport program was used to count the phylum-level, class-
level, and order-level abundance of each sample. In addition, the
predicted CDSs were taxonomically assigned to filter eukaryotic
contamination by using the assembly based method. Diamond
(Buchfink et al., 2015) was used to compare predicted protein
sequences against the NR database (version Apr 2, 2019; blastp -f
100 -e 0.00001 –sensitive –top 3), and then the LCA algorithm in
MEGAN6 (blast2lca -f DAA -m BlastP) was performed for CDSs
to produce a taxonomic classification (Huson et al., 2016).

Functional analysis was performed based on microbial CDSs.
The GhostKoala server2 was used to functionally annotate
each CDS by giving KEGG Orthology (KO) accession numbers
(Kanehisa et al., 2016). Then, the annotated functional CDSs were
extracted and assigned to KEGG metabolism of level 2 categories
for subsequent distribution analysis of CDSs with metabolism.
The TPM values of CDSs from the same functional category
were added together.

The analysis of metabolic potential focused on three elemental
biogeochemical cycles (carbon, nitrogen, and sulfur) for the
four trophic lake types. To infer the genetic potential of each
lake ecosystem, the relative abundance of metabolic marker
genes (KO accession numbers) identified in previous studies was
calculated as described elsewhere (Lauro et al., 2011; Llorens-
Marès et al., 2015; Dini-Andreote et al., 2016; Hamilton et al.,
2016; Kieft et al., 2018). In this study, 50 marker genes were used,
representing 20 microbe-mediated elemental cycling processes
(Supplementary Table S2).

Statistical Analysis
Phylum-level read count data matrices and functional abundance
matrices were Hellinger-transformed, respectively. Unweighted
pair group method with arithmetic mean (UPGMA) clustering
analysis and principal coordinate analysis (PCoA) were used
to display and compare the patterns of taxonomic structure
and metabolic function among different samples. In addition,
the significant variance (P < 0.01) between groups of samples
was assessed by permutational multivariate analysis of variance
(PERMANOVA). The correlation between taxonomic and
functional composition was calculated by the Mantel test
(9999 permutations). Similarity percentage (SIMPER) analysis
determined the contributions from each metabolic function
group to PERMANOVA reported differences. Based on the
taxonomic annotation of the metagenomic reads results at the
order-level, the alpha-diversity of each community was calculated
using the ‘diversity()’ function.

Environmental data were normalized to z-scores before
calculating distance. Euclidean distance was used for
environmental data, and Bray-Curtis distance was used for
compositional data. Based on these distance matrices, Mantel
correlations between environmental data and taxonomic and
functional compositional data were calculated, respectively.
Furthermore, pairwise Pearson’s correlation analysis was carried
out to examine the relationship between environmental variables.
Pearson’s correlation analyses between all environmental factors
and the relative abundances of the functional categories were

2www.kegg.jp/ghostkoala/
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TABLE 1 | Description of the samples used in this study.

Sample ID DCL-1 DCL-2 XYL-1 XYL-2 EL-1 EL-2 FXL-1 FXL-2 LGL-1 LGL-2

Physicochemical
properties

Date 20160618 20170925 20160607 20170924 20140614 20170721 20151210 20170924 20160518 20170812

Location 24.96◦N 24.95◦N 24.38◦N 24.36◦N 25.94◦N 25.90◦N 24.57◦N 24.38◦N 27.71◦N 27.71-27.73◦N

102.65◦E 102.66◦E 102.78◦E 102.79◦E 100.16◦E 100.15◦E 102.89◦E 102.85◦E 100.78◦E 100.76-100.80◦E

WT (◦C) 22.13 21.80 25.08 23.80 23.50 22.20 16.91 22.40 15.19 20.87

PH 8.45 8.63 8.88 9.45 9.51 8.66 8.04 8.94 8.18 8.76

TP (mg/L) 0.544 0.351 0.468 0.581 0.032∗ 0.031 0.022 0.020 0.024 0.013

TN (mg/L) 5.815 4.816 5.181 4.151 0.57∗ 0.593 0.220 0.168 0.048 <0.103

Geographic
information#

Lake Lake Dianchi Lake Xingyun Lake Erhai Lake Fuxian Lake Lugu

Trophic status Eutrophic Eutrophic Mesoeutrophic Oligomesotrophic Oligotrophic

Basin The Yangtze River The Pearl River The Lancang River, Jinsha, and Yuanjiang Rivers The Pearl River The Yangtze River

Water level (m a.s.l.) 1887.4 1722 1971 1721 2690.75

Area (km2) 308.6 34.7 249.8 211 48.25

Average water
depth (m)

4.4 7 10.5 87 40.3

Maximum depth(m) 6 11 21.5 155 93.5

Volume (108 m3) 11.69 1.84 25.31 189 19.53

Lake type Shallow Shallow Shallow Deep Deep

Metagenomic
survey

Clean data (Gbps) 50.60 58.91 50.38 64.12 63.43 63.98 60.49 53.01 51.85 41.43

Number of clean
reads

337,333,394 392,760,680 335,888,304 427,445,344 422,842,886 426,528,358 403,286,044 353,402,296 345,656,552 276,184,372

Number of contigs
(>500 bps)

2,381,193 2,318,367 3,929,297 3,368,043 1,604,121

Number of
predicted CDS

3,775,712 3,059,812 6,560,747 5,229,770 2,840,196

% Predicted CDS
with taxonomic
group assignment

60.22 44.12 57.69 40.85 58.89

% Predicted CDS
with KOs
assignment

26.45 20.66 27.24 20.23 27.91

Bacteria (%, based
on reads from
metagenomic data)

23.31 33.11 14.66 41.15 13.65 18.79 19.69 12.55 22.61 28.97

Archaea (%, based
on reads from
metagenomic data)

0.04 0.02 0.01 0.01 0.02 0.03 0.03 0.02 0.03 0.02

Viruses (%, based
on reads from
metagenomic data)

0.74 0.09 0.03 0.03 0.06 0.14 0.28 0.08 0.39 0.11

TN, total nitrogen concentration (mg/L); TP, total phosphorus concentration (mg/L); WT, water temperature; ∗Data source: Cao et al. (2018). #Data source: Cui et al. (2008); Yang et al. (2010), Hu et al. (2014); Liao et al.
(2015), Wang et al. (2015a,b), Ding et al. (2017); Gao et al. (2018).
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performed using the ‘corr.test’ function. Redundancy analysis
(RDA) was performed to investigate the relationships between
environmental variables and microbial communities. Based on
Monte Carlo permutation tests (n = 999 permutations), only the
significant environmental variables were accepted (p < 0.05) for
RDA. In addition, to avoid col-linearity among environmental
variables, high variance inflation factors (VIF > 20) were
eliminated. Environmental variables significantly explaining
community variations were selected by using forward model
selection with the ‘ordistep’ function, and then the variance
explained by each key variable was evaluated by variation
partitioning. All of the above statistical analyses were performed
using the vegan (Oksanen et al., 2019) and psych (Revelle, 2019)
packages in R version 3.5.3.

STAMP software was used to test for differences in microbial
community structure and relative abundance of KOs between
groups, as described elsewhere (Castro-Nallar et al., 2015).
White’s non-parametric t-test in STAMP was applied to
compare the relative abundance of phyla, orders and KOs
between two groups of lake samples (White et al., 2009).
A percentile bootstrapping method (10,000 replications) was
used to estimated confidence intervals, and the false discovery
rate (FDR) in multiple testing was corrected with the Storey’s
FDR method (p < 0.05) (Storey et al., 2004). The trophic
preference KO lists were then uploaded to the online functional
pathway mapping tool iPath3 (Interactive Pathways Explorer v33)
for visualization. KOs that differentially segregated across groups
were identified from 50 metabolic marker genes by random
forest analysis with Boruta feature selection (R package Boruta,
maxRuns = 1000).

RESULTS

Diversity of Microbial Communities
On average, 372.13 million high-quality sequence reads with an
average length of 150 bp were obtained from 10 samples from
the five lakes with different trophic levels located on the Yun-Gui
Plateau (Table 1). The taxonomic assignment of the microbial
communities was performed using short reads-based methods.
A minority of metagenomic reads could be classified (12–41%).
The bacterial domain was the main taxonomic component of the
microbial community in all lake samples.

A Bray–Curtis matrix of samples was used to generate a
dendrogram using the UPGMA clustering method. The samples
from the five lakes were classified into two groups (Figure 1A).
Group I included the four samples from Dianchi Lake and
Xingyun Lake. These two lakes were hypertrophic. Group II was
a complex cluster, consisting of the six samples from EL, FXL,
and LGL. PCoA showed that the classification of lake samples
was highly consistent with that by UPGMA analysis (Figure 1B).
Furthermore, the PCoA plot indicated that trophic status
(eutrophic or mesotrophic-oligotrophic conditions) explained
75.73% of the change in beta-diversity, that was, the total
variation in planktonic microbial community structure between

3https://pathways.embl.de/

groups (PERMANOVA, Pseudo-F = 15.867, p < 0.01). In
addition, compared with the samples in Group II, the samples
in Group I had lower taxonomic alpha-diversity (Wilcoxon test,
p < 0.01) (Figure 1C and Supplementary Table S3).

Taxonomic Structure of Microbial
Communities
Taxonomic annotation showed that the structural composition
of the microbial community at the phylum level varied
between Groups I and II (Figure 1A and Supplementary Table
S4a). We compared the taxonomic structures of these two
groups at the phylum-level (Figure 1D and Supplementary
Table S5a). Hits to the bacterial phylum Cyanobacteria were
more abundant in Group I metagenomic datasets (on average
73.26 ± 13.11%, q-value < 0.01, difference in mean proportions
[DM] 62.65%) than in Group II datasets, and Actinobacteria
were dominant in Group II (on average 28.07 ± 5.15%,
q-value < 0.05, DM −26.22%). Other notable taxa in Group
II were Alphaproteobacteria (on average 15.79 ± 5.32%,
q-value < 0.05, DM −7.91%), Betaproteobacteria (on average
15.34 ± 2.32%, q-value < 0.05, DM −9.50%), Bacteroidetes
(on average 10.58 ± 3.07%, q-value < 0.05, DM −5.77%),
Verrucomicrobia (on average 7.02 ± 4.27%, q-value < 0.05,
DM −6.77%), Planctomycetes (on average 3.97 ± 3.02%,
q-value < 0.05, DM −3.00%), and Gammaproteobacteria (on
average 3.95 ± 2.78%, q-value < 0.05, DM −2.32%).

Moreover, we also identified significant relative
abundance differences between the groups at the order-
level (Supplementary Figure S4 and Supplementary Table S4b).
Of the 209 orders recovered, 16 (7.66%) were overrepresented
in one of the two groups (q-value < 0.05, absolute difference
between means > 1%) (Figure 1D and Supplementary
Table S5b). For example, we observed a higher proportion
of reads affiliated to Chroococcales (phylum Cyanobacteria,
q-value < 0.05, DM 73.79%) in Group I than in Group II;
conversely, more metagenomic reads of Burkholderiales were
detected in Group II than that in Group I (Betaproteobacteria,
q-value < 0.05, DM −13.37%).

Functional Structure of Microbial
Communities
Assembly of ∼213 Gbps metagenomic sequences yielded ∼14
M contigs (18 Gbps), and ∼24 M predicted CDSs (excluding
eukaryotic CDSs) across the five sampled lakes. Between
40.85 and 60.22% of CDSs were assigned to a taxonomic
group, and between 20.23 and 27.91% were annotated to
KOs (Table 1). PCoA based on selected KOs involved in
metabolism revealed a distinct separation of functional structures
between Groups I and II (Figure 2A) (PERMANOVA, Pseudo-
F = 18.358, p < 0.01), with a similar ordination pattern to
the taxonomic structure (Figure 1B). Interestingly, there was
a significant correlation between the functional and taxonomic
structures inferred from metagenomic reads (Mantel’s test,
Pearson r = 0.964; p < 0.001).

Carbohydrate metabolism was the most abundant functional
category, with relative abundance range from 22.31 to 25.34%
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FIGURE 1 | Taxonomic structure and diversity of planktonic microbial communities in lakes exhibiting different trophic status. (A) The taxonomic structure across
samples. The relative abundance of reads grouped at the phylum-level is shown for each metagenome library. Phyla with relative abundance not in the top ten are
shown as “Other.” Hierarchical clustering (UPGMA) based on Bray–Curtis dissimilarity matrices. See detailed information in Supplementary Table S4a. (B) PCoA
based on complete taxonomic community profiles with 75% confidence ellipses (phylum-level taxonomic annotations). Significant clusters are indicated by dashed
lines (PERMANOVA, 9999 permutations, P < 0.01). (C) Boxplots figure shows the range of different alpha diversity indices. The box represents the lower quartile,
median, and upper quartile. See detailed information in Supplementary Table S3. (D) The extended error bar plot shows that phyla and orders significantly
over−/−under-represented in Group I and Group II samples (see Supplementary Tables S5a,b). The difference in mean proportions and the corrected p-value of
significance are also pointed out.

within samples (Figure 2B). The second most abundant
functional category was amino acid metabolism (18.81–21.17%),
followed by energy metabolism (13.25–18.41%). SIMPER analysis
was performed to determine the categories making a significant
contribution to the differences between groups. Based on the
average abundance of functional categories in Groups I and II,
we found that functional categories of carbohydrate metabolism,
energy metabolism, glycan biosynthesis and metabolism, and
metabolism of cofactors and vitamins (SIMPER ratio > 2.0%,
FDR padj < 0.01) were different between Group I and
Group II samples. A total of 1395 significantly different KOs
were successfully mapped onto the KEGG reference metabolic
pathway map (Supplementary Figure S5 and Supplementary
Table S5c), which indicated that the interrelation of the microbial

taxa both within and between these various categories of
metabolism deserves further study.

Correlations Between Environmental
Factors and Community Composition
The environmental characteristics of the five lakes are displayed
in Table 1. The five lakes involved in this study represented
a wide range of trophic status, including oligotrophic, oligo-
mesotrophic, meso-eutrophic and eutrophic ecosystems. They
range from 0.048 to 5.815 mg/L total nitrogen (TN), and 0.013
to 0.581 mg/L total phosphorus (TP). Furthermore, TN was
positively correlated with TP (Pearson’s test R2 > 0.95, p< 0.001)
(Figure 3A). Water temperature (WT) and PH were positively
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FIGURE 2 | Functional structure of planktonic microbial communities in lakes with different trophic status. (A) PCoA based on selected KOs involved in the
metabolism pathway with 90% confidence ellipses. (B) Heatmap representing the functional clustering of the predicted CDS from the metagenomic data based on
the KEGG categories of metabolism level 2. Hierarchical clustering (UPGMA) based on Bray–Curtis dissimilarity matrices.

correlated with TN and TP, and most of lake geography factors
(average water depth, volume and water level) were negatively
correlated with lake water quality factors (WT, PH, TN, and TP).
It should be noted that the average water depth had a strong
negative correlation with WT, TN and TP. Mantel tests indicated
that TN and TP were strongly related to taxonomic and gene
functional composition (Mantel’s R > 0.7, p < 0.01) (Figure 3A).

In the RDA model (Figure 3B), environmental factors
including TN, TP, WT and average water depth made
significant contributions to the relationship between taxonomic
composition and environment (p < 0.05), and the first
axis (RDA1) explained 79.65% of the total variance for the
planktonic microbial communities. TN and TP were positively
associated with the proportion of Cyanobacteria, but they were
negatively associated with the proportion of Actinobacteria,
Proteobacteria (Alpha-, Beta-, and Gammaproteobacteria),
Bacteroidetes, Planctomycetes and Verrucomicrobia. The results
of variation partitioning further showed that TN and TP jointly
explained 77.9% of the changes in community structure, among
which TN and TP explained 67.7 and 75.5% of the community
changes, respectively (Figure 3B). A heatmap showed Pearson’s
correlations between all environmental factors and the relative
abundances of the functional categories with an important
contribution to the differences between groups (Figure 3C).
TN and TP were positively related to energy metabolism and
metabolism of cofactors and vitamins (p < 0.01), while they
were negatively related to carbohydrate metabolism and glycan
biosynthesis and metabolism (p < 0.01).

Community Metabolic Potential
We used the TPM value of each marker genes present in
the samples from the five lakes as proxies for the genetic
potential of microbiota in different steps of the C, N, and
S cycles. Among 50 marker genes, 17 were found to have

a different distribution between the two groups (Figure 4).
Furthermore, marker gene-level hierarchical analysis grouped the
samples according to trophic state, which was consistent with the
grouping results from other community annotations, including
taxonomic classification and metabolism.

In the carbon cycle, in all lakes, the main pathway detected
was aerobic respiration, by Cyanobacteria in Group I, and by
Actinobacteria and Alphaproteobacteria in Group II (Group I:
41.84%; Group II: 62.79%; p < 0.01) (Figure 5, Supplementary
Figure S6, and Supplementary Table S6). Aerobic carbon
fixation through the Calvin cycle in Group I was mainly driven by
Cyanobacteria, and the potential was higher than that in Group
II where it was driven by Cyanobacteria and Betaproteobacteria
(p < 0.01). In addition, fermentation in Group I was also driven
by Cyanobacteria, and the potential was higher than that in
Group II where it was driven by Planctomycetes (p < 0.01). The
potential for CO oxidation in Group II, driven by Actinobacteria
and Betaproteobacteria, was higher than that in Group I where it
was mediated by Alphaproteobacteria (p < 0.01). Notably, low
abundance methanogenesis marker genes from Euryarchaeota
were detected only in Group I.

In the nitrogen cycle, there was no statistically significant
difference in the genetic potential for metabolic processes
between the two groups, but we could still observe some
interesting results. Marker genes associated with the processes
of N assimilation and mineralization accounted for the major
proportion of nitrogen cycle genes in both groups (Group I:
65.25% and 29.43%; Group II: 70.87% and 25.34%, respectively)
(Figure 5). In communities belonging to Group I, these processes
were mainly driven by Cyanobacteria, whereas in Group II
they were driven by Actinobacteria. The genetic potential for
anammox and denitrification in Group I was higher than that
in Group II, while the potential for nitrogen fixation and nitrate
reduction in Group I was lower than that in Group II. There was
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FIGURE 3 | Environmental drivers of community composition. (A) Pairwise comparisons of environmental factors are shown. The color gradients and box sizes
represent Pearson’s correlation coefficient, and red indicates a positive correlation and blue indicates a negative correlation. Taxonomic and functional (based on
metabolism KEGG modules) community composition are related to each environmental factor by Mantel tests. Line width corresponds to the Mantel’s r statistic for
the corresponding distance correlations, and line color indicates the statistical significance based on 9999 permutations. (B) Redundancy analysis (RDA) is
performed on the taxonomic profile (phylum level) and key environmental characteristics (WT, TN, TP, average water depth). Arrows indicate the correlation between
environmental parameters and community structure. (C) Pearson’s correlations between all environmental factors and the relative abundances of the different
metabolism categories (∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05).

no obvious difference between groups in the potential for, and
mediating-microbiota for, ammonification, nitrification, nitrate
reduction and nitrite oxidation.

In the sulfur cycle, sulfur mineralization and assimilatory
sulfate reduction processes had the highest genetic potential in
all lakes. The genetic potential for assimilatory sulfate reduction
in Group II was driven by Actinobacteria, and which was higher
than that in Group I where it was mediated by Cyanobacteria
(p < 0.01). Conversely, the potential for sulfur mineralization
in Group I, mediated by Cyanobacteria, was higher than that in
Group II, where it was mediated by Proteobacteria (p < 0.01).

DISCUSSION

Distinct Taxonomic Structure and
Diversity of Communities in Each
Ecosystem
In this study, the percentage of reads that could be taxonomically
classified was relatively low. This is a reasonable outcome,

explained by the incomplete information contained in reference
databases and eukaryotic contamination in environmental
metagenomes (Gori et al., 2011; Miller et al., 2019). Nevertheless,
the annotation results reflect the composition of the microbial
communities in the samples based on high-quality assignments.

Only a few studies have shown that there are remarkable
differences in planktonic microbial community structure in
freshwater lakes with different trophic status (Dai et al., 2016;
Han et al., 2016; Hanson et al., 2017; Ji et al., 2018). In this
study, we found that there were large differences in the taxonomic
structures of the microbial communities from eutrophic
(Group I) and mesotrophic-oligotrophic (Group II, the trophic
level from mesotrophy to oligotrophy) freshwater ecosystems in
the Yun-Gui Plateau. Moreover, our results suggested that the
abundance of the phylum Cyanobacteria (order Chroococcales),
which was dominant in eutrophic conditions, was significantly
higher in eutrophic environments than that in mesotrophic-
oligotrophic environments. In the mesotrophic-oligotrophic
ecosystems, the phyla of Actinobacteria and Proteobacteria
(Alpha-, Beta-, and Gammaproteobacteria) became dominant,
indicating that they have a distinct preference for less eutrophic
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FIGURE 4 | Distribution of KOs involved in C, N, S cycle transformations in samples collected along the five Yun-Gui Plateau lakes. The heatmap displays the relative
abundance [log2(TPM + 1)] of KOs across all samples. Hierarchical clustering (UPGMA) based on Bray–Curtis dissimilarity matrices. KOs that differentially
segregated across groups are identified by random forest analysis with Boruta feature selection (1000 runs > 4).

conditions. Thus, we focused on the correlation between these
key taxonomic groups and trophic status. The results of RDA
revealed that the occurrence of the phylum Cyanobacteria
correlated with trophic status (McMahon and Read, 2013), and
the occurrence of Actinobacteria and Proteobacteria (Alpha-,
Beta-, and Gammaproteobacteria) with less eutrophic states
(Haukka et al., 2006; Ji et al., 2018). The co-occurrence of the key
taxa and the particular trophic level indicates that each taxonomic
group has unique characteristics in freshwater lake ecosystems.
For example, Alphaproteobacteria are competitive in conditions
of low nutrient/substrate utilization rate (Newton et al., 2011),
and Cyanobacteria outcompete other planktonic microbes for
nutrients in eutrophic systems (McMahon and Read, 2013).

Liu et al. (2012) reported that deeper lakes usually have
better water quality than shallow lakes, and lake depth plays
an important role in explaining the spatial dynamic of water

quality in Yunnan Plateau. In our study, we observed the
same findings that eutrophic ecosystems were shallow lakes
and mesotrophic-oligotrophic ecosystems were deep lakes. It
may be due to the deep lakes are associated with higher
nutrient dilution ability than shallow lakes (Liu et al., 2012).
The correlation analysis between environmental factors indicated
that lake depth has significant relationships with TN and TP
concentrations. Thus, we propose the average water depth of a
lake can be used as a predictor of eutrophication. Additionally,
previous studies have reported that the diversity pattern of
planktonic bacterial communities in freshwater systems could
be significantly correlated with TN and TP concentrations when
subjected to eutrophication (Dai et al., 2016; Zeng et al., 2019),
and this is consistent with the results of our RDA and variation
partitioning. Although there were some differences in sampling
time, location and size fraction of samples from the same lake in
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FIGURE 5 | Distribution of genes involved in the carbon, nitrogen and sulfur cycle. Genetic potential for several processes of the C, N, S cycle in the five Yun-Gui
Plateau lakes using normalized marked genes. The genetic potentials for each conversion process are assessed based on the combination of these selected marker
genes. For marker genes in the same process, the TPM values of genes with the same metabolic function are averaged, and the TPM values of genes with different
metabolic functions are added. Arrow sizes are proportional to the genetic potential of the pathways (100% values of each cycle, see Supplementary Table S6).
Dotted lines indicate that marked genes are rarely detected. Differences across trophic status are shown by z-score heatmap boxes indicated in each C/N/S
transformation.

our study, the clustering of all samples still showed a significant
pattern. Samples could be divided into two groups according
to the trophic status of the lake. In addition, we observed that
there were important differences in taxonomic alpha- and beta-
diversity patterns across trophic gradients. Consequently, we
conclude that the taxonomic diversity of planktonic microbial
communities in freshwater lakes may be related to trophic
status. Horner-Devine et al. (2003) observed that the diversity
of planktonic bacteria exhibits a downward arched (parabolic)

pattern along a gradient of primary productivity. Zeng et al.
(2019) also found that the planktonic bacterial community has
a positive quadratic relationship with the trophic level. Our
results reflected a similar trend, that the alpha-diversity of
planktonic microbiota in the eutrophic systems was significantly
lower than that in mesotrophic-oligotrophic conditions, and
within the mesotrophic-oligotrophic ecosystems, the alpha-
diversity in the mesotrophic lake was higher than that in the
oligotrophic lake.
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Distinct Functional Structure of
Communities in Each Ecosystem
Previous studies suggested that the functional structure of the
microbial community is strongly associated with the taxonomic
structure across the soil, estuary water and lake ecosystems
(Dini-Andreote et al., 2016; Ren et al., 2017; Kieft et al.,
2018). The profile of microbial community functions during a
Cyanobacterial bloom in a eutrophic freshwater lake has been
reported (Steffen et al., 2012; Chen et al., 2018). However, no
comparative metagenomics study has been performed revealing
the differences in microbial communities in lakes with different
trophic status. Using metagenomic analysis, we observed a large
difference in the functional structure of the planktonic microbial
community between eutrophic and mesotrophic-oligotrophic
freshwater ecosystems in the Yun-Gui Plateau lakes, which
was strongly correlated with the differences in the taxonomic
structures of the communities. By correlation analysis between
environmental factors and functional categories, we found that
the functional profiles of lakes with different trophic status were
mainly correlated to TN and TP concentrations.

Our results showed that genes encoding carbohydrate
metabolism and glycan biosynthesis and metabolism were
abundant in mesotrophic-oligotrophic freshwater ecosystems,
suggesting that microbial communities in surface water of
mesotrophic-oligotrophic freshwater ecosystems may have
higher utilization rates of organic carbon and higher carbon
flux than those of eutrophic systems (Biddanda et al., 2001).
Furthermore, genes involved in energy metabolism and
cofactors and vitamin metabolism were abundant in the
eutrophic ecosystems, which probably related to the high
abundance of Cyanobacteria driving rapid energy conversion
in this ecosystem and the need for heterotrophic bacteria
to produce a large number of cofactors and vitamins (Tang
et al., 2010; Li et al., 2018). Accordingly, we inferred that
trophic status may contribute to changes in ecosystem function
by driving the taxonomic and functional divergence of the
microbial community.

Metabolic Potential of Communities in
Each Ecosystem
Owing to variance in the overall functional potential distributions
of microbial communities, it can be hypothesized that microbe-
mediated biogeochemical cycles are ecosystem-specific, resulting
in differences in genetic potential for carbon, nitrogen and sulfur
cycling processes in the overlying water of freshwater lakes with
different trophic states.

In our study, two high abundance metabolic processes,
nitrogen assimilation and nitrogen mineralization, had equal
potential across all lakes, indicating that differences in taxonomic
composition do not influence the potential of the community
to drive these processes. However, the relative abundance
of markers of some processes was not constant between
ecosystems. For instance, the potential for aerobic respiration
and assimilatory sulfate reduction was relatively more abundant
in the mesotrophic-oligotrophic freshwater ecosystems, while
aerobic carbon fixation, fermentation and sulfur mineralization

genes were relatively more abundant in the eutrophic freshwater
ecosystems. Although lakes only account for a small fraction of
the surface of the Earth (Chen et al., 2015), changes in these
processes caused by trophic alteration in freshwater lakes may
affect global biogeochemical cycles.

The phylum Cyanobacteria plays a crucial role as a primary
producer in freshwater ecosystems, and it provides organic
matter through photosynthesis to support the growth of various
heterotrophic planktonic bacteria (Fujii et al., 2016). Therefore, it
is reasonable that eutrophic ecosystems with a high abundance
of Cyanobacteria have a stronger potential for aerobic carbon
fixation. Furthermore, in shallow eutrophic lakes, the occurrence
of algal blooms in summer not only provides abundant organic
matter, but also forms a local dark and anaerobic environment
in the overlying water. Stal and Moezelaar (1997) reported
that in dark, anoxic conditions, Cyanobacteria use fermentation
instead of aerobic respiration as an alternative means of energy
generation. Hence, Cyanobacteria in eutrophic ecosystems drive
fermentation processes to produce energy to compensate for the
relatively low potential of aerobic respiration.

There have been few studies on CO oxidation in lake
surface waters. CO in water mainly comes from photochemical
degradation of Chromophoric/Colored dissolved organic
matter (Stubbins, 2001), which is accelerated by nutrient
accumulation (Zhang et al., 2010; Zhou et al., 2018a). Therefore,
a eutrophic ecosystem should have more CO flux. However,
the abundance of marker genes related to CO oxidation
in the mesotrophic-oligotrophic freshwater ecosystems was
higher than that in the eutrophic lakes, indicating that the
CO oxidation potential in the mesotrophic-oligotrophic
lakes was higher. This may be because of microorganisms
need more efficient energy harvesting in conditions of low
nutrition, and higher primary productivity can reduce the
dependence of planktonic microorganisms on exogenous carbon
in eutrophic waters. Furthermore, we found that methanogenesis
was driven by Euryarchaeota in the eutrophic surface water
of Dianchi Lake. Recent works have revealed that a large
fraction of CH4 oversaturation in aquatic environments is
produced in oxygenated surface waters (Townsend-Small
et al., 2016; Zhou et al., 2018b). Thus, we suspect that a local
anaerobic environment caused by Cyanobacterial blooms
in eutrophic lakes may promote the production of CH4 in
aerobic overlying water to some extent (Xing et al., 2012).
Evans et al. (2017) reported that eutrophication causes
lakes to transition from sinks to sources of carbon. Our
data suggest carbon accumulation in the eutrophic lake
because of increased carbon fixation potential relative to
respiratory potential.

Wu et al. (2019) found that algal blooms could accelerate
the nitrogen cycling rate. Our results showed that there was
no dramatic divergence in the potential for N-cycle processes
between the eutrophic and the mesotrophic-oligotrophic
freshwater ecosystems, but there were some noteworthy
differences in anammox, denitrification and nitrogen fixation.
Rich organic matter produced by algal blooms can be converted
into ammonia and nitrate for anammox and denitrification
(Wu et al., 2019). Hence, we infer that there are high potentials
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for these two processes in eutrophic ecosystems, which may
be the result of an accelerated N-cycle within this ecosystem.
In addition, the lower potential for nitrogen fixation in
eutrophic ecosystems is the result of the presence of rich organic
matter, while the higher potential for nitrogen fixation in the
mesotrophic-oligotrophic ecosystems is most likely related to a
lack of organic matter.

Although sulfur cycling in freshwater sediments and vertical
water columns has been well studied (Cai et al., 2019; Ren
et al., 2019), the genetic potential for sulfur transformation
in surface waters of lakes with different trophic status has
not been studied. With the death of a large number of
Cyanobacteria in eutrophic lakes, the high content of sulfur-
containing amino acids in their cells might be released (Lu et al.,
2013), resulting in a water column enriched with organic sulfur.
Our results showed that planktonic microbial communities in the
eutrophic ecosystems exhibited less abundance of assimilatory
sulfur reduction-related genes to produce organic sulfur; on the
contrary, planktonic microbial communities in the eutrophic
ecosystems exhibited higher potential for sulfur mineralization
than those in the mesotrophic-oligotrophic environments, which
may lead to the tendency of the eutrophic ecosystems to
release H2S gas.

CONCLUSION

Our research reports on the planktonic microbial communities
of five plateau freshwater lakes with different trophic status,
located in Yunnan, China. The trophic alterations caused
by anthropogenic activities are not only related to microbial
community composition, but also to the genetic potential for
important carbon, nitrogen and sulfur biogeochemical cycling
reactions mediated by microbes in the surface waters.

The overall differences in metabolic functions and the
genetic potential for elemental cycling were strongly related
to divergence in the taxonomic structure and diversity of the
planktonic microbial communities. Energy metabolism and
cofactors and vitamin metabolism had strong representation in
the eutrophic ecosystems; carbohydrate metabolism and glycan
biosynthesis and metabolism had strong representation in the
mesotrophic-oligotrophic ecosystems. Moreover, the phylum
Cyanobacteria, dominant in the eutrophic ecosystems, mainly
mediated the processes of aerobic respiration, fermentation,
nitrogen assimilation, nitrogen mineralization, assimilatory
sulfate reduction and sulfur mineralization in this system.
The phyla Actinobacteria and Proteobacteria (Alpha-,
Beta-, and Gammaproteobacteria), Verrucomicrobia and
Planctomycetes showed higher relative abundance in the
mesotrophic-oligotrophic ecosystems than those in the eutrophic
ecosystems. In the mesotrophic-oligotrophic ecosystems, aerobic
respiration, nitrogen assimilation, nitrogen mineralization
and assimilatory sulfate reduction were mainly mediated by
the phylum Actinobacteria, sulfur mineralization was mainly
driven by Alphaproteobacteria, and fermentation was mainly
driven by Planctomycetes. Planktonic microbial communities
in the eutrophic ecosystems had higher potential for aerobic

carbon fixation, fermentation, methanogenesis, anammox,
denitrification and sulfur mineralization than those in the
mesotrophic-oligotrophic ecosystems. Besides, planktonic
microbial communities in the mesotrophic-oligotrophic
ecosystems had higher metabolic potentials for aerobic
respiration, CO oxidation, nitrogen fixation and assimilatory
sulfate reduction than those in the eutrophic ecosystems.
Overall, trophic preference of some key taxonomic groups
leads to communities with distinct taxonomy and functions,
corresponding to ecosystem-specific carbon, nitrogen and sulfur
cycles in Yun-Gui Plateau freshwater lakes characterized by
different trophic status.
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