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Abstract

Recently, many studies have shown that lncRNA can mediate the regulation of TF-gene in drug sensitivity. However, there is still a
lack of systematic identification of lncRNA-TF-gene regulatory triplets for drug sensitivity. In this study, we propose a novel analytic
approach to systematically identify the lncRNA-TF-gene regulatory triplets related to the drug sensitivity by integrating transcriptome
data and drug sensitivity data. Totally, 1570 drug sensitivity-related lncRNA-TF-gene triplets were identified, and 16 307 relationships
were formed between drugs and triplets. Then, a comprehensive characterization was performed. Drug sensitivity-related triplets affect
a variety of biological functions including drug response-related pathways. Phenotypic similarity analysis showed that the drugs with
many shared triplets had high similarity in their two-dimensional structures and indications. In addition, Network analysis revealed the
diverse regulation mechanism of lncRNAs in different drugs. Also, survival analysis indicated that lncRNA-TF-gene triplets related to the
drug sensitivity could be candidate prognostic biomarkers for clinical applications. Next, using the random walk algorithm, the results
of which we screen therapeutic drugs for patients across three cancer types showed high accuracy in the drug-cell line heterogeneity
network based on the identified triplets. Besides, we developed a user-friendly web interface-DrugSETs (http://bio-bigdata.hrbmu.edu.
cn/DrugSETs/) available to explore 1570 lncRNA-TF-gene triplets relevant with 282 drugs. It can also submit a patient’s expression
profile to predict therapeutic drugs conveniently. In summary, our research may promote the study of lncRNAs in the drug resistance
mechanism and improve the effectiveness of treatment.

Keywords: lncRNA-TF-gene triplets, drug sensitivity

Introduction
Despite the great advances in cancer research over the past
decades, the treatment of cancer is still confronted with serious
challenges. Among them, drug resistance is still a major lim-
iting factor for the realization of curing cancer patients [1, 2].
Many factors contribute to drug resistance in cancer treatment,
including tumor burden and growth dynamics, and correlations
between tumor burden and curability were almost universal [3,
4]. In particular, heterogeneity of tumors can also lead to the
development of drug resistance [2, 5, 6], and the tumor microen-
vironment may mediate drug resistance through various mecha-
nisms, including block tumor cell immune clearance and hinder
the drug absorption to promote the growth of tumor cells [7, 8].
Although the mechanisms of drug resistance in some tumors are
well understood, most of them remain unknown. Therefore, it is
meaningful to study the mechanism of cancer drug resistance and
to predict individualized drug screening.

LncRNA is a new type of non-coding RNA with a length of
over 200 nt and no protein coding ability [9, 10]. Furthermore,
lncRNAs are abnormally expressed in a variety of human diseases
and play an important role in promoting or maintaining disease

progression. Previous studies have shown that lncRNA is involved
in the regulation of drug resistance in various cancers [11–14].
LncRNA can mediate drug resistance by regulating the expression
of genes related to drug sensitivity [15–17]. For instance, overex-
pression of lncRNA H19 was correlated with acquired resistance to
cisplatin, and lncRNA NBR2 can regulate the sensitivity of cancer
cells to biguanide by regulating GLUT1 [18]. Moreover, down-
regulated expression of lncRNA HOTAIR inhibited the expression
of MRP, leading to increased sensitivity of cells to imatinib [19]. In
addition to regulating genes related to drug sensitivity, lncRNAs
can also affect drug sensitivity by affecting the upstream and
downstream regulatory mechanisms of drug sensitivity-related
genes. Experiments have confirmed that lncRNA can regulate
the expression of transcription factors and then regulate the
expression of transcription factor target genes to cause the body
to develop drug resistance. For example, Zhang et al. [20] demon-
strated that the lncRNA FOXC2-AS1 may promote doxorubicin
resistance in OS by increasing the expression of transcription
factor FOXC2, further facilitating ABCB1 expression. Özeş et al.
[21] presented the opinion that HOTAIR regulates the activation of
NF-κB and establish that by inducing prolonged NF-κB activation
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and expression of transcription factor NF-κB target genes during
DNA damage, HOTAIR plays a critical role in platinum sensitivity.
Wu et al. [22] proved that LINC00160 mediated paclitaxel-and
doxorubicin-resistance in breast cancer cells by regulating TFF3
via transcription factor C/EBPβ. Therefore, it is meaningful to
study the role of lncRNA in mediating TF-gene regulation for
understanding the mechanism of cancer drug resistance. These
studies are only studies on the regulatory mechanism of a lncRNA
for a pair of TF-target genes in a certain drug response. Therefore,
there is an urgent need to develop a method to systematically
identify lncRNAs that can mediate the regulation of TF-target
genes in drug sensitivity.

Predicting the patient’s drug response based on various genetic
information is a basic problem in current precision medicine
research. Most of the current approaches use genes or pathways
to build predictive models to predict drug responses [23–25].
For example, Garnett et al. [26] systematically identified drug
sensitive genomic markers in cancer cells. And Zhang et al. [27]
proposed a method to identify significantly associated biomarkers
and develop genomic classifier using hierarchical ordinal logistic
regression to predict multi-level drug response using hierarchical
ordinal regression. In addition, Wang et al. [25] developed a method
to predict drug sensitivity of cancer cells with pathway activity
inference. Ammad-Ud-Din et al. [28] presented a method to predict
drug response by inferring pathway-response associations with
kernelized Bayesian matrix factorization. These methods provide
help for predicting drug response, but new research is still needed.

Here, we first developed a method to systematically construct
lncRNA-TF-gene regulatory triplets and totally identified regu-
latory triplets associated with 282 drugs. Based on these identi-
fied triplets, we constructed a drug-cell line heterogeneity net-
work. Finally, we apply the method to individualized applications,
screen therapeutic drugs for The Cancer Genome Atlas (TCGA)
patients and verify their accuracy. In addition, our method was
also more accurate than other methods in predicting cancer cell
lines associated with drug sensitivity. We have identified a total
of 1570 triplets related to drug sensitivity. Drug similarity analysis
showed that drugs with a high number of shared triplets also
had higher phenotypic similarities, including the structure and
indications of the drugs. We investigated in depth the role of
LncRNA in drug resistance mechanisms. Our analysis revealed
the differential regulatory mechanism of lncRNA in different
drugs. In addition, lncRNA-TF-gene that are survival related were
identified as potential oncogenic drivers. Through our proposed
method, we can commendably find appropriate therapeutic drugs
for patients. As a consequence, our method has guiding signifi-
cance for individual drug screening and drug response prediction.
Finally, we have developed a data resource that not only captures
the triplets associated with the drug sensitivities but also screens
the appropriate treatment agents for individuals.

Materials and methods
Drug IC50 and gene expression profile of cancer
cell lines
We downloaded the half maximal inhibitory concentration (IC50)
value of drugs in cell lines from The Genomics of Drug Sensitivity
in Cancer (GDSC) database (https://www.cancerrxgene.org/) [29].
IC50 is the concentration of a drug or inhibitor required to
inhibit half of a specified biological process (or a component
in the process, such as enzymes, receptor cells, etc.). The dataset
comprises 304 drugs and 988 cell lines. And we downloaded gene
expression data from The Cancer Cell Line Encyclopedia (CCLE)

(www.broadinstitute.org/ccle) [30]. The dataset consisted of
expression values of 57 820 genes in 1019 cell lines. We extracted
297 cell lines common to GDSC database and CCLE database.
Next, we filtered out genes whose expression value was 0 in more
than half of the cell lines. After the previous step, we obtained
a gene expression profile consisting of 25 655 genes and 297 cell
lines.

Collection of the TF and its target genes data
from TRANSFAC
The data of TF and its target genes are obtained from the
TRANSFAC (http: //transfac. Gbf. De/TRANSFAC/) / (http://gene-
regulation.com/) database [31]. It contains 708 transcription
factors and 1991 target genes, and a total of 5825 regulatory
relationships are formed between transcription factors and target
genes.

Gene expression data and drug response data of
tumor individuals
We downloaded the gene expression data and drug response infor-
mation of the samples from TCGA (https://portal.gdc.cancer.gov/)
database. We define Complete Response and Partial Response
samples for drug treatment as samples that respond to treat-
ment, and define Clinical Progressive Disease and Stable Disease
samples as samples that do not respond to treatment. Thus, the
data set contains 1576 non-response samples and 2296 response
samples.

Identification of the lncRNA-TF-gene regulatory
triplets associated with drug sensitivities
Construction of candidate lncRNA-TF-gene regulatory
triplet
Here, we proposed a concept of lncRNA-TF-gene triplet based on
that LncRNA can mediate the regulation between TF and target
genes. We constructed the lncRNA-TF-gene triplets through the
following three steps: (i) We divided the cell lines into two groups
according to the level of lncRNA expression. (ii) We calculated
the correlation between TF and target gene in the two groups
of cell lines by Pearson correlation coefficient according to the
expression value. Through this step, we can obtain the expression
correlation r1 between TF and target gene in cell lines with high
lncRNA expression and r2 between TF and target gene expression
in cell lines with low lncRNA expression. (iii) The difference
between the two correlations was used as a criterion to determine
whether lncRNA could mediate regulation of TF and its target
genes. That is, �r =| r1 − r2 |. If �r > 0.7, it is believed that lncRNA
can mediate the regulation of TF and target genes, so lncRNA, TF,
gene can be used as a candidate triplet (Figure 1A).

Evaluating the associations of triplets with drug sensitivity
Based on the candidate triplets, we further screened the triplets
related to drug sensitivity. The Spearman correlation coefficient
was used to calculate the correlation between the IC50 value
of the drug and the expression value of lncRNA. Similarly, the
correlation between the expression value of target gene of TF and
the IC50 value of the drug was calculated. LncRNA and target
genes with P-value <0.05 were selected as drug sensitivity-related
lncRNA and target genes. For a triplet, if both lncRNA and target
gene are associated with drug sensitivity, this triplet is considered
to be sensitivity-related triplet of the drug. In the end, for each
drug, we screened its sensitivity-related triplets (Figure 1B).
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Figure 1. Schematic overview of method for identifying drug sensitivity-related lncRNA-TF-gene regulatory triplets and individualized application.

Individualized drug screening based on drug
sensitivity-related triplets
Construction of drug-cell line heterogeneity network
Based on the assumption that individuals with similar molecu-
lar characteristics have more similar targeted drugs, we further

constructed a drug-cell line heterogeneous network through the
following three steps: (i) Based on the screened triplets related to
drug sensitivity, we constructed a drug–drug similarity network.
An edge between two drugs means that there are shared triplets
between them. (ii) In this step, we constructed a cell line similarity
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network. We calculated the mean expression values of lncRNA,
TF and gene of each triplet in the cell line as the activity values
of the triplet in the cell line. The edge between the cell lines
in the network represents a significant correlation between the
triplet activity values of the two cell lines (P < 0.05 and r > 0.8 for
Pearson correlation coefficient). (iii) Construction of drug-cell line
sensitivity correlation based on drug sensitivity data. We sorted
the cell lines from low to high according to the IC50 value of
each drug in the cell line. We use the top 12.5% of cell lines
as drug-sensitive cell lines to construct drug-cell line sensitivity
associations. Through the above three steps, we can obtain a drug-
cell line heterogeneity network (Figure 1C).

Individualized drug screening using random walk
algorithm
Random walk is a globally optimal method. Random walk algo-
rithms have been developed and used in the analysis of vari-
ous disease mechanisms, and have shown greater advantages
in identifying risk or prognostic genes based on global networks
[32–34]. It has been demonstrated in the literature that random
walks capture global relationships within interaction networks,
substantially outperforming local distance measures within inter-
action networks, as well as other previously published methods.
Therefore, we use random walk algorithm for individual drug
screening and drug response prediction. Based on the drug-cell
line heterogeneity network constructed by the above steps, per-
sonalized drug selection was realized through the following three
steps: (i) For a disease sample, we calculated the activity values of
triples associated with drug sensitivity in the sample. (ii) Pearson
correlation coefficient is used to calculate the correlation between
the sample and the cell line based on the activity value of the
triplets. Similarly, we screened for cell lines and samples with the
P-value of <0.05 and the correlation coefficient greater than 0.8,
and add them to the network. (iii) We use the sample as a seed
node and use random walk algorithm [32] (Equation (1)) to score
the nodes in the network.

Pt+1 = (1 − r) WPt + rP0, (1)

where W is the adjacency matrix of the global network, which
consisted of 0 and 1. Pt was a vector, in which a node in the
global network has the probability of finding itself in this process
until the step t. The initial probability vector P0 is constructed in
this way, the seed node is 1 and the remaining nodes are 0. In
addition, the walker is restarted at each step with a probability
r (r = 0.7). When the difference between Pt and Pt+1 is less than
10−6, the probability reaches a steady state. Finally, each node in
the global network is scored according to the value in the steady-
state probability vector. The scores of all drugs in the network are
extracted. A higher score indicates that the sample is more similar
to a drug-adapted sample. The more likely the drug was to be a
candidate for that patient’s treatment (Figure 1C).

Calculating the similarity score of structure and
indication between drugs
We use the R package RxnSim [35] based on the two-dimensional
structure of drugs, which provides a method to calculate
the chemical similarity between two or more reactions and
molecules. Molecular similarity is calculated according to the
structural characteristics of drugs. The package can calculate the
structural similarity between drugs according to the structural
information of SMILES format, using the Tanimoto coefficient.

And the similarity of indications between drugs was calculated
using Jaccard coefficient (Equation (2)).

Indication similarity(a,b) = A ∩ B
A ∪ B

, (2)

where A and B represent indications for drug A and drug B,
respectively.

Results
Characterizing the lncRNA-TF-gene triplets
related to 282 drugs sensitivity
In order to better understand the role of lncRNAs regulating TF-
gene pairs in drug sensitivity, we systematically identified and
analyzed the lncRNA-TF-gene regulatory triplets associated with
drug sensitivity. First, we totally constructed 3118 lncRNA-TF-
gene triplets. Then, we screened out drug sensitivity-related 2482
lncRNAs and 1382 TF target genes. In total, we identified 1570
lncRNA-TF-gene triplets of 282 drugs, and 16 307 relationships
were formed between drugs and triplets. Next, we divided
282 drugs into 15 classes, which are Antineoplastic Agents,
Enzyme Inhibitors, Antimitotic Agents, Anti-Infective Agents
and so on according to the Drug Information Portal [36]
(Supplementary Figure S1, see Supplementary Data available
online at https://academic.oup.com/bib). In addition, a total
of 1059 lncRNAs were involved in the drug sensitivity-related
triplets, most of which were related to the antineoplastic
agents sensitivity (Figure 2B). For example, through our method,
lncRNA FLNB-AS1 was identified as a lncRNA associated with
Tamoxifen sensitivity, and literature has confirmed that FLNB-
AS1 may be a potential diagnostic or prognostic marker of
Tamoxifen resistance [37]. Moreover, many lncRNAs related to
drug sensitivity have been confirmed in literature, including
FOXD2-AS1 [38], LINC00641 [39], LBX2-AS1 [40] and so on.
Next, we systematically characterized these lncRNAs. They
mainly belonged to long intergenic non-coding RNA (lincRNA)
and antisense classes (Figure 2C). We constructed a circular
chromosome map to provide a global view of genomic location
annotation of each lncRNA across 15 drug classes, and the types
of lncRNAs in each drug class were also shown (Figure 2A). We
observed that most of these lncRNAs distributed in chr1, chr2,
chr6, chr12, chr17 and chr19.

To understand the function of these target genes that involved
in drug sensitivity-related triplets, we performed functional
enrichment analysis for target genes in the drug sensitivity-
related triplets which were related to the sensitivity of more than
50 drugs. As a result, we found that the genes were significantly
enriched on the response to corticosteroid and response to
antineoplastic agent in the biological process part of GO, and
they were enriched on vesicle lumen and growth factor binding
in the cellular component and molecular function, respectively.
Furthermore, the genes were also enriched on HIF-1 signaling
pathway and Apoptosis in KEGG (Figure 2D). Hallmark gene
set better represents a wider range of biological processes and
cancers. Therefore, we enrich the target genes in the triplets
related to anticancer drug sensitivity with Hallmark gene set.
The result suggests that multiple pathways, including evading
immune detection, insensitivity to antigrowth signals and self-
sufficiency in growth signals, as well as sustained angiogenesis
and tissue invasion and metastasis, were targeted by genes in
some antineoplastic agents (Figure 2E). Drug sensitivity-related
triplets whose genes were enriched in eight pathways across drug
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Figure 2. (A) A global map of LncRNAs in sensitivity-related triplets of different drug types. (B) Categories of lncRNAs in different types of drugs. (C)
Genomic locations of lncRNAs. Each dot refers to a lncRNA. The colors of the dots represent different types of lncRNAs. The dot tracks correspond to
different drug types. (D) GO function enrichment and KEGG pathway enrichment of genes in the triplets related to drug sensitivity. (E) Hallmark gene
sets of genes in the triplets related to drug sensitivity. The regulation strength represents the P-value in the hypergeometric test, and the smaller the
P-value, the higher the regulation strength.

types, including immune response to tumor cell and negative
regulation of cell proliferation and so on. This indicates that these
genes can affect multiple biological functions.

Drug-related triplets reveal the similarity of drug
structures and indications
In order to better understand the relationship between drugs
with a large number of shared triplets, we integrated the two-
dimensional structure information of drugs from PubChem [41]
and used the R package RxnSim [35] to calculate the structural
similarity between them (Figure 3E). Interestingly, we found that
drugs with a high number of shared triplets had higher struc-
tural similarity than drugs with a low number of shared triplets
(P = 0.014) (Figure 3A, B and F). In addition, we also download the
drug-disease associations from the Comparative Toxicogenomics
Database [42]. By calculating the Jacquard coefficient, we found
that drugs with more shared triplets related to drug sensitiv-
ity had higher similarity in their indications. In other words, if
there are more triplets shared between drugs, the diseases they
treat will be more similar (P = 0.00054) (Figure 3C, D and G). In
summary, drugs with a large number of shared triplets showed
higher similarity in both the two-dimensional structure and the
indication compared with those with a small number of shared
triplets. This indicates that the triplets related to drug sensitivity
that we have identified have potential clinical applications.

In order to make results more reliable, we compared the results
with those of the random case. We randomly selected from the
shared with large and small quantity of triplets’ drugs of the same
number of drug combinations, and calculate two-dimensional
structure similarity and similarity of indications between each
pair of drug combination. Next, the two-dimensional structure
similarity score and indication similarity score of all drug pairs are
averaged as the structure similarity score and indications similar-
ity score between drugs under random conditions. By comparing
with the real results, we found that the similarity score of drug
indications with more shared triplets was significantly higher
than that of random cases, while the similarity scores of drug
indications with few shared triplets were significantly lower than

those of random cases. (Supplementary Figure S2A, see Supple-
mentary Data available online at https://academic.oup.com/bib).
Similarly, the same results were observed for the comparison of
structural similarity scores of drugs (Supplementary Figure S2B,
see Supplementary Data available online at https://academic.
oup.com/bib). This shows that our results have good stability.

Depicting high-frequency drug sensitivity related
triplets and the diverse regulation of lncRNAs
across drugs
Based on the above analysis results, we first separately counted
the number of lncRNA and TF-gene pairs regulated drugs in the
triplets related to drug sensitivity. Next, we counted the num-
ber of shared drugs in the top 40 lncRNAs and TF-gene pairs,
and we found that there are common drugs between triplets
(Figure 4A). Next, we construct the network of lncRNA-TF-gene
triplets with the number of sensitivity-related drugs greater than
50 (Figure 4C). It is composed of some high-frequency triplets,
including 64 lncRNAs, 36 TFs and 35 target genes. Among them,
EGFR can affect the drug sensitivity of anti-dimerization agents
(e.g. cetuximab) in non-small cell lung cancer (NSCLC) [43–45].
Besides, serum retinol binding protein 4 (RBP4) contributes to
insulin resistance in obesity and type 2 diabetes [46–48]. And,
luminal B tumors had the highest rates of ESR1 mutations and
had increased sensitivity in vitro to bicalutamide and tamoxifen
[49]. It shows that triplets can affect drug sensitivity in therapy of
disease.

After that, we calculated the number of lncRNA-regulated TF-
gene pairs in the triplets related to drug sensitivity. Next, we
calculated the number of TF and target gene pairs regulated
by the top 49 lncRNAs in antineoplastic agents (Figure 4B). We
observed that the maximum number of TF and target gene
pairs regulated by the lncRNA was 4. Next, we dissected lncRNA
mediated TF-gene pairs and found that lncRNA not only regulated
the same TF- gene pairs in different drugs but also regulated
different TF-gene pairs. For example, lncRNA RP3-508I15.19
regulates RARA-EGFR pair in both Belinostat and Trametinib,
but it also regulated CEBPA-CES1 pair and CEBPA-CPB2 pair in

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac366#supplementary-data
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https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac366#supplementary-data
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6 | Hu et al.

Figure 3. (A) The heat map shows the similarity score of two-dimensional structures between drugs sharing more than 70 triplets (upper triangle). The
dot plot shows the number of triplets shared between drugs sharing more than 70 triplets (lower triangle). The size and color of the dots represent
the number of triplets. (B) The heat map shows the similarity score of two-dimensional structures between drugs sharing less than 10 triplets (upper
triangle). The dot plot shows the number of triplets shared between drugs sharing less than 10 triplets (lower triangle). The size and color of the dots
represent the number of triplets. (C) The heat map shows the similarity score of disease phenotype between drugs sharing more than 70 triplets (upper
triangle). The dot plot shows the number of triplets shared between drugs sharing more than 70 triplets (lower triangle). The size and color of the dots
represent the number of triplets. (D) The heat map shows the similarity score of disease phenotype between drugs sharing less than 10 triplets (upper
triangle). The dot plot shows the number of triplets shared between drugs sharing less than 10 triplets (lower triangle). The size and color of the dots
represent the number of triplets. (E) A map of calculating two-dimensional structural similarity between drugs. (F) The violin chart shows differences in
structural similarity scores between the two groups of drugs. Large represents drugs with more shared triplets, and small represents drugs with fewer
shared triplets. (G) The violin chart shows differences in disease phenotype similarity scores between the two groups of drugs. Large represents drugs
with more shared triplets, and small represents drugs with fewer shared triplets.

the Belinostat and regulated IKZF1-CD8A pair and TCF7-CD8A
pair in the Trametinib, respectively. Furthermore, Belinostat
markedly decrease the expression of EGFR in the NSCLC cell [50].
Besides, in case of wild-type KRAS and high EGFR expression, MEK

inhibitor-induced Akt phosphorylation leads to trametinib
resistance [51–53]. In addition, similar results were also found
in LINC01589 (Figure 4D). The above analysis further revealed
that drug-related triplets can affect drug sensitivity. Although
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Figure 4. (A) The heat map shows the number of shared drugs between lncRNAs and TF- gene regulation pairs with the number of related drugs ranked
in top 40. (B) The heat map shows the number of TF and target gene pairs regulated by lncRNAs in antineoplastic agents. Simultaneously, the number
of TF-gene regulation pairs regulated by these lncRNAs were ranked in top 40. (C) A regulatory network of triplets which associated with more than 50
drugs. The circles represent lncRNAs, the triangles represent TFs and the rectangles represent genes. (D) LncRNA RP3-508I15.19 and LINC01589 regulates
TF-gene pairs in different drugs.

lncRNA regulated many identical TF and target gene pairs in
different drugs, lncRNA also regulates TF and target gene pairs
differently in different drugs. This indicates the differential
regulation mechanism of lncRNA in different drugs. It can also
help us better understand the mechanism of drug resistance and
provide new ideas for subsequent research.

Drug-related triplets could be potential
biomarkers for cancer prognosis
The above analyses revealed that drug-related triplets play an
important role in mechanism of drug resistance. This highlighted
that they may serve as promising biomarkers to affect the sur-
vival of cancer patients. To assess the clinical relevance of these
triplets, we integrated the clinical data and then perform the
survival analysis for CESC, BLCA and HNSC. As a result, we totally
identified 497 (32%) survival-related triplets in three cancer types,
and the proportions of survival-related triplets in three cancer

types were shown in Figure 5A. Among them, HNSC has most
survival related triplets, about 55% (Figure 5A). This indicated that
lncRNA-TF-gene triplets could affect prognosis of cancer patients.

Further exploration of these survival-associated triplets found
that some experimentally validated cancer prognostic markers
were included. For example, AP001469.9- FOXP3- CSF2 was
identified as a survival-related triplet in the BLCA (Figure 5B) and
has been demonstrated that CSF2 overexpression is associated
with STAT5 phosphorylation and poor prognosis in patients
with urothelial carcinoma [54]. In addition, RP11-152P23.2-RARA-
EGFR was also identified as a survival-related triplet in the
CESC (Figure 5C), and the EGFR was found to act as a strong
prognostic indicator in cervical cancer [55–58]. Moreover, another
tripletRP11-547D23.1-IKZF1-FGFR4 was significantly prognostic-
related with HNSC (Figure 4D), and it is demonstrated that
STAT5A was found to be associated with a poor prognosis
for head and neck squamous cell carcinoma [59–61]. The



8 | Hu et al.

Figure 5. (A) The percentages of survival-related triplets in the 3 cancer types. (B–D) K-M plots of samples from the low expression group and
samples from the high expression group for PAXIP1-AS1-POU2F2-BLC2, RP11-152P23.2-RARA-EGFR and RP11-547D23.1-IKZF1-FGFR4 in 3 cancer types,
respectively.

above observation provided further evidence for conclusion
that lncRNA-TF-gene triplets play a via role in promoting the
development of cancer. In summary, our analysis indicated the
driving roles of triplets and their potential clinical usages as
prognosis biomarkers in cancer.

Application for screening individual medication
and drug sensitive cell lines
The above studies found that the drug sensitivity-related lncRNA-
TF-gene regulatory triplets we identified could reflect the
similarity of therapeutic phenotypes between drugs. Therefore,
we attempted to personalize the application by identifying the
lncRNA-TF-gene triplets associated with drug sensitivity.

Case Study I: Individual drug screening.
First, we built a network of drugs and cell lines, in which there

are edges between drugs and drugs, cell lines and cell lines, and

drugs and cell lines. Next, we connected the sample to the cell line
by the Pearson correlation coefficient between the activity values
of the triplets in the sample and in the cell line. Finally, we use
the sample as a seed node to perform a random walk to score
drugs in this network (Materials and Methods). For purpose of
evaluating the accuracy of the method, we applied the method to
the bladder urothelial carcinoma (BLCA), cervical squamous cell
carcinoma and endocervical adenocarcinoma (CESC) and head
and neck squamous cell carcinoma (HNSC) data in TCGA. The
ROC curve was drawn based on the drug response data of the
sample in TCGA and the drug scores calculated by random walk
for three cancer types. The AUCs of ROC curves of the BLCA, CESC
and HNSC were 0.721, 0.824 and 0.713, respectively (Figure 6A).
These results confirm the reliability of using our proposed method
to screen therapeutic agents for individuals.

Case Study II: Prediction of drug-sensitive cell lines.
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Figure 6. (A) Predictive power of our method across three cancer-drug response datasets from TCGA, including BLCA, CESC and HNSC. (B) Predictive
power of our method for drug-sensitive cell lines datasets, including all drugs, anticancer drugs. (C) Predictive power of our method for drug-sensitive
cell lines datasets, including partial anticancer drugs Afatinib, Paclitaxel, Etoposide and Belinostat.

Through the above analysis, we found that the drug sensitivity-
related triplets had good accuracy in predicting individual drug
screening. Next, we further evaluated the predictive ability of the
drug sensitivity-related triplets in terms of drug-sensitive cell line.
Likewise, we use the drug as a seed node to execute random
walk to score the cell lines (Materials and Methods). We drew ROC

curves based on the random-walk calculated cell line scores and
the gold standard of cell lines associated with drug sensitivity. As a
result, the AUCs of the ROC curves of all drugs and antineoplastic
agents were 0.743 and 0.719 (Figure 6B). Among them, the AUCs
of the ROC curves of afatinib, paclitaxel and etoposide were 0.944,
0.862 and 0.898, respectively (Figure 6C). Furthermore, the BT-549
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cell line was identified as a paclitaxel sensitivity-related cell line
by our method, and through the drug sensitivity data in the GRAY
database, we found that the IC50 value of paclitaxel in the BT-
549 cell line was very low, indicating that the BT-549 cell line is a
paclitaxel sensitivity-related cell line. This verifies the accuracy of
our method at the experimental level. This shows that our method
can accurately identify drug sensitive cell lines. This also provided
guidance to the experimenters to subsequent the analysis.

To evaluate the accuracy of our method on independent data,
we downloaded drug sensitivity data from the CellMiner database,
in which 89 drugs overlapped with drugs in our previously con-
structed drug-cell line heterogeneity network, and 15 cell lines
overlapped with cell lines in the network. Similarly, we use drugs
as seed nodes to score cell lines on the network, and the results
show that drug response prediction also has high accuracy. AUC
value for all drugs is 0.711 (Supplementary Figure S3A, see Sup-
plementary Data available online at https://academic.oup.com/
bib). In particular, AUC values for 5-Fluorouracil, Cytarabine and
Belinostat exceeded 0.9 (Supplementary Figure S3B–D, see Sup-
plementary Data available online at https://academic.oup.com/
bib). These results show that our method also has high accuracy
on independent datasets.

To comprehensively evaluate the efficiency of our method in
predicting drug response and compare our method with existing
state-of-the-art methods, Zhang Fei et al. [62] propose a novel het-
erogeneous network-based method for drug response prediction
in cancer cell lines—HNMDRP. We compare the method proposed
in this paper with the HNMDRP method proposed by Zhang Fei
et al. By comparing, we find that the accuracy of the prediction
of both all drugs and anticancer drugs as a whole is higher than
that of HNMDRP (Figure 6B and Supplementary Figure S4A and B,
see Supplementary Data available online at https://academic.
oup.com/bib). Furthermore, our individual drugs method also
shows better prediction performance. For example, when using
our method to predict afatinib sensitivity-related cell lines, the
AUC value of the ROC curve was 0.944, while the AUC value
using the HNMDRP method was 0.850 (Supplementary Figure S4C,
see Supplementary Data available online at https://academic.
oup.com/bib). In addition, our method is also much lower than
HNMDRP in time complexity. From these results, we know that our
method can predict drug response more accurately and efficiently
than other state-of-the-art methods.

DrugSETs: An online database exploring
sensitivity-related lncRNA-TF-gene triplets
across 282 drugs
In order to promote the research of lncRNA-TF-gene Triplets in
drug response prediction, we have developed DrugSETs (Drug
SEnsitive related lncRNA-TF-gene Triplets), an online database of
282 drugs and their sensitivity-related lncRNA-TF-gene triplets. In
total, DrugSETs documents 1631 entries of associations between
1570lncRNAs-TF-gene triplets and 282drugs. In addition to the
name of the drug and the sensitivity-related triplet, each entry
also includes the names and the Ensembl ID of lncRNAs, TF and
genes as well as triplets score. The DrugSETs database is available
at http://bio-bigdata.hrbmu.edu.cn/DrugSETs/.

DrugSETs provide a user-friendly interface mainly consisting of
three modules: Search, Browse and Download. The quick search
enables users to filter entries with one keyword of interest, such as
a lncRNA (name or ensembl ID), or drug name. Also, an advanced
search is provided in ‘Search’ page for more specific requirements.
The users can input interested lncRNA and drug at the same
time to obtain desired associations. In ‘Browse’ page, all lncRNAs

and drugs in DrugSETs are listed, respectively, for users to query.
The search and browse results can be freely downloaded. In
‘Prediction’ page, Users can upload patients’ expression profiles,
and DrugSETs will screen them for appropriate treatment drugs.
Furthermore, ‘Help’ page contains detailed guidance for users.

Discussion
In recent years, more and more attention has been paid to the role
of lncRNA in drug resistance mechanism, and it has been reported
that lncRNA can affect drug sensitivity. However, it remains a
challenge to study the regulatory role of lncRNA in drug resistance
mechanisms. In this study, the regulatory triplets of lncRNA-TF-
gene related to drug sensitivity were systematically identified
and individually applied, providing guiding significance for the
screening of therapeutic drugs for patients and screening cell
lines related to drug sensitivity.

In this study, we integrated human cancer transcriptome data
and drug sensitivity data and developed a method to identify
drug sensitivity-related lncRNA-TF-gene regulatory triplets. First,
constructing the lncRNA-TF-gene regulatory triplets based on
the transcriptome data. And we systematically characterized
the identified lncRNA-TF-gene regulatory triplets. Dissecting the
global properties of the regulatory triplets found that they widely
affect a variety of biological functions including drug response.
This indicated that the lncRNA-TF-gene regulatory triplets
played an important role in drug response, which highlights
the importance of its function prediction and analysis. And
then identifying the drug sensitivity-related lncRNA-TF-gene
regulatory triplets based on the drug sensitivity data. In addition,
network analysis of lncRNA-TF-gene found that lncRNA affects
drug sensitivity by regulating different TF-genes in different
drugs. Furthermore, the survival analysis of the lncRNA-TF-gene
regulatory triplets highlights its clinical application potential
as a prognostic biomarker and suggests its driving role in
cancer. Moreover, drugs that share more triplets also have higher
similarities in the indications of the drugs, which also indicates
that triplets related to drug sensitivity have potential clinical
application value. Therefore, based on the identified triplets, a
drug-cell line heterogeneity network was further constructed. We
used random walk algorithm based on network to screen drugs
for patients in the TCGA database and predicted drug-sensitive
cell lines. The results show that our method is highly accurate
in both individual drug screening and drug-sensitive cell line
prediction. These analyses revealed the ability of the lncRNA-
TF-gene regulatory triplets to predict drug response. In recent
years, several methods have been proposed to help researchers
for studying the functions of lncRNAs in the drug sensitivity.
For example, Hu et al. [63] discovered a novel mechanism by
which LncRNA CCAT1 promotes cell proliferation and enhances
drug resistance by regulating the miR-143/PLK1/BUBR1 signaling
axis. Wang et al. [64] proposed that LncRNA MEG3 enhances
cisplatin sensitivity in NSCLC by regulating miR-21-5p/SOX7
axis. Zhang et al. confirmed that LncRNA KCNQ1OT1 promoted
cisplatin resistance and cell proliferation by regulating miR-211-
5p-mediated Ezrin/Fak/Src signaling [65]. There is still a lack of
systematic identification of lncRNA-mediated regulation of TF
and gene in drug sensitivity. To fill this gap, we conducted a study,
which mainly focused on lncRNA-TF-gene.

Our method has great advantages over other methods, includ-
ing Zhang Fei’s method [62], Stanfield’s method [66] and Zhang
Naiqian’s method [67] (Supplementary Table S1, see Supplemen-
tary Data available online at https://academic.oup.com/bib). Only
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our method provides a user-friendly data resource from which
users can download our provided data, and we also identified 1570
triplets associated with drug sensitivity, while other methods did
not identify the markers related to the drug sensitivity. Further-
more, our method also outperforms other methods in the number
of drugs. And our method considers the regulation between the
upstream and downstream of the gene, while other methods only
consider the gene. More importantly, our method can not only
predict cell lines related to drug susceptibility but also can screen
individuals for medication and provide personalized medication
guidance. By comparison, it is found that our method outperforms
the existing methods in both function and coverage.

Our research has some unique aspects. First, we constructed
the lncRNA-TF-gene regulatory triplets, considering the upstream
and downstream regulatory relationship between them. Second,
we focus on the triplets related to drug sensitivity, which can
help us better understand the mechanisms of drug resistance.
Finally, we applied the method to screen individual drugs and
predict drug-sensitive cell lines. The results show that our method
has good predictive ability. To sum up, we not only proposed
an effective method but also performed a systematic analysis,
revealing the role of LncRNA-TF-gene regulatory triplets in drug
sensitivity, and deepening our understanding of its role in drug
response.

Key Point

• This study provided a strategy to identify lncRNA-TF-
gene regulatory triplets related to drug sensitivity based
on transcriptome data and drug sensitivity data and
constructed drug-triplet association landscape.

• The comprehensive characterization and analysis of
these lncRNA-TF-gene regulatory triplets revealed the
differential regulatory mechanisms of LncRNA across
different drugs and highlighted the potential of these
triplets as prognostic biomarkers in clinical applications.

• The ability of drug sensitivity-related triplets to reflect
similarities in drug indications underscores the potential
of triplets to predict individual drug screening.

• A user-friendly web resource was constructed to explore
drug sensitivities associated with lncRNA-TF-gene regu-
latory triplets and predict individual precision medica-
tion.
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