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Abstract

Cytokines can trigger multiple signalling pathways, including Janus tyrosine kinases [JAK] and 
signal transducers and activators of transcription [STATS] pathways. JAKs are cytoplasmic 
proteins that, following the binding of cytokines to their receptors, transduce the signal by 
phosphorylating STAT proteins which enter the nuclei and rapidly target gene promoters to 
regulate gene transcription. Due to the critical involvement of JAK proteins in mediating innate 
and adaptive immune responses, these family of kinases have become desirable pharmacological 
targets in inflammatory diseases, including ulcerative colitis and Crohn’s disease. In this review 
we provide an overview of the main cytokines that signal through the JAK/STAT pathway and 
the available in vivo evidence on mutant or deleted JAK proteins, and discuss the implications of 
pharmacologically targeting this kinase family in the context of inflammatory diseases.
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1.  Introduction

Inflammatory bowel diseases [IBDs], including ulcerative colitis and 
Crohn’s disease, are thought to result from the interplay between 
genetic susceptibility and environmental factors that trigger an ab-
normal mucosal immune response. An impaired balance of pro- and 
anti-inflammatory mediators drives disease manifestation and ham-
pers the resolution of inflammation, thereby perpetuating disease and 
increasing disease burden. Cytokines play a crucial role in all steps of 
the inflammatory cascade that occurs in IBD. Early studies identified 
cytokine deregulation in these patients.1–3 Furthermore, evidence in 
gene knockout [KO] animals revealed the crucial role of cytokine-
driven immunoregulatory signals in maintaining mucosal homeo-
stasis. Indeed, interleukin [IL]-2-KO4 and IL-10-KO5 animals have 
been described as spontaneous models of intestinal inflammation, 
underscoring the importance of these two cytokines in promoting 

regulatory responses at the mucosal barrier. Since then, innumer-
able studies have delineated patterns of cytokine regulation and their 
target cells, both in experimental models and in human disease.6 
Remarkably, two of the currently approved therapies in IBD interfere 
with cytokine function by using antibodies against tumour necrosis 
factor alpha [TNFα] and p40[IL-12/IL-23]. These therapies block the 
extracellular function of cytokines, but an alternative and broader 
method for interfering with these mediators is to inhibit their intra-
cellular signalling through cell-permeable small-molecule inhibitors.

In order to drive responses on target cells, cytokines need to bind 
to their specific receptors, which triggers a signalling pathway that 
will reach the cell nuclei. Although these intracellular signals vary 
among cytokines, they can be shared by different cytokine recep-
tors. Specifically, a group of cytokines implicated in the pathogenesis 
of several diseases, including IBD, signal through the Janus tyrosine 
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kinase [JAK] family.7,8 Thus, JAKs are currently desirable targets for 
the treatment of inflammatory disease.9,10 Specifically, tofacitinib, 
a potent pan-JAK inhibitor, has been approved to treat moderate 
to severe ulcerative colitis.11,12 Whereas the clinical potential of this 
antagonist is well proven, several questions remain unanswered, 
including: the specific cells and cytokine pathways these molecules 
act on in the context of IBD; the actual requirements for higher spe-
cificity in order to drive effective and safer JAK inhibition; the bene-
fits of local versus systemic delivery; and so on.

Here we provide clinicians and translational researchers with an 
overview of the current understanding of JAKs’ function and their 
potential involvement in processes that could prove relevant to the 
treatment of intestinal inflammation.

2.  Cytokines and Cytokine Receptors

The cytokine superfamily is a large group of structurally diverse 
low molecular weight soluble proteins that includes ILs, chemokines 
[CCL or CXCL], colony-stimulating factors [CSF], interferons 
[IFN], transforming growth factors [TGF], and TNF family mem-
bers. A common way to categorise this large and diverse cytokine 

family is based on the class of receptors they bind to. These include 
the following: type I  and type II receptors13 [Table  1A]; the TNF 
receptor superfamily [TNFR]; TGF-beta receptors; the immuno-
globulin family, which includes the IL-1 receptor superfamily14,15; the 
enzyme-like receptor family, which encompasses the tyrosine kinases 
family [RPTKs]16,17; chemokine receptors [guanylate cyclase-coupled 
receptors]18; and tyrosine kinase class III receptors19 [Table 1B].

Each receptor family uses different signalling molecules to reach 
the cell nucleus and initiate a cellular response. For instance, the 
G-protein coupled receptors that bind chemokines induce the ac-
tivation of protein G [guanine nucleotide-binding protein] that hy-
drolyses GTP. Type I and type II receptors, on the other hand, rely on 
the catalytic activity of JAKs to phosphorylate and activate a group 
of transcriptional factors known as the signal transducer and acti-
vator of transcription [STAT] family. Within the group of cytokines 
that requires JAKs for their functionality, a few are essential to intes-
tinal homeostasis and are involved in the pathophysiology of IBD; 
these include IL-12, IL-23, oncostatin [OSM], IFNɣ, IL-10, IL-9, 
and granulocyte-macrophage colony-stimulating factor [GM-CSF], 
among others.7 Nonetheless, it is important to note that several 
other key mucosal and IBD cytokines [i.e. TNF, IL-17A, chemokines, 

Table 1. List of cytokine receptors and their main cytokine ligands.

[A]

JAK-dependent cytokine receptors and ligands

Receptor family Ligand

⁃Type I receptors  
Common ɣ chain [ɣc] IL-2, IL-4, IL-7, IL-9, IL-15, IL-21 
TSLP receptor TSLP
IL-6 family [gp-130] IL-6, IL-11, IL-27, IL-35, LIF, OSM, CNTF, CT-1, CLC, NP, IL-31*
IL-12 family IL-12, IL-23
Common β chain IL-3, IL-5, GM-CSF
Homodimer receptors EPO, TPO, G-CSF, GH, PRL
⁃Type II receptors  
IL-13 receptor IL-13, IL-4
IFN type I IFNα, IFNβ, 
IFN type II IFNɣ
IFN type III IL28, IL28A, IL29
IL-10 family IL-10, IL-19, IL-20, IL-22, IL-24, IL26

[B]  

JAK-independent cytokine receptors and ligands

Receptor family Ligand

⁃TNF receptor family TNFα, TNFβ, LT, CD4, FasL, BAFF, Aprl, Ox40, GITR
⁃IL-17 receptor family IL-17A, IL-17B, IL-17C, IL-17DIL-17E [IL-25], IL-17F 
⁃TGF receptor family TGFβs, Activin A, GDF1, GDF11, BMPs, Nodal
⁃Enzyme-like receptors  
Receptor tyrosine kinase family [RPTKs] Ej. EGF, PDGF, VEGF, Insulin
Chemokine family [guanylate-cyclase-coupled receptors] CCL, CXCL, XCL, CXC3L
Receptor tyrosine kinase class III CSF-1, SCF, PDGFb, FLT3L
⁃Immunoglobulin-like family  
IL-1 receptor family IL-1α, IL-1β, IL-18, IL-33, IL1F5, IL1F6, IL1F7, IL1F8, IL1F9, IL1F10

Cytokine receptors that depend on JAK signalling are shown in [A] and those that are JAK-independent are shown in[B]. 
IL, interleukin; TSLP, thymic stromal lymphopoietin; OSM, oncostatin M; LIF, leukaemia inhibitory factor; CNTF, cytokine ciliary neurotrophic factor; CT-1, 

cardiothropin 1; CLC, cardiothropin-like cytokine; NP, neuropoetin; EPO, erythropoietin; Tpo, thrombopoietin; G-CSF, granulocyte colony-stimulating factor; 
GH, growth hormone; PRL, prolactin; IFN, interferon; EGF, epidermal growth factor; PDGF, platelet-derived growth factor; VEGF, vascular endothelial growth 
factor; SCF, stem cell factor; M-CSF, macrophage colony-stimulating factor; FLT3L, FMS-like tyrosine kinase 3 ligand; PDGFb, platelet-derived growth factor 
subunit B; TNF, tumour necrosis factor. *The cytokine IL-31 does not signal through gp130 but shares the subunit [OSMRβ] with OSM, which belongs to the 
IL-6 receptor family.
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TGF-β, or IL-1] operate completely independently of the functions 
of JAKs. In other words, their activity would not be directly targeted 
by pharmacological inhibition of JAK activity.

3.  Molecular Structure and Signal 
Transduction of Janus Tyrosine Kinases

In mammals, the JAK family is composed of four members: JAK1, 
JAK2, JAK3, and TYK2 [tyrosine kinase 2]. JAKs are non-receptor 
tyrosine kinase proteins constitutively associated with the intracel-
lular domains of type I and type II cytokine receptors.20

JAKs are large proteins with unique JAK homology [JH] do-
mains numbered in a C-terminal to N-terminal direction [Figure 1]. 
From the primary structure, putative domains are known to be con-
served between mammalian, avian, teleost, and insect JAKs.21 Seven 
JH [JH1–JH7] domains have been described and the C-terminal do-
main JH1, known also as the kinase domain, is the domain that 
presents catalytic activity.22 Adjacent to the kinase domain is the 
pseudokinase domain [JH2], a feature unique to JAKs. Although the 
pseudokinase domain lacks catalytic activity, it has an essential regu-
latory function since mutations within this domain can impact on 
kinase activity.23 The importance of this domain to JAK functionality 
is illustrated by a single-point mutation within the JH2 pseudokinase 
domain of JAK2, one that is present in the majority of patients with 
polycythaemia vera, as well as in a high percentages of patients with 
essential thrombocythaemia and idiopathic myelofibrosis.24–26 The 
N-terminal domain, known as the FERM [band-4.1 protein, ezrin, 
radixin, and moesin] domain [JH6-JH7], mediates interaction with 
the cytokine receptor subunits, since deletion of the N-terminal re-
gion abrogates binding.21 In addition, the FERM domain is thought 
to regulate catalytic activity of the C-terminal kinase domain, as mu-
tations in this domain can impact JAK1 functionality.27 In between 
the FERM and the pseudokinase domain lies the Src homology 2 
[SH2] domain [JH3-JH5], which also facilitates associations with 
the cytokine receptors that provide scaffolding.28 Recently com-
pleted crystal structures of JAK1, JAK2, and TYK2 revealed that 
the FERM and SH2 domains are closely associated to form a single 
receptor-binding module.29

JAKs are located in the cytosol near the cell membrane. After 
ligand stimulation, receptors undergo conformational changes [di-
merisation] that bring JAKs into proximity with each other [Figure 2]. 
JAKs through their N-terminal domain are constitutively associated 
with a proline-rich, membrane-proximal domain of these cytokine 
receptors. JAKs trans/auto-phosphorylate each other and subse-
quently phosphorylate the tyrosine residues within the intracellular 
tails of the receptor chains. These phosphorylated tyrosine residues 
then serve as docking sites for STAT proteins, which bind via their 
SH2 domains. At that point, JAKs phosphorylate the tyrosine res-
idues of the C-termini of STATs. Once activated by phosphorylation, 
STATs dissociate from the receptor and homo/hetero-dimerise. The 
phosphorylated STAT dimer can subsequently translocate from the 

cytoplasm to the nucleus, where it binds to specific DNA sequences 
on target genes and induces or represses gene transcription.30

In mammals, there are seven STAT proteins, STAT1, STAT2, 
STAT3, STAT4, STAT5A, STAT5B, and STAT6, that are involved in 
a wide variety of downstream signalling cascades. Consistent with 
the activation of JAK-dependent pathways, different STATs have 
been implicated in the pathophysiology of IBD.31,32 In contrast to 
JAK inhibitors, the development/utility of STAT inhibitors has been 
considered primarily in the context of cancer.33 Nevertheless, there 
have been no human studies to date examining STAT inhibition for 
the treatment of IBD.

4.  JAK-dependent Receptors

As discussed above, both type I and type II cytokine receptors re-
quire JAK activity to signal. Depending on the specific receptors, 
one or more different members of the JAK family will collaborate to 
mediate signal transduction [Figure 3]. Thus, each JAK participates 
in signalling downstream of multiple cytokine receptors, often in as-
sociation with other JAK family members. In general, all type I and 
type II receptors rely on JAK1 and/or JAK2 for signalling. TYK2 
can partner with both JAK1 and JAK2, whereas JAK3 is by far the 
less widely expressed JAK protein, being restricted to the common ɣ 
chain [ɣc]-containing receptors.

4.1. Type I receptor-binding cytokines and their 
biological functions
IL-2 receptor family members share a common subunit, the common 
gamma chain ɣc [IL-2Rɣ]. Cytokines that signal through the γc in-
clude IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21 [Table 1A]. Signalling 
through the IL-2 family of receptors requires the activation of 
both JAK3, which partners with the ɣc, and JAK1, which mediates 
signalling downstream of the corresponding α chain subunit: IL-2Rα, 
IL-4Rα, IL-7Rα, IL-9Rα, IL-15Rα, and IL-21R, respectively.34 
Exceptionally, the IL-2 and IL-15 receptors include a third shared β 
chain,35 IL-2Rβ [CD122]. Besides using the γc receptor expressed by 
T cells, IL-4 can transduce its signal through a type II receptor com-
prising IL-4Rα and IL-13Rα1 [Figure 3].36 The type II IL-4 receptor 
is expressed primarily on B cells and non-lymphoid cells, and signals 
through JAK1 and TYK2.37–40 Remarkably, this same receptor com-
plex is shared by another key Th2 cytokine, IL-13.41

Most cytokines in this group [i.e., IL-2, IL-4, IL-7, IL-15, and 
IL-21] are essential for lymphocyte survival, proliferation, and/or 
activation/differentiation. Indeed tofacitinib, a potent JAK1 and 
JAK3 inhibitor approved for psoriatic arthritis,ulcerative colitis, and 
rheumatoid arthritis, significantly reduces the number of circulating 
lymphocytes in patients.42,43 Although no data are yet available, 
other inhibitors under development which selectively target JAK3 
[i.e., PF-06651600] or JAK1 [i.e., filgotinib and upadacitinib] may 
have this same effect based on the necessary role of both JAK3 and 
JAK1 for signalling downstream of the IL-2R family.

N-terminal JH7 JH6 JH5 JH4 JH3 JH2 JH1 C-terminal

FERM domain SH2 domain Pseudokinase
domain

Kinase domain

Figure 1. Schematic of Janus kinase proteins structure. Janus kinases comprise the FERdomain [JH6-JH7] and the SH2 domain [JH3-JH5], both mediating 
receptor interactions, the pseudokinase domain [JH2] with regulatory function, the catalytic domain [JH1], and the kinase domain.
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Thymic stromal lymphopoietin [TSLP] has a unique receptor 
complex that uses the IL-7Rα subunit, which partners with TSLPR 
[CRLF2] instead of ɣc. This cytokine thus relies on JAK1 and TYK2, 
but not on JAK3.44,45

Another group of type I cytokine receptors contains the gp130 
[CD130] subunit, and is known as the IL-6 family of receptors. 
Cytokines using these receptors include IL-6, IL-11, IL-27, IL-35, 
leukocyte inhibitory factor [LIF], OSM, ciliary neurotrophic factor 
[CNTF], cardiotrophin-1 [CT-1], cardiotrophin-like cytokine [CLC], 
and neuropoietin [NP]46 [Table 1A].47 These cytokines use receptors 
composed of a unique α chain [IL-6R, IL-11R, IL27Rα [WSX-1], 
IL-12Rβ2, LIF receptor [LIFR], OSMRβ, and CNTFRα], which pro-
vides specificity and signals through JAK2, and the common gp130 
chain, which mediates signalling through JAK1. TYK2 participates 
with these receptor complexes, but the role for TYK2-medited phos-
phorylation in driving responses remains unclear.

IL-6 and IL-11 are the only IL-6 type cytokines that can signal 
through gp130 homodimers and a third alpha subunit [IL-6R and 
IL-11R, respectively]. IL-27 and IL-35, which are heterodimeric pro-
teins related to the IL-12 family of cytokines, signal [unlike IL-12 and 
IL-23] through the gp130 subunit. Gp130 partners with IL-27Rα 
[WSX-1] to deliver IL-27 signals,48,49 and the receptor for IL-35 uses 
IL-12Rβ2 [shared with the IL-12 receptor].50 IL-35 can also signal 
through homodimers of each of its receptor chains. Both IL-27 and 
IL-35 depend on JAK1- and JAK2-mediated phosphorylation.

LIF, OSM, and CT-1 use gp130 and the LIF receptor subunit 
[LIFR].51,52 In addition, a receptor formed by OSMRβ and gp130 
can also bind to OSM to deliver signals in a JAK1- and JAK2-
dependent manner. CNTF, CLC, and NP share their receptor, a 
tripartite signalling complex53 that includes CNTFRα, gp130, and 
LIFR, all of which use JAK1 and JAK2 for signal transduction.

IL-31 is also considered a member of the IL-6R family despite 
not using the gp130 subunit; instead, it relies on the IL-31RA and 
OSMRβ subunits, which partner with JAK1 and JAK2, respectively.54

The IL-12 receptor family, which used to be included within 
the IL-6 family of receptors, comprises the receptors for IL-12 and 
IL-23. The former binds a heterodimer formed by IL-12Rβ1 and 
IL-12-Rβ2, and the latter uses a heterodimer comprising IL-12Rβ1 
and IL-23R. The shared IL-12-Rβ1 receptor signals through TYK2, 
and both IL-12Rβ2 and IL-23R associate with JAK2.

The IL-3 receptor family is also known as the common β-chain 
receptor family, as they all use a β-chain subunit for signalling. 
Cytokines that bind these receptors are IL-3, IL-5, and GM-CSF 
[Table 1A].55 β-chain receptors exclusively use JAK2 dimers to trans-
duce their signals. Members of this cytokine family regulate the 
growth, differentiation, migration, and effector functions of many 
haematopoietic cells.

The hormone-like receptor family includes the receptors for erythro-
poietin [EPO], thrombopoietin [TPO], granulocyte colony stimulating 
factor [G-CSF], growth hormone [GH], and prolactin [PRL]. These are 
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Figure 2. Overview of cytokine signalling through the Janus kinase pathway. Cytokines bind to homodimeric or heterodimeric receptors, after ligand stimulation 
receptors undergo conformational changes and bring JAKs into proximity which each other. JAKs trans/auto phosphorylate each other and the receptor, 
allowing STATS to bind to the receptor. Subsequently JAKs phosphorylate STATS, allowing them to dimerise and translocate to the nucleus to regulate gene 
transcription.
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all homodimeric receptors that are exclusively dependent on JAK2.56 
The crucial role played by most of these cytokines and growth factors 
in haematopoiesis has discouraged the development of selective JAK2 
inhibitors in common immune-mediated diseases.

4.2. Type II receptor-binding cytokines and their 
biological functions
Type II receptors bind to a large group of cytokines, including type 
I  [IFN-α, IFN-β],57 type II [IFN- ɣ], type III IFNs [IL-28, IL-29, 
IL28B], and IL-10 related cytokines [IL-10, IL-19, IL-20, IL-22, 
IL-24, IL-26]. Interestingly, they all rely on JAK1 and either TYK2 
or JAK2 to deliver their intracellular signals. Furthermore, the IL-13 
receptor is also considered a type II receptor and signals through 
JAK1 and TYK2. This receptor is formed by the subunits IL-4Rα 
and IL-13Rα1,58 the latter associated with TYK2. As mentioned 
above, IL-4 can also use this receptor complex to transduce signals.38

Type I IFN receptors are formed by IFNαR1, which is constitu-
tively bound to TYK2, and IFNαR2, which recruits JAK1 to trans-
duce signals.59

The IFN-ɣ receptor [type II cytokine receptor] is formed by 
IFNɣR1 and IFNɣR2, which recruit JAK1 and JAK2, respectively.

The type III IFN receptor60 is constituted by two subunits: 
IL-28RA [IFNλRA], which recruits JAK1, and IL-10RB, which binds 
to TYK2. Both type I  and type III IFNs are essential for antiviral 
responses.61–63 It is not surprising that both have similar biological 
functions, since their signal transduction cascades are very similar. 
Type II IFN is required for intracellular and extracellular bacteria 
killing.64 Both arms of the immune response may be compromised by 
the use of JAK1 inhibitors such as tofacitinib [a pan-JAK inhibitor], 
filgotinib, or upadacitinib.

The IL10 receptor family is formed by the receptors to IL-10, 
IL-19, IL-20, IL-22, IL-24, and IL-26.65 These have in common the 
IL-10RB subunit shared with type III IFNs, which recruits TYK2 for 
signal transduction. The IL10RB subunit assembles with IL-10RA, 
IL-20RA, and IL-22R to form the different cytokine receptors, all of 
which bind to JAK1.66,67 These groups of cytokines mediate diverse 
immune responses, including epithelial defence and regulatory im-
mune responses.68 Monitoring the degree to which these responses 
may be affected by those JAK1 inhibitors in IBD would be relevant, 
especially during maintenance phases.

5.  Establishing the Critical Role of JAKs 
In Vivo

JAKs orchestrate diverse functions of the innate and adaptive im-
mune systems through their critical role in cytokine signal trans-
duction. Shortly after their discovery, their essential role in cytokine 
signalling was established in experiments using mutagenised cell 
lines that were resistant to IFNs.57,59,69,70 The first in vivo evidence 
of the critical role played by JAKs was the identification of patients 
with a primary immunodeficiency that was linked to JAK3 func-
tionality.71 In addition, data in knock-out mice have been crucial to 
unravelling the contribution of each of these kinases to biologically 
relevant processes.72–78

Based on all of this evidence, it is well established that loss of 
function of any of these four protein kinases entails biological conse-
quences. Importantly, the only viable JAK deficiencies in humans and 
mice are described in TYK2 and JAK3, suggesting that the deletion 
of either JAK1 or JAK2 may be incompatible with life. Nonetheless, 
mutations in any of the four JAKs are linked with a variety of human 
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diseases. For instance, somatic gain of function mutations in JAK2 
are associated with myeloproliferative diseases, given the role of 
JAK2 in haematopoiesis.79 Other constitutive activating mutations 
in all four JAKs have been associated with a variety of haemato-
logical and solid organ malignancies.80–83

Below we discuss the available in vivo evidence on mutant or 
deleted JAK proteins which furthers our understanding of the roles 
these kinases play in biology. We also hypothesise on the implica-
tions of these data in pharmacologically targeting this kinase family.

6.  TYK2

TYK2 was the first member of the JAK family to be isolated84 and 
was originally described as essential for type I IFN [IFNα and IFNβ] 
signalling in a human fibroblast cell line.57 A subsequent study con-
firmed that TYK2 was critical for type I  IFNs signal transduction 
but was not required for IFNɣ [type II IFN] in human cells.69 Mice 
lacking TYK2 are viable and commonly studied today. Experiments 
on these mice have revealed a partial impairment of the response 
to IFNα/β. In contrast, the absence of TYK2 in murine cells leads 
to a complete lack of STAT3 activation in murine splenocytes ac-
tivated with IL-12, thus establishing the absolute requirement of 
TYK2 for cellular responses to IL-12. In addition, TYK2 was shown 
to be dispensable for responses to IL-10, IL-6, or LIF murine fibro-
blasts.75 Overall TYK2 activity appears to be essential, at least in 
mice, for IL-12 signalling, with the partial contribution to type I IFN 
responses, though not essential for signalling through the IL-6R and 
IL-10R families, despite binding to these receptor chains.

Humans with TYK2 deficiency have been reported in the litera-
ture and their phenotypes vary. The first individual to be identified 
had a homozygous deletion of four nucleotides in the FERM do-
main of the TYK2 sequence, which abrogates its expression.85 This 
patient had been clinically diagnosed with hyper-IgE syndrome 
and atopic dermatitis, and presented a high susceptibility to infec-
tions from diverse microorganisms including viruses, fungi, and 
mycobacteria. Peripheral blood cells showed almost complete loss 
of type I  IFNs and IL-12 signalling. Furthermore, impairment in 
IL-10 and IL-6 activity was shown, in apparent disagreement with 
murine data.75 Moreover, CD4+ T cells isolated from this patient’s 
blood failed to produce IFNɣ in response to IL-12 and IL-18, sug-
gesting a defect in Th1 function and/or differentiation in this indi-
vidual. However, when activated with PMA [phorbol 12-myristate 
13-actetate] and ionomycin, JAK2-deficient T cells produced con-
siderable amounts of IFNɣ, showing that type II IFN production 
was not impaired, but rather response to IL-12. In addition, T cells 
from this TYK2-deficient patient showed no response to IL-23, as 
measured by the lack of STAT3 phosphorylation upon stimulation 
with this cytokine. Overall, these data suggest that TYK2 plays an 
essential role in responses to IL-12 and IL-23, whereas IFNɣ activity 
remains as expected, TYK2-independent. Remarkably, in this indi-
vidual the overall decrease in Th1 responses was accompanied by 
a bias towards Th2 responses including increased IL-5, IL-13, and 
IgE production, all of which may be involved in the disease mani-
festations described in this patient. This observation also agrees with 
studies performed in mice with a natural mutation in the TYK2 
pseudokinase domain, which is associated with hyporesponsiveness 
to IL-12, IL-23, and type I  IFNs.86 Therefore, although the essen-
tial role of TYK2 in response to IL-12 has been clearly established 
both in human and in murine cells, the requirement of this kinase 
in signalling downstream of other cytokine receptors that associate 
with TYK2 remains less clear.

More recently a new study has described seven additional pa-
tients, with increased susceptibility to mycobacterial infections, who 
turned out to carry mutations in TYK2 which led to a lack of protein 
expression. Furthermore, none of these patients developed hyper-IgE 
syndrome.87 They did however exhibit impaired responses to IL-12, 
IL-23, IFN-α, and IL-10, similarly to the first TYK2-deficient pa-
tient first described. Response to IL-6 however was not impaired in 
these seven patients, in contrast to the first reported TYK2-deficient 
individual. This observation would suggest that TYK2 may be dis-
pensable for IL-6 signalling. Indeed, further data obtained from the 
first TYK2-deficient patient with the hyper-IgE syndrome showed 
that impaired response to IL-6 occurred independently of the TYK2 
mutation87 in this patient, as restoring TYK2 expression rescued the 
response to IFN-α but not to IL-6.

Lack of response in TYK2-deficient cells could also be due to 
defective expression of cytokine receptors. Indeed, the role of TYK2 
as a scaffolding protein to stabilise the IFNα receptor has been de-
scribed in earlier studies.57,88 In agreement with that observation, 
TYK2-deficient patients showed a marked downregulation of IFN-
αR1, as well as IL-10R2 and IL-12Rβ1, on the cell surface,87 strongly 
suggesting that TYK2 plays a crucial role in stabilising cell-surface 
receptor expression, which would explain the lack of response to 
type I IFNs, IL-10R and IL-12R binding cytokines. Thus, to dissect 
the scaffolding function of TYK2 from its catalytic activity [required 
for downstream signal transduction], one cannot rely on TYK2-
deficient cells; instead, inhibitors of the enzymatic activity must be 
employed. Experiments using a panel of potent TYK2 antagonists 
with varying degrees of selectivity against other JAK kinases confirm 
that TYK2 is essential for IL-12 and IL-23 signalling, whereas it is 
not required for type I  IFN, IL-6, and IL-10 induced STAT phos-
phorylation in human cells, which could instead be completely ab-
rogated by JAK1-specific inhibitors.89 A recent paper using a TYK2 
selective inhibitor [BMS-986165] appears to partially challenge this 
view.90 BMS-986165 is an allosteric inhibitor, thus highly specific, 
and was identified for its selectivity towards the TYK2 pseudokinase 
domain; nonetheless, it could also bind with lower affinity to the 
JAK1 pseudokinase domain. BMS-986165 competed with a fluores-
cent probe to bind to the adenosine 5′-triphosphate [ATP] binding 
site of the human recombinant TYK2 pseudokinase domain protein 
with a median inhibitory concentration [IC50] of 0.2 nM, and to the 
JAK1 pseudokinase domain with an IC50 of 1 nM. As expected, this 
compound effectively blocked IL-23 and IL-12 responses in human 
peripheral blood mononuclear cells [PBMCs] with an IC50 of 9 and 
11 nM, respectively. In contrast to the previously described TYK2 
selective inhibitors that presented 200-fold greater selectivity for 
TYK2 over JAK1,89 BMS-986165 inhibited responses to IFNα and 
IL-10 in human PBMCs with IC50 values ranging between 6 and 
14.89 This effect could, however, be explained by the combined par-
tial inhibition of JAK1 and the potent TYK2 impairment provided 
by the BMS compound. Regardless of the compound used, TYK2 
catalytic activity does not appear essential for IL-6 responses.89,90

BMS-986165 was also administered as an inhibitor in two 
models of colitis that can be prevented by anti-p40 [IL-12/IL-23], 
and afforded complete protection as determined by decreased weight 
loss and colonic histological scores.90 In agreement with the potent 
inhibition of type I  IFN responses, the BMS compound was also 
shown to protect mice from nephritis in a lupus-prone mouse model.

In summary, data from human and murine TYK2-deficient cells 
and selective [or partially selective] TYK2 inhibitors support the 
idea that the catalytic activity of TYK2 is required for signalling 
downstream of the IL-12R family, whereas it may be dispensable 
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for responses to IL-6. Contradicting data are available on the es-
sential role of TYK2 in mediating responses to type I IFNs and to 
cytokines binding to the IL-10R family. Nonetheless, minor allele 
homozygosity at the rs34536443 single nucleotide polymorphism 
[SNP] drives the near complete loss of TYK2 function and impairs 
type I IFN, IL-12, and IL-23 signalling, although responses to IL-6, 
IL-10 and IL-13 are unaffected.91 Remarkably, this SNP has been 
found to confer protection against psoriasis, rheumatoid arthritis, 
systemic lupus erythematosus, type 1 diabetes, ankylosing spondyl-
itis, Crohn’s disease, ulcerative colitis, multiple sclerosis, juvenile 
idiopathic arthritis, and primary biliary cirrhosis.92–98

Overall, all this evidence makes TYK2 a desirable target for mul-
tiple common autoimmune disorders, including IBD.

7.  JAK1

Elucidating the non-redundant roles of JAK1 has been complicated by 
the fact that JAK1-knockdown in mice results in perinatal lethality,78 
with no patients described to date with complete JAK1 deletion. 
Indeed, the role of JAK1 was initially discovered by generating cell 
lines resistant to IFN effects. Müller et al. generated a randomly mu-
tagenised human fibrosarcoma cell line that lacked JAK1 and failed 
to respond to both IFNα/β and IFNɣ.59 Later, JAK1 was shown to be 
critical in mediating type III IFN-induced STAT phosphorylation.99

A 2016 report described a patient who presented an immunodefi-
ciency with susceptibility to mycobacterial infections and who de-
veloped a fatal high-grade bladder cancer.100 This patient turned out 
to carry two homozygous missense germline mutations in the JAK1 
pseudo-kinase domain whcih impaired JAK1 and STAT phosphoryl-
ation, resulting in a significantly reduced response to both type I and 
type II IFNs. Nonetheless, the impact of this mutation on other JAK1-
dependent cytokines, including the IL-2, IL-6, and IL-10 family, was 
not explored in this study. However, impaired responses to IL-2, IL-7, 
and IL-15 [all using the ɣc that interacts with JAK1] may have con-
tributed to the observed progressive T lymphopenia in this patient 
and impaired the development of NK and cytolytic T cells. In agree-
ment with a role of JAK1 in lymphocyte development, JAK1-deficient 
mice die perinatally and have severely reduced numbers of thymo-
cytes, pre-B cells, and mature T and B cells.78 Experiments using cells 
derived from these mice show the absolute requirement of JAK1 
in mediating responses to all type II receptors [i.e., the receptors to 
IFNα/β, IFNɣ, and IL-10], as well as to ɣc [i.e., the receptors to IL-2, 
IL-4, IL-7, IL-9, and IL-15] and gp130-using receptors [i.e., the recep-
tors to IL-6, IL-11, OSM, LIF, CNTF, and CT-1].

Overall the expression of JAK1 is shared by many cell types, as 
it associates with a large number of cytokine receptor chains. It is 
therefore not surprising that JAK1 has proven to be essential for em-
bryonic development and that it is involved in many physiologically 
relevant pathways, including protection from infections and anti-
tumour responses. Indeed, somatic mutations in JAK1 have been 
identified in multiple tumour types.101–104 Mutations predicted to 
cause loss of JAK1 function are associated with the reduced expres-
sion of IFN-associated genes in different tumour types,103 stressing 
the key role of JAK1-mediated responses in tumour surveillance. In 
addition, JAK1 is broadly involved in microbial responses [i.e,. IL-6, 
IFNs, OSM] and regulatory homeostatic signals [i.e. IL-10, IL-22], 
and interfering with its activity may pose risks in the long-term treat-
ment of patients. Nonetheless, JAK1 inhibitors remain a potent and 
viable option to treat inflammatory diseases. Long-term treatment, 
however, should be carefully monitored as we learn more about 
these powerful inhibitors.

8.  JAK2

Similar to JAK1, deletion of JAK2 is lethal.77,105 JAK2 deficiency 
causes embryonic death due to incomplete erythropoiesis-producing 
anaemia. Indeed, JAK2 is required for the transmission of signals 
downstream of the EPO receptor. The phenotype in JAK2-KO mice 
is more severe than that observed in embryos lacking the EPO re-
ceptor,106 which could be explained by defects in response to 
additional mediators such as TPO, which also contribute to the ex-
pansion of early erythroid lineage cells. Moreover, responses to other 
cytokines important for haematopoiesis [i.e. GM-CSF, G-CSF, IL-5, 
and IL-3] are also impaired in JAK2-KO mice. Whereas lack of func-
tion or deletion mutations have not been reported, gain-of-function 
mutations on JAK2 have been extensively documented and linked 
to myeloproliferative diseases. A single point mutation in the JH2 
pseudo-kinase domain of JAK2V617F that leads to the constitutive 
tyrosine kinase activity of JAK2, is found in 80% of polycythaemia 
vera patients,24,107 an acquired myeloproliferative disorder associated 
with thrombocytosis, leukocytosis, and splenomegaly. Several fusion 
proteins comprising transcription factors and JAK2 have been rec-
ognised in lymphoproliferative and myeloproliferative disorders.108 
Analogous to the activating JAK2V617F mutation, these fusion 
proteins are constitutively active kinases and promote cell survival 
and proliferation independently of signals received from cytokine 
binding. Indeed, the first inhibitor to be approved by the US Food and 
Drug Administration [FDA] was ruxolitinib [a JAK1/2 antagonist], 
indicated for the treatment of myeloproliferative neoplasms.109

In addition to JAK2’s role in signalling through hormone-like re-
ceptors and the IL3R family, this kinase is involved in the signalling 
mediated by IFNɣ and IL-12, the latter a key Th1-inducing cyto-
kine. Indeed, fibroblasts from JAK2-KO mice were defective in IFNɣ 
signalling, whereas signalling via type I  IFN receptors remained 
intact.110 In addition, gp130-using receptors have also been shown 
in mice embryonic stem cells to induce JAK2 and, to a lesser de-
gree, JAK1 phosphorylation. Deletions or point mutations in the 
membrane-proximal cytoplasmic motifs in gp130 result in the loss 
of tyrosine phosphorylation of JAK2, which coincides with the lack 
of signal-transducing capability in gp130 mutants.111

In summary, despite contributing to the activation of pathways 
that are potentially involved in inflammatory diseases such as IBD, 
JAK2 has shown an ineluctable role in haematopoiesis that bars it 
from becoming a potential target for these diseases. Nonetheless, 
some molecules that block both JAK1 and JAK2 [i.e. baricitinib 
and ruxolitinib] have been approved in other autoimmune diseases 
such as rheumatoid arthritis112 and tested in lupus erythematosus,113 
showing efficacy and acceptable safety patterns. In contrast, more 
selective JAK2 inhibitors [i.e., fedratinib] have been restricted to 
myeloproliferative disease such as myelofibrosis.114,115

9.  JAK3

JAK3 was the fourth and last member of the JAK family to be dis-
covered.116 Similar to TYK2, individuals lacking JAK3 protein ex-
pression have been reported.71,117,118 JAK3 associates exclusively with 
the ɣc [IL-2RG] and is required together with JAK1 for downstream 
signalling of the IL-2R family of receptors. In contrast to JAK1, 
which is activated by a large group of cytokine receptors, the role 
of JAK3 is rather restricted and it primarily regulates lymphocyte 
maturation, survival, activation, and differentiation. Thus, defects 
in JAK3 are the second most common form of a severe immuno-
deficiency in humans.71,117–119 This mutation shares the phenotype 
with IL2RG [ɣc] deficiency, known as X-linked severe combined 
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immunodeficiency [X-SCID].119,120 SCID refers to a group of rare 
and inherited defects in primary immunity, resulting in the absence 
of lymphocyte development and significant deficits in host defence. 
This life-threatening condition is typically presented within the first 
few months of life by a combination of opportunistic infections. 
Currently, the only viable clinical therapy for SCID is haematopoi-
etic stem cell transplantation [HSCT].121

JAK3-SCID is an autosomal recessive form of SCID character-
ised by the lack of peripheral T and NK lymphocytes with conserved 
numbers of B cells. Despite having normal B cell numbers, both 
JAK3- and X-SCID show compromised humoral responses, with im-
paired B cell activation, maturation, and antibody class switching. 
This can be explained in part by the lack of T-helper function, al-
though it also stems from the intrinsic B cell dysfunction caused 
by defective responses to other ɣc/JAK3 cytokines [IL-4 and IL-21] 
which are important regulators of B cell proliferation and immuno-
globulin class switching.

In agreement with human data, KO mouse models lacking JAK3 
[JAK3-KO mice] or ɣc [IL2RG-KO mice] showed a characteristic 
SCID phenotype similar to that observed in humans.119,122–124 JAK3- 
and ɣc-KO mice have small thymi and lack lymph nodes. Both 
types of deficient mice showed a defect in T cell development and 
have functionally unresponsive peripheral T cells with an activated/
memory cell phenotype.125 Moreover, JAK3- and ɣc-deficient mice 
developed marked B cell lymphopenia with residual functionally de-
ficient B cells. The severely reduced numbers of bone marrow and 
peripheral B cells observed in ɣc- and JAK3-deficient mice differ from 
the common phenotype in human SCID, suggesting different require-
ments for B cell development between species. In JAK3 or IL-7R-KO 
mice, B cell development is blocked at the pre-B stage, likely due to 
the impaired IL-7R signalling in mice.126,127 Additionally, IL-7R has 
been found to promote rearrangement of the immunoglobulin heavy 
chain genes.127 Thus, the B cell maturation defect in KO mice its 
likely due to the inability of these early B cells to respond to IL-7 sig-
nals. In humans, IL-7 signalling is also essential for lymphoid devel-
opment, survival, and differentiation, but not for B cell maturation.

The third most common mutations in SCID patients are in 
IL7R.119 IL7R-deficient patients show severe T lymphopenia with 
normal or increased B cells and, in contrast to JAK3- or ɣc-deficient 
individuals, normal NK cell development [T−B+NK+ SCID],128 sup-
porting the importance of IL-7 in NK cell homeostasis in humans. 
Therefore, IL-7 appears to play different roles between species, being 
essential for B cell development in mice and for NK cell generation 
in humans.

Overall, JAK3 deficiency is associated in humans with a marked 
decrease in T and NK cell numbers, as well as a defect in mounting 
B cell responses. JAK3 inhibitors thus represent powerful tools to 
treat patients suffering from lymphocyte-dependent immune dis-
eases, although they carry the risk of decreased immunosurveillance 
and thus require close monitoring. Besides mediating antimicrobial 
responses, at least four of the ɣc family cytokines [IL-2, IL-9, IL-15, 
and IL-21] have been reported to exhibit anti-cancer activities.34 On 
the other hand, IL-2 has also been considered in the treatment of 
autoimmunity, due to its critical role in Treg cell homeostasis.129

10.  Translating Research Findings on Janus 
Kinase Biology to a Clinical Setting

JAKs receive signals from over 50 cytokines and growth factors with 
essential roles in the immune system, as evidenced by the dramatic 
phenotypes described in individuals bearing loss- or gain-of-function 

mutations in any of the four JAK members. Most of our current 
knowledge on JAKs derives from the study of these individuals, as 
well as from animal models that reproduce some of these mutations.

A significant success of these studies has been the development 
of JAK inhibitors—including broad inhibitors, ruxolitinib and 
tofacitinib—that have benefited thousands of patients suffering 
from chronic inflammatory diseases. The success of the first gener-
ation of JAK inhibitors has pushed research and the development of 
novel and more selective compounds. The benefits of inhibitors with 
higher specificity must still be established. Nonetheless, the in vivo 
and in vitro evidence discussed herein should guide the design of 
novel approaches and the interpretation of data that will be gener-
ated from testing these more specific inhibitors in patients.

In principle, molecules with increased JAK specificity may pro-
vide efficacy while potentially improving safety. Nonetheless, JAK 
antagonism represents a broad multiple cytokine-blocking approach 
to disease treatment. Even antagonists that, at a therapeutic dose 
range, bind exclusively to one of the four JAK proteins will inhibit 
an array of different cytokine pathways in contrast to the single-
cytokine blocking antibodies commonly used in the clinics.

Beyond the difficulty of developing purely selective antagonists, 
another forthcoming challenge remains in defining which JAK would 
be the best target for each specific disease or disease phenotype.

Targeting JAK1, for example, inevitably interferes with the JAK3-
dependent receptors that share signalling with JAK1. Supporting 
this argument, both tofacitinib [a JAK1 and JAK3 antagonist] and 
upadacitinib [a selective JAK1 inhibitor]130 are approved for the 
treatment of moderate to severe rheumatoid arthritis with inad-
equate response or intolerance to methotrexate.131–133 As discussed 
above, JAK1 inhibitors have a broad target range which may have 
contributed to the efficacy of tofacitinib, upadacitinib, or filgotinib, 
but which may have also impaired protective immune responses [i.e. 
viral responses].

On the other hand, JAK3-specific inhibitors currently under de-
velopment [i.e., decernotinib and PF-06651600] exclusively target 
the ɣc receptor family, while sparing other JAK1-dependent IL-6R 
and IL-10R cytokines, IL-13, and types I, II, and III IFNs. Selective 
JAK3 antagonism, we argue, could prove beneficial to those disease 
phenotypes that rely primarily on T and/or B cells responses which 
are dependent on cytokine signals such as IL-2, IL-4, IL-7, IL-15, 
IL-21, and IL-9.134 The challenge ahead for selective JAK3 inhibitors 
remains proof of efficacy and a reduction of adverse effects.

Based on all the evidence available, JAK2 is essential for haem-
atopoiesis and selective inhibition was initially limited to the treat-
ment of myeloproliferative diseases. Nonetheless, an inhibitor 
to both JAK1 and JAK2, baricitinib, has been tested in immune-
mediated diseases and recently approved for treatment of rheuma-
toid arthritis, although at the lower dose of 2 mg. Inhibition of both 
JAK1 and JAK2 catalytic activities should completely shut down 
all JAK-dependent cytokine receptors [Figure 3]. Indeed, baricitinib 
at the high dose of 4 mg was associated with an increased risk of 
herpes zoster and a higher incidence of malignancy, excluding non-
melanoma skin cancer. The rate for the latter was higher in the 4-mg 
group. In addition, six patients in that group were diagnosed with 
lymphoma.135 The increased risk of thrombosis associated with 
the high dose led the FDA to approve baricitinib only at a dose of 
2 mg.136

In contrast to the broad effects of JAK1 and/or JAK2, TYK2 ap-
pears to tightly control responses to IL-12 and IL-23 and is likely in-
volved in type I IFN responses. Whereas TYK2 is essential for the cell 
surface expression of the IL-6 and the IL-10 receptor families, the 
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signalling downstream of these receptors does not appear to require 
its catalytic activity. This profile makes it a highly desirable target 
in inflammatory diseases including IBD, psoriasis, and rheumatoid 
arthritis that respond to anti-p40 [IL-12/IL-23] antibodies. Indeed, a 
phase II study is currently under way for moderate to severe ulcera-
tive colitis [NCT03934216].

Finally increasing our knowledge, as well as the pool of highly 
specific inhibitors available, could provide the basis for combination 
therapies. Treatment with both a TYK2 inhibitor and a JAK3 antag-
onist during induction may provide benefits to a broader number of 
patients, by simultaneously targeting the ɣc cytokines and the IL-12/
IL-23 pathways. Furthermore, we would suggest that by combining 
a JAK3 anatagonist and a TYK2 inhibitor we could potentially re-
duce the required doses to achieve remission. As selectivity of most 
inhibitors, and indeed safety, can be negatively affected by increasing 
the administered doses, combining compounds that simultaneously 
target independent pathways may prove beneficial. Given the multi-
factorial and heterogeneous nature of immune mechanisms driving 
IBD, access to selective JAK inhibitors may support future thera-
peutic fine tuning of the relevant target for each individual needing 
personalised disease modulation.
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