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Purpose: This study aimed to identify candidate gene markers that may facilitate chronic obstructive pulmonary disease (COPD)
diagnosis and treatment.
Methods: The GSE47460 and GSE151052 datasets were analyzed to identify differentially expressed mRNAs (DEmRs) between
COPD patients and controls. DEmRs that were differentially expressed in the same direction in both datasets were analyzed for
functional enrichment and for coexpression. Genes from the largest three modules were tested for their ability to diagnose COPD
based on the area under the receiver operating characteristic curve (AUC). Genes with AUC > 0.7 in both datasets were used to
perform regression based on the “least absolute shrinkage and selection operator” in order to identify feature genes. We also identified
differentially expressed miRNAs (DEmiRs) between COPD patients and controls using the GSE38974 dataset, then constructed
a regulatory network. We also examined associations between feature genes and immune cell infiltration in COPD, and we identified
methylation markers of COPD using the GSE63704 dataset.
Results: A total of 1350 genes differentially regulated in the same direction in the GSE47460 and GSE151052 datasets were found.
The genes were significantly enriched in immune-related biological functions. Of 186 modules identified using MEGENA, the largest
were C1_ 6, C1_ 3, and C1_ 2. Of the 22 candidate genes screened based on AUC, 11 feature genes emerged from analysis of a subset
of GSE47460 data, which we validated using another subset of GSE47460 data as well as the independent GSE151052 dataset. Feature
genes correlated significantly with infiltration by immune cells. The feature genes GPC4 and RS1 were predicted to be regulated by
miR-374a-3p. We identified 117 candidate methylation markers of COPD, including PRRG4.
Conclusion: The feature genes we identified may be potential diagnostic markers and therapeutic targets in COPD. These findings
provide new leads for exploring disease mechanisms and targeted treatments.
Keywords: chronic obstructive pulmonary disease, bioinformatics analysis, miRNAs, immune response, feature genes

Introduction
According to estimates from the Global Burden of Disease (GBD) study, 523 million around the world had cardiovas-
cular disease in 2019.1 Chronic obstructive pulmonary disease (COPD) is a major cause of global morbidity and
mortality related to cardiovascular disease. COPD is caused by persistent, often progressive airflow limitation in the
lungs, and it includes the conditions of chronic bronchitis and emphysema.2 More than 3 million people die from COPD
every year worldwide,3 and COPD is expected to become the third leading cause of death globally by 2030.4 Despite the
worldwide prevalence of this disease, it remains largely underdiagnosed and undertreated.
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Many factors have been associated with COPD, including systemic and local inflammation, air pollution and
smoking.5 However, the exact mechanism of COPD remains unclear. Clinically, this disorder is characterized by
cough and chronic dyspnea resulting from airway stenosis. Accumulating evidence indicates that COPD is a systemic
disease, and that its pathological manifestations are not limited to lung inflammation and airway remodeling6 In fact,
COPD has a profound effect on cardiac function and gas exchange, and COPD patients are at 2–5 times greater risk of
cardiovascular disease than the general population.7 Cardiovascular disease in any stage of COPD greatly increases the
risk of death and hospitalization.8 Approximately 22–40% of COPD patients experience at least one moderate or severe
exacerbation each year, and 9–16% experience more than one exacerbation per year.9

Dyspnea is the main symptom of COPD and the most frequent reason why COPD patients seek medical attention.10

At the onset of COPD, timely intervention to relieve symptoms and exacerbations can prevent an acute decline in lung
function and progression of the condition to severe emphysema.11 Current treatments of COPD involve long-term
inhalation therapy with bronchodilators, corticosteroids, or a combination of these agents.12 Combination therapy may be
more effective than monotherapies for relieving COPD exacerbations, but the evidence is inconclusive.13 A challenge to
effective treatment is that the nine approved drug classes for COPD maintenance therapy treat only the symptoms, rather
than the underlying inflammation or progression.14

Elucidating the pathogenic pathways in COPD may help identify new treatments and strategies to prevent exacer-
bations. Toward that end, we applied bioinformatics to public databases to explore molecular mechanisms and feature
genes potentially associated with COPD. We explored the potential functions of the feature genes in the disease, with
a focus on immune cell infiltration as well as gene regulation by microRNAs (miRNAs) and DNA methylation.
Understanding these regulatory mechanisms and identifying potential marker genes may lead to the development of
new therapeutic strategies.

Materials and Methods
Data Collection
All data in this study were obtained from the Gene Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.
gov/geo/). The GSE47460 dataset15 included mRNA expression profiles from whole-lung homogenates of 144 COPD
patients and 91 controls, obtained using the GPL14550 platform. The GSE151052 dataset16 included mRNA
expression profiles from lung tissues of 77 COPD patients and 40 controls, obtained using the GPL17556 platform.
The GSE38974 dataset17 included mRNA expression profiles from lung tissues of 23 COPD patients and 9 controls,
obtained using the GPL4133 platform; as well as miRNA expression profiles from 19 COPD patients and 8 controls,
obtained using the GPL7723 platform. The GSE76925 dataset18 included mRNA expression profiles from lung tissues
of 111 COPD patients and 40 controls, obtained using the GPL10558 platform. The GSE63704 dataset19 included
methylation profiles from lung tissues of 86 COPD patients and 26 controls, obtained using the GPL13534 platform.

Analysis of Expression and Methylation Differences Between COPD Patients and
Controls
The limma package in R20 was used to search for differences in mRNA levels between COPD patients and controls in
the GSE47460 and GSE151052 datasets, as well as differences in miRNA levels between COPD patients and controls
in the GSE38974 dataset. The cutoff value for differential gene expression was P < 0.05. DEmRs and DEmiRs were
defined as differentially expressed mRNAs or miRNAs, respectively. DEmRs that were differentially expressed (up-
or downregulated) in the same direction in both the GSE47460 and GSE151052 datasets were defined as common
genes.

The cAMP package in R was used to identify differences in gene methylation between COPD patients and controls in
the GSE63704 dataset. Differentially methylated probes (DMPs) were defined as methylation sites that passed the
significance threshold of P < 0.05. Only DMPs with ∆Beta values that varied between patients and controls in the
opposite direction as common genes were retained in the analysis.
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Analysis of Functional Enrichment
Common genes were analyzed for enrichment in Gene Ontology (GO) biological processes and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways using the clusterProfiler package in R.21 Enrichment was considered significant
at P < 0.05. Activated or inhibited enrichment was assessed using gene set variation analysis (GSVA) in R.22 Gene set
enrichment analysis (GSEA) was also carried out using the fgsea package in R.

Construction of a Gene Coexpression Network
Common genes were analyzed using multiscale embedded gene coexpression network analysis (MEGENA) in R.23 This
analysis generates embedded, multi-scale networks to uncover biologically meaningful genes, which are then assigned to
modules of coexpressed genes.

Regression Based on the Least Absolute Shrinkage and Selection Operator (LASSO)
Genes in modules 2, 3, and 6 were assessed for their ability to differentiate COPD patients and controls based on the area
under the receiver operating characteristic curve (AUC), as calculated using the pROC package in R.24 DEmRs that were
present in both GSE47460 and GSE151052 datasets and that gave AUC > 0.7 were used to build a binomial LASSO
regression model in the glmnet package in R.25 LASSO regression was performed to shrink the regression coefficients
towards zero as λ increased. We then optimized λ in order to identify feature genes.

Immune Cell Infiltration
Levels of infiltration by different types of immune cells in lung tissues of COPD were evaluated using single-sample
GSEA as coded in the GSVA package in R. The analysis was performed on data from datasets GSE151052, GSE38974,
GSE47460, and GSE76925. Differences in infiltration levels between COPD patients and controls were identified using
the limma package. We also evaluated potential correlations between feature gene expression and levels of immune cell
infiltration using Pearson correlation analysis. Results associated with P < 0.05 were considered significant. Proportions
of immune cells in lung tissues of COPD patients were analyzed using CIBERSORT (https://cibersort.stanford.edu/),
after excluding immune cell types associated with “0”.

Target Prediction
Downstream genes possibly regulated by DEmiRs were predicted using Targetscan (http://www.targetscan.org/vert_72/).

Statistical Analysis
All statistical analyses were performed using R (version 3.9.1) and related packages within the R environment. Results
associated with P < 0.05 were considered statistically significant.

Results
DEmRs in COPD
The design of this study is shown in Figure 1. We identified 6544 DEmRs between COPD patients and controls in the
GSE47460 dataset (Figure 2A, Table S1) and 10,693 DEmRs in the GSE151052 dataset (Figure 2B, Table S2), based on
a definition of differential expression as fold change > 0. A total of 487 DEmRs were upregulated in both datasets
(Figure 2C), while 863 were downregulated in both (Figure 2D). These DEmRs were defined as common genes, which
may be linked to COPD disease.

Biological Functions of Common Genes
To predict the biological functions in which common genes may be involved, we performed enrichment analysis.
Enrichment analysis implicated the common genes in the GO biological processes of T cell activation, regulation of
leukocyte activation, and lymphocyte differentiation (Figure 3A). The common genes were also implicated in the KEGG
signaling pathways of leukocyte transendothelial migration, primary immunodeficiency, and asthma (Figure 3B). GSEA
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Figure 1 Flowchart of this study.
Abbreviations: AUC, area under the receiver operating characteristic curve; COPD, chronic obstructive pulmonary disease; GSEA, gene set enrichment analysis; LASSO,
least absolute shrinkage and selection operator.

Figure 2 Differentially expressed mRNAs between COPD patients and controls. (A) Differentially expressed mRNAs between COPD patients and controls in the
GSE47460 dataset. Red dots are upregulated genes; green dots, downregulated genes. (B) Differentially expressed mRNAs between COPD patients and controls in the
GSE151052 dataset. Venn diagram of (C) upregulated or (D) downregulated genes common to both datasets.
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of common genes suggested that COPD was associated with activation of the intestinal immune network involved in IgA
production, with activation of asthma pathways, and with inhibition of axon guidance and tight junctions (Figure 3C).
These results suggest that common genes are involved in biological processes related to immune and inflammatory
responses.

Figure 3 Potential functions of common genes in COPD. (A) Gene Ontology biological processes enriched in common genes. (B) Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways enriched in common genes. (C) The fgsea results of activated or inhibited KEGG pathways in COPD. NES, normalized enrichment score; pval,
P value; padj, adjusted P value.
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Construction of a Gene Coexpression Network
To further identify aberrantly expressed genes with important roles in COPD, we performed MEGENA on common
genes (Figure 4A), which defined 186 modules containing a total of 1345 genes. The three largest modules were C1_ 6,
with 270 genes; C1_3, 269 genes; and C1_2, 259 genes (Figure 4B). Genes in these three modules that differentiated
COPD patients from controls with an AUC > 0.7 in both the GSE47460 and GSE151052 datasets (Figure 4C) were
defined as candidate genes. We obtained 22 candidate genes (Figure 4D), which may be useful in diagnosing COPD.

Figure 4 MEGENA to identify COPD candidate genes based on coexpression of common genes. (A) Global MEGENA network of common genes. Nodes represent
different modules. The larger the node, the greater the number of genes in the module. (B) Child modules with the largest number of genes in the MEGENA network.
Different colors represent different child modules, and triangles represent hub genes of modules. (C) Areas under the receiver operating characteristic curve (AUC) of
genes in modules C1_6, C1_3, and C1_2 in the GSE47460 and GSE151052 datasets. (D) Heatmap of candidate genes, where red indicates upregulated and green indicates
downregulated.
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Identification of Feature Genes in COPD
We used LASSO regression to select which of the 22 candidate genes were most likely to be important in COPD, based
on the GSE47460 dataset. Based on an optimized λ of 0.02161155, we obtained 11 feature genes with non-zero
coefficients (Figure 5A and B): AQP1, CLEC4A, GPC4, GPR39, PDCL3, PGM1, PRRG4, ROR1, RS1, SEC14L4,
and USP13. After randomly dividing up the COPD patient samples in the GSE47460 dataset into a training set (75%) and
validation set (25%), we evaluated the diagnostic performance of the feature genes against the training set based on AUC
(Figure 5C). The AUC for all feature genes together was 0.885 against the training set and 0.870 against the validation
set (Figure 5D). The AUC was even higher (0.918) against independent external validation data, the GSE151052 dataset
(Figure 5E).

Immune Cell Infiltration in COPD
Since common genes were enriched in functions related to immune responses, we hypothesized that immune cell
dysfunction might play a key role in COPD. Indeed, we found that infiltration by Th1 cells, follicular helper T cell (TFH),
CD8+ T cells, and B cells was significantly greater in COPD patients than in controls (Figure 6A). In fact, these four
immune cell types correlated positively with one another (Figure 6B). Feature genes correlated significantly with levels
of immune cell infiltration in COPD patients (Figure 6C), with macrophages as the most abundant infiltrating cells
(Figure 6D).

Figure 5 Identification of feature genes capable of diagnosing COPD. (A) Selection of optimal parameter (lambda) based on minimal criteria in the LASSO regression model.
(B) LASSO coefficient profiles of 11 feature genes with non-zero coefficients. Receiver operating characteristic curves for feature genes applied to (C) the training data in
the GSE47460 dataset, (D) the validation data in the GSE47460 dataset, or (E) the external validation data in the GSE151052 dataset. AUC, area under the receiver
operating characteristic curve.
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Regulation of Feature Genes by miRNAs
To identify how miRNAs may regulate feature genes, we started from 223 DEmiRs between COPD patients and
controls in the GSE38974 dataset (Figure 7A). Then we predicted the downstream mRNAs targeted by the following six
miRNAs with the largest log | (fold change) |: hsa-miR-1274a, hsa-miR-105-5p, hsa-miR-374a-3p, hsa-miR-422a-3p,
hsa-miR-937-5p, and hsa-miR-923. Of the predicted mRNA targets, 162 were present among DEmRs modules C1_6,
C1_3, and C1_2. These 162 downstream target genes were enriched in divalent inorganic cation homeostasis, cellular
response to nitrogen compounds, as well as glutamate and glutamine metabolism (Figure 7B). Two of the genes, GPC4
and RS1, were predicted to be regulated by miR-374a-3p (Figure 7C). The AUC for miR-374a-3p was 0.89, suggesting
the ability to diagnose COPD (Figure 7D). Finally, we generated a map of DEmiRs regulating DEmRs, which were
involved in cell junction assembly, positive regulation of the MAPK cascade, and VEGFA−VEGFR2 signaling
(Figure 7E).

Aberrant Gene Methylation in COPD
In the GSE63704 dataset, we identified 6495 DMPs between COPD and control samples, involving 4296 genes
(Figure 8A). After retaining only DMPs that were increased or decreased between patients and controls in the opposite

Figure 6 Differences in immune cell infiltration between COPD patients and controls. (A) Differences in immune cell infiltration between COPD patients and controls in
the GSE151052, GSE38974, GSE47460, and GSE76925 datasets. Red indicates significant upregulation in patients; blue, significant downregulation. (B) Correlations and
clusters among immune cell types in the GSE47460 dataset. (C) Correlations between immune cell infiltration and feature gene expression in COPD. *P < 0.05, **P < 0.01.
(D) Levels of infiltration by 18 types of immune cells in COPD patients.
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direction as common genes, we were left with 117 potential methylation markers (Figure 8B). Among them, we found
that the feature gene PRRG4 was aberrantly methylated in COPD.

Discussion
COPD is a common respiratory disease that seriously threatens human health and well-being, and it is an important public
health problem.26 Current treatments for COPD aim to improve symptoms and prevent exacerbations, but none is disease-
modifying.27 To provide the knowledge needed to improve therapy options, we compared gene expression profiles between
COPD patients and healthy controls in order to identify coexpressed differentially expressed genes. MEGENA is an
innovative method for analyzing coexpression networks that has advantages over weighted gene co-expression network

Figure 7 Network of miRNAs that regulate COPD-associated mRNAs. (A) Differentially expressed miRNAs between COPD and controls in the GSE38974 dataset. Red
dots indicate upregulated expression; green dots, downregulated expression. (B) The biological functions of target module genes enriched. (C) Predicted sites on the GPC4
and RS1 mRNAs where miR-374a-3p binds, based on Targetscan. (D) Receiver operating characteristic curve assessing the ability of miR-374a-3p to predict COPD. (E)
Sankey map of miRNAs and the mRNAs that they regulate, together with the KEGG pathways in which they are involved.
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analysis (WGCNA), facilitating efficient construction of large-scale coexpression plane filter networks while preserving
gene interactions.23 Our MEGENA identified 186 functional modules, the largest of which were C1_ 6, C1_ 3, and C1_ 2.
Next we screened the differentially expressed genes using AUCs and LASSO regression to identify 11 feature genes, which
we validated using an internal dataset (GSE47460) and external dataset (GSE151052). Feature genes have been widely used
in multi-marker profiling studies.28–30 Our feature genes in COPD showed high AUCs, suggesting their potential for
clinical applications.

We found that many of the differentially expressed genes in COPD were associated with various immune responses.
An increasing number of immune cell types have been associated with risk of COPD and prognosis of affected
individuals.31,32 In particular, COPD has been linked to elevated numbers of neutrophils, B cells, as well as CD4+ and
CD8+ T lymphocytes in the lungs.33 During adaptive immune responses in COPD patients, activated T cells can promote
abnormal inflammatory responses and aggravate airway damage.32 Increased B cell counts in COPD patients have been
associated with elevated IgA synthesis, which impairs mucosal immunity and may contribute to disease progression.34

Consistent with this, our GSEA found that the intestinal immune network involved in IgA production was activated in
COPD patients. Genetic alterations in leukocyte transendothelial migration pathways in smokers and COPD patients have
been strongly associated with T cell levels and airway obstruction,35,36 which our enrichment analyses support. In
addition, asthma has been associated with the frequency and severity of COPD exacerbations,37 which our analysis of
DEmR enrichment supports.

Feature genes of COPD that we identified here have previously been linked to the disease, suggesting that our
bioinformatics analysis is reliable. AQP1 is significantly up-regulated in COPD and has proven to be an effective therapeutic
target.38,39 Expression of CLEC4A is influenced by smoking,40 which strongly correlates with risk of COPD and airflow
obstruction.41,42 GPC4, which remodels the extracellular matrix, is closely related to COPD disease regions.43,44 GPR39
helps activate pro-inflammatory signaling pathways,45 which may contribute to pathological inflammation in COPD. PDCL3
regulates expression of VEGF receptor 2, and it may promote pathological angiogenesis.46,47 PGM1 has been linked to lung
disease through multiple metabolic pathways.48,49 PRRG4 has been shown to be differentially expressed in COPD patients,50

and the present study not only confirms that finding but extends it by showing aberrant methylation of the gene. Therefore,
the altered expression of PRRG4 in COPD may reflect altered gene methylation. ROR1, after binding to Wnt ligands,
triggers non-canonical signaling cascades that increase the level of calcium or decrease the level of cGMP within the cell, and
these changes are closely associated with COPD onset and progression.51 SEC14L4 is known to be differentially expressed
in COPD.52 USP13, which inhibits autophagy, may be involved in COPD pathogenesis.53,54

Among the 11 feature genes, RS1 has not previously been linked to COPD, and our study justifies further exploration
of this potential link. In addition, our results suggest that the gene, together with GPC4, is regulated by miR-374a-3p.

Figure 8 Aberrant methylation of common genes in COPD. (A) Differentially methylated probes (DMPs) between COPD patients and controls in the GSE63704 dataset,
including hyper- and hypomethylated DMPs. (B) ∆Beta levels and expression levels of methylation markers.
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This miRNA has been shown to regulate inflammatory responses.55,56 Further work should examine whether miR-374a-
3p is involved in COPD via its ability to regulate the expression of RS1 and GPC4.

Our findings should be interpreted with caution in light of several limitations. We were limited to data available in
public databases, and we did not validate key results using independent clinical samples or biochemical experiments. In
addition, relevant clinical and follow-up data were unavailable for many of the samples that we analyzed, preventing us
from examining potential relationships between feature genes and comorbidities or prognosis. Further study with larger
samples and detailed follow-up should verify and extend the clinical utility of the feature genes that we identified here.
Experimental studies in vivo and in vitro should explore how feature genes in COPD are regulated.

Conclusion
Many genes that are abnormally expressed in COPD are involved in immune responses, and we identified several feature
genes that may be potential markers and therapeutic targets in COPD. In this way, our bioinformatics study generates
numerous leads to guide future research into the disease and its treatment.
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