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Abstract: This paper details a new extrinsic calibration method for scanning laser rangefinder that is
precisely focused on the geometrical ground plane-based estimation. This method is also efficient
in the challenging experimental configuration of a high angle of inclination of the LiDAR. In this
configuration, the calibration of the LiDAR sensor is a key problem that can be be found in various
domains and in particular to guarantee the efficiency of ground surface object detection. The proposed
extrinsic calibration method can be summarized by the following procedure steps: fitting ground
plane, extrinsic parameters estimation (3D orientation angles and altitude), and extrinsic parameters
optimization. Finally, the results are presented in terms of precision and robustness against the
variation of LiDAR’s orientation and range accuracy, respectively, showing the stability and the
accuracy of the proposed extrinsic calibration method, which was validated through numerical
simulation and real data to prove the method performance.

Keywords: 3D LiDAR; laser rangefinder; extrinsic calibration; road surface object detection

1. Introduction

1.1. Overview

With the evolution of technology, the 3D intelligent sensors have posed great challenges in
signal processing, especially in their outstanding acquisition performance even in rough environment.
Moving to road networks maintenance and transportation safety, the responsibility imposes itself
in detecting and locating the road distortion (cracking, patching, potholes, rutting, shoving, etc.).
The literature review in [1] presents different automated detection experiments and extensive
research conducted on pavement adversity in recent years. The work shows the importance and
the incredible progress of 3D sensors compared with the other sensors, especially the laser profiler
that is characterized by its high precision measurement capability, high spatial resolution and
acquisition flexibility.

In a related context, road defects present a big danger on the traffic circulation ending up with
possible traffic accidents. Some traffic accidents result from the presence of disabilities or small
obstacles on the roads. In fact, this is one of the major problems that people suffer from in their daily
lives. The key problem in this research concerns the characterization of the road surface by detection,
localization, and tracking the presence of potentially dangerous areas and road defects using a 3D

Sensors 2020, 20, 2841; doi:10.3390/s20102841 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-0741-0518
https://orcid.org/0000-0003-1732-3108
http://dx.doi.org/10.3390/s20102841
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/10/2841?type=check_update&version=2


Sensors 2020, 20, 2841 2 of 22

LiDAR sensor. Although 2D LiDAR sensors can provide 3D data, they require the use of an additional
instrument in the form of a tilt unit.

Various promising applications, which rely on LiDAR sensors, are developed in different
fields: intelligent transportation systems, mobile robotics, and connected vehicles. Thus, LiDAR
is a fundamental sensor contributing in multi-vehicles tracking [2], simultaneous localization and
mapping [3,4], road and road boundaries detection [5,6], autonomous vehicles [7,8], recognition [9,10],
and 3D reconstruction [11,12]. Almost all of these applications appear in world challenges such as
DARPA Urban and Grand Challenge [13–17].

Basically, LiDAR sensor operation relies on the calibration process which improves the defect
detection and other study procedure. Two different types of calibration exist: intrinsic and
extrinsic calibration. The intrinsic calibration considers the modeling between the beam creation
and measurement of the environment to estimate the sensor–environment relationship in terms
of the sensor internal parameters. On the other hand, the extrinsic calibration considers the
determination of the relationship between the sensor frame and the world reference frame by rotation
and translation transformation.

1.2. Related Works

Numerous authors investigated intrinsic and extrinsic calibration methods in LiDAR sensors.
An intrinsic calibration technique is presented in [18]. The calibration process is based on an
optimization method, where the calibration pattern is a wide planar wall on a flat surface scanned
using Velodyne HDL-64E. In addition, Glennie and Lichti [19] presented a static calibration technique
to derive an optimal solution for the laser’s intrinsic calibration parameters by a planar feature-based
least squares in advantage of minimal constrained network. The study in [20] shows a correlation
between the internal operating temperature of the LiDAR and the Laser scanner ranging error
(intrinsic parameter). The calibration process considers a planar calibration approach to estimate
the internal parameters for Velodyne VLP-16.

On the other hand, an extrinsic calibration technique is presented in [21]. In this technique, a flat
plane is used for the calibration and an algorithm based on the inequality of two symmetric rays in
azimuth with respect to the origin is proposed. This inequality is due to the shift angle of the center
line. Another extrinsic calibration technique is presented in [22], where the authors worked on a 2D
laser scanner and on the rotating platform to extract the rotation axis and radius using point-plane
constraint. The Levenberg–Marquardt optimization method is applied in the two above extrinsic
calibration methods to solve the non-linear least squares function problem.

In [23], a numerical algorithm is presented to compute both of the intrinsic and extrinsic
parameters by minimizing the systematic errors due to the geometric calibration factors. Another
approach introduced in [24] computes the intrinsic and extrinsic parameters of LiDAR sensor
(Velodyne HDL-64E) by unsupervised calibration for each of multi-laser beams. An optimization
function seeking to minimize the point-to-plane iterated closest point is then proposed.

1.3. Proposed Method

In transport applications, many articles use LiDAR to detect and track objects of interest (vehicle,
pedestrians, etc.) from 3D measurements. The LiDAR sensor is also used to detect the road, often in
addition to camera sensors. In these applications, the idea is to have a thorough view of the driver’s
environment over the widest possible horizon. This therefore involves a LiDAR sensor with a low
angle of inclination (horizontally oriented sensor).

The perspective of our paper is to propose a calibration method (and road plane estimation)
that works under difficult experimental conditions (high angle of inclination). Indeed, we aim at
developing a calibration method that allows to determine precisely the road plane in a very close
vicinity of the vehicle. The idea in the long term is to detect road defects when driving on the road
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network. Although developed with this in mind (i.e., with a high degree of accuracy in determining
the road plan), our method is general enough to be applicable in any wider operational context.

In the context of this study (road defects detection), the LiDAR sensor is rotated toward the
ground to increase the points’ density covering the defects by the multi elevation laser. This causes a
complicated modification in the ground 3D view scene with respect to the LiDAR frame. Therefore,
extrinsic calibration was adopted in order to transform the LiDAR frame into a global reference frame,
thus modifying the ground impact points transformation into an understandable view scene.

To attain the above key objective, a first method was applied by Zaiter et al. [25] on simulation
data, which was restricted to the Euler angles estimation. In this conference paper, we proposed a
first approach to extrinsic calibration of LRF sensors. It has been developed for the Velodyne VLP-16
LiDAR and the theoretical approach have been evaluated on some simulation results.

This paper addresses a new flexible extrinsic calibration method as compared to the previous
plane-based methods. The approach developed is generalized to all types of scanning laser
rangefinders. It now presents an optimized estimation of all extrinsic calibration parameters
(angles and height). This global method can be implemented on different LiDAR sensors (low-cost 3D
and full 3D) with various range accuracy. In addition, the proposed technique out performs in high
orientation scenarios, which is a very interesting and challenging task that aims to increase the points’
density coverage. The proposed calibration method can be summarized by the following two-fold
contributions: (1) ground plane model estimation; and (2) rotation transformation matrix estimation
from world ground reference to LiDAR sensor frame. The 3D Euler’s angles (sensor orientation) and
the height (sensor altitude above the ground) are two essential extrinsic parameters required to calibrate
the full 3D LiDAR sensors, in order to improve the capability of road defect detection as explained
in Section 2.1. In addition, the problem is modeled by 4-DOF (degree of freedom) transformation,
namely 3-DOF rotation and 1-DOF height, instead of 6-DOF transformation, namely 3-DOF rotation
and 3-DOF translation. This modeling advantage provides the simplicity in the optimization process
of the extrinsic parameters.

The structure of this paper is as follows. Section 2 presents the correlation between extrinsic
parameters and the geometrical pattern reflection on the ground, the rotated multi-laser beams
projection modeling on the ground and the associated measurement errors on the 3D points cloud
position. Section 3 presents in detail the different steps of the proposed LiDAR/Ground Calibration
Method. Then, the method is evaluated on LiDAR’s synthetic and real data in Section 4.

2. LiDAR/Ground Geometrical Impact Modeling

The synthetic data are generated depending on the features of multi-laser rangefinder or 3D
LiDAR sensor, where the environment impact points can be modeled as an intersection between the
LiDAR laser beams and the environmental surrounding surfaces. In this work, the LiDAR sensor
must be oriented toward the ground to study the road defects. Therefore, the LiDAR laser beams are
represented as straight lines and the ground surface as a flat plane in a 3D frame.

Depending on the application situation, two concepts can represent the geometrical reflection
model between the LiDAR sensor and the ground surface, as shown in Figure 1:

• Practical orientation concept: The LiDAR laser beams (d) are supposed to be rotated and the
ground’s real plane (Pre) is a fixed horizontal plane, as shown in Figure 1b.

• Scientific orientation concept: The LiDAR laser beams (d) are supposed to be fixed and the virtual
horizontal ground surface (PH) must be rotated by the LiDAR’s inverse orientation in the practical
concept, to get the real oblique ground plane (Pre) in LiDAR frame, as shown in Figure 1c.
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Figure 1. (a) No orientation; (b) practical orientation concept; and (c) scientific orientation concept.

2.1. Extrinsic Parameters vs. Practical Concept

The four extrinsic parameters (altitude and orientation angles) affect the research goals, where
the orientation parameter is the strongest influence factor on the ground points distribution process,
as shown in Figure 2a,b. The proposed calibration method must satisfy two contradictory conditions
in relation to the final research objectives:

• Goal: The plane-based extrinsic calibration needs large sparsity area to improve the plane
estimation, which requires high altitude and low orientation angles.

• Constraint: The stated finality of road surface object detection needs high density points
to improve the capability of defect coverage points, which requires low altitude and high
orientation angles.

Therefore, a trade-off is needed to optimize the extrinsic parameters (altitude and orientation angles),
providing the suitable coverage points distribution over the ground.

Four geometric view patterns are summarized in three cases depending on the variation of
pitch angle φx with respect to the LiDAR’s vertical field of view “vFOV”, as shown in Figure 2:
(1) circles patterns (Figure 2c); (2) combination of ellipses, parabola, and hyperbolas patterns (Figure 2d);
and (3) hyperbolas patterns (Figure 2e).

The study case in this problem focuses on the hyperbolas case, as shown in Figure 2e, in order to
increase the points density on the ground.
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Figure 2. Large sparsity area vs. high density points.

2.2. LiDAR Laser Beams and Oblique Ground Surface Intersection

In the following part, the scientific orientation concept is chosen to model the reflections of the
laser beams (d) on the real oblique ground surface (Pre). Therefore, the LiDAR is supposed to be fixed
and the parametric equations of the fixed straight lines (d) in LiDAR frame are given by:

(d) :




x

y

z

 =


t ∗ tan α

t

t ∗
√

tan2 α + 1 ∗ tan β

 for


0◦ < α < 90◦ or

270◦ < α < 360◦

−90◦ < β < 90◦

t ≥ 0
x

y

z

 =


t ∗ tan α

t

−t ∗
√

tan2 α + 1 ∗ tan β

 for


90◦ < α < 270◦

−90◦ < β < 90◦

t ≤ 0

(1)

where α and β describe the azimuth and the elevation angles of each laser beam and t is the parameter
of the parametric representation.

The virtual horizontal ground plane (PH) must be rotated by the 3D Euler’s angles ψz, θy, φx, so
that the equation of the rotated real ground plane (Pre) is expressed as a function of the horizontal
ground plane (PH) with height h and rotational matrix Rz,y,x(ψz, θy, φx). This transformation is
expressed as:

Pre = Rz,y,x(ψz, θy, φx)PH (2)

The parametric and Cartesian equations of the horizontal ground plane (PH) are expressed
as follows:

(PH) :




x

y

z

 =


t + aw

t + bw

−h

 parametric equation ∀a, b ∈ R

z + h = 0 Cartesian equation

(3)
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The rotational matrix Rz,y,x(ψz, θy, φx) is expressed as:

Rz,y,x(ψz, θy, φx) = Rz(ψz)Ry(θy)Rx(φx)

=

 cos ψz cos θy
cos ψz sin θy sin φx
− sin ψz cos φx

cos ψz sin θy cos φx
+ sin ψz sin φx

sin ψz cos θy
sin ψz sin θy sin φx
+ cos ψz cos φx

sin ψz sin θy cos φx
− cos ψz sin φx

− sin θy cos θy sin φx cos θy cos φx

 (4)

Therefore, the Cartesian coordinates of the real points cloud cre obtained from the intersection
between the fixed straight lines (d) and the rotated real plane (Pre) are expressed as:

(cre) :




x

y

z

 =


t ∗ tan α

t

t ∗
√

tan2 α + 1 ∗ tan β

 for


0◦ < α < 90◦ or

270◦ < α < 360◦

−90◦ < β < 90◦

t ≥ 0

∀t = (ul′−u′ l)hk′′+(u′k−uk′)hl′′+(lk′−l′k)hu′′

(k′ l′′−l′k′′) tan α+(lk′′−kl′′)+(l′k−lk′)
√

tan α2+1 tan β
x

y

z

 =


t ∗ tan α

t

−t ∗
√

tan2 α + 1 ∗ tan β

 for


90◦ < α < 270◦

−90◦ < β < 90◦

t ≤ 0

∀t = (ul′−u′ l)hk′′+(u′k−uk′)hl′′+(lk′−l′k)hu′′

(k′ l′′−l′k′′) tan α+(lk′′−kl′′)−(l′k−lk′)
√

tan α2+1 tan β

(5)

where

k = cos ψz cos θy + cos ψz sin θy sin φx − sin ψz cos φx

l = a cos ψz cos θy + b cos ψz sin θy sin φx − b sin ψz cos φx

u = cos ψz sin θy cos φx + sin ψz sin φx

k′ = sin ψz cos θy + sin ψz sin θy sin φx + cos ψz cos φx

l′ = a sin ψz cos θy + b sin ψz sin θy sin φx + b cos ψz cos φx

u′ = sin ψz sin θy cos φx + cos ψz sin φx

k′′ = − sin θy + cos θy sin φx

l′′ = −a sin θy + b cos θy sin φx

u′′ = cos θy cos φx



∀a and b ∈ R (6)

2.3. Error Modeling in Polar and Cartesian Coordinates

In this section, the systematic and random errors wρ, wα, wβ are taken in consideration as a source
of error to represent the modeling of the additive white Gaussian noise for each polar coordinates
ρ, α, β of the real points cloud cre in Equation (7), where ρw, αw, βw are the real measurements of the
range ρ, azimuth α and elevation β, respectively, for each reflecting point.

(cw) :

 ρw

αw

βw

 =

 ρ + wρ

α + wα

β + wβ

 (7)
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The 3D transformation from polar coordinates ρw, αw, βw to Cartesian coordinates xw, yw, zw of
the ground noisy points cloud cw is given by:

(cw) :

 xw

yw

zw

 =

 ρw cos βw sin αw

ρw cos βw cos αw

ρw sin βw

 (8)

Then, the standard deviation of the error can be derived from polar to Cartesian parameters in
Equation (9), assuming that σxw , σyw , σzw , σρw , σαw , σβw are, respectively, the standard deviations of the
added noise on xw, yw, zw, ρw, αw, βw. The terms of the standard deviations σρw , σαw , σβw with a power
higher than two can be neglected in this derivation to obtain this approximation: σ2

xw

σ2
yw

σ2
zw

 '
 σ2

ρw cos2 βw sin2 αw + ρ2
w(σ

2
βw

sin2 βw sin2 αw + σ2
αw cos2 βw cos2 αw)

σ2
ρw cos2 βw cos2 αw + ρ2

w(σ
2
βw

sin2 βw cos2 αw + σ2
αw cos2 βw sin2 αw)

σ2
ρw sin2 βw + ρ2

wσ2
βw

cos2 βw

 (9)

Glennie et al. [20] showed in particular that the error of a scanning LiDAR sensor is mainly
manifested over range. In this type of sensor, angles are not directly measured, but the error is mainly
related to the reproducibility of the measurement for a given angle. The hypothesis of neglecting the
scanning angle error is a very common assumption in the field of LiDAR detection: it is part of the
manufacturers’ specifications and is commonly used in the literature. This is particularly related to
the very small influence of the angle reproducibility errors on the range measurement of the object
of interest.

In this study, we then focus on the range error σρw and neglect the azimuth and elevation errors
σαw , σβw , respectively, in the simulation data as given by the constructor. The transformation in
Equation (9) is then simplified as: σxw

σyw

σzw

 =

 σρw cos βw sin αw

σρw cos βw cos αw

σρw sin βw

 (10)

3. LiDAR/Ground Extrinsic Calibration Method

In multi-sensor applications, data acquired from the different sensors must be fused in one
common reference frame. In this application, the calibration of LiDAR frame scans is necessary to
merge them in one world reference frame, in order to increase the points density coverage on the
ground, which facilitates the road defect detection. Therefore, the extrinsic calibration aims to model
the relationship between the LiDAR frame and the world reference frame.

We thus propose the LiDAR/Ground Calibration Method (LGCM) presented in Figure 3.
The method includes the following procedures: fitting ground plane by Least Squares estimator,
rotation about axis by Rodrigues formula, Least Squares Conic Algorithm, and height estimation.
The proposed method is supplemented by Levenberg–Marquardt optimization algorithm as opt-LGCM.
The main role of LGCM procedure is to estimate the extrinsic parameters: the Euler’s rotational angles
ψz, θy, φx and the height h. Then, the opt-LGCM is initialized by the estimated extrinsic parameters to
optimize them. Finally, the distributed ground noisy points cw along the real plane (Pre) are rotated
along the horizontal plane (PH) by the optimized extrinsic parameters in the frame of fixed LiDAR.
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opt-LGCMProposed Calibration Method: LGCM
Euler’s Angles Estimation

Rotation about Axis

(Rodrigues Formula)

Fitting Plane

(L.S Method)

Yaw Angle Estimation

(L.S Conic Algorithm)
Height Estimation

Extrinsic Parameters 

Optimization

(L.M Algorithm)

LiDAR Data

Figure 3. The proposed extrinsic calibration method block diagram.

The proposed method consists mainly in two steps. The first, totally unsupervised step, consists
of estimating a first value of the steering angles. This first estimate is then used as a basis for the
optimization step, which seeks the best orientation parameters. The developed method is therefore
totally unsupervised and does not require a priori knowledge of the orientation of the sensor by a tilt
unit for example.

3.1. Fitting Plane

The first step aims to fit an estimated plane (Pest) with the rotated ground noisy points cw.
The Least Squares estimator is used to obtain the normal vector of the plane (Pest).

The equation of the estimated plane (Pest) in the LiDAR frame is expressed by:

f (x, y) = z = Ax + By + D + w (11)

where A, B, and D are the plane parameters and w is an additive white Gaussian noise with standard
deviation σw.

Therefore, Equation (11) of the estimated plane (Pest) can be written in linear form as:

Z = HO+ w (12)

where
Z =

[
z(0) · · · z(N − 1)

]T

H =

 x(0) y(0) 1
...

...
...

x(N − 1) y(N − 1) 1


O =

[
A B D

]T

w =
[

w(0) · · · w(N − 1)
]T

where N is the number of reflected points.
The solution of Least Squares estimator for this linear model is expressed as:

ÔLS = (HT H)−1HTZ (13)

3.2. Rotation about Axis

Rodrigues formula is an efficient rotation transformation that computes the rotation matrix Rrod,
which rotates a vector into another vector in 3D frame around a fixed axis vector

−−→
Axis by rotational

angle η [26]. Therefore, after having estimated the parameter vector of the oblique estimated plane
(Pest) according to Section 3.1, the next step is to compute the rotational matrix Rrod from the normal
vector −→n 1 of the oblique estimated plane (Pest) to the normal vector −→n 2 of the horizontal plane
(PH) that is parallel to XL YL -plane with height −h (cf. Figure 1c). The objective of this step is to
use Rodrigues formula in order to estimate the first two Euler’s angles pitch φ̂x, roll θ̂y, and the first
partial yaw angle Ψ̂z1—due to the incomplete calibration in yaw rotation, which is solved by the next
step—from Rodrigues Matrix Rrod.
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Assuming that −→n 1, −→n 2, and
−−→
Axis are expressed as:

−→n 1(−Â,−B̂, 1)
−→n 2(0, 0, 1)
−−→
Axis(m, n, p) =

−→n 1×−→n 2
‖−→n 1×−→n 2‖

, the Rodrigues rotation formula Rrod can be then written as:

Rrod = I3 + sin ηK + (1− cos ηK2) (14)

where

I3 =

 1 0 0
0 1 0
0 0 1


K =

 0 −p n
p 0 −m
−n m 0


sin η = ‖−→n 1×−→n 2‖

‖−→n 1‖·‖−→n 2‖

cos η =
−→n 1·−→n 2

‖−→n 1‖·‖−→n 2‖
Now, by using Equation (15),

Rrod = Rx,y,z(Ψ̂z1, θ̂y, φ̂x) = Rx(Ψ̂z1)Ry(θ̂y)Rz(φ̂x) (15)

Then, the Rodrigues matrix Rrod provides the computation of Ψ̂z1, θ̂y, and φ̂x as expressed in the
equations below:

Ψ̂z1 = arctan ((Rrod)21/(Rrod)11) (16)

θ̂y = arcsin(−(Rrod)31) (17)

φ̂x = arctan ((Rrod)32/(Rrod)33) (18)

where ij represents the matrix element index of (Rrod)ij. As a graphical result, the ground noisy points
cw are rotated by Rodrigues matrix Rrod to the distributed points cH1 along the horizontal plane (PH)

by Equation (19), as shown in Figure 4.
cH1 = Rrodcw (19)

-100
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-20

0Z

20

40

60

-100

Y

-50 0 10050 100

(a)

-100

-50
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20

-100 50
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Y

-50 0 10050 100

(b)

Figure 4. (a) Distributed ground noisy points cw about the real plane (Pre); and (b) distributed points
cH1 along the horizontal plane (PH).
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3.3. Yaw Angle Estimation

After rotating the noisy points cw to the horizontal points cH1 , the second partial yaw angle Ψ̂z2

is estimated by the efficient Algorithm 1 that we propose in Figure 5 to rotate the points cH1 to cH2

about z-axis. This algorithm is called Least Squares Conic Algorithm (LSCA), which takes advantage
of the center s characteristic of the geometrical impact patterns (hyperbolas, parabolas, and circles)
formed by the points cH1 , as shown in Figure 5. The aim of this part is to compute yaw angle ψ̂z from
the partial angles Ψ̂z1 and Ψ̂z2, as shown in Equation (20).

Algorithm 1: Least Squares Conic Algorithm.
Input: x,y,z,α,β of the distributed points cH1

Output: Ψ̂z2

1 Fit the lines (l) and (l′) that pass through the points at each ζ = 10◦ consecutive azimuth by
Least Squares estimator.
The solution of Least Squares estimator for linear model:

ÔLS = (HT H)−1HTY where Y =

 y(0)
...

y(N − 1)

, H =

 x(0) 1
...

...
x(N − 1) 1

, ÔLS =

[
m̂
b̂

]

2 Compute the coordinates of the intersection points s of each two symmetric lines of (l) and (l′).
Assume that:
(l) : y = m̂1x + b̂1

(l′) : y = m̂2x + b̂2

Therefore, the intersection points s of the straight lines (l) and (l′) are computed as follows:

xs =
b̂2−b̂1

m̂1−m̂2
,ys = m̂1

b̂2−b̂1
m̂1−m̂2

+ b̂1

3 Fit a line (v) that passes through the intersection points s and the origin O by Least Squares
estimator.
The solution of Least Squares estimator:

ÔLS = (HT H)−1HTY where Y =

 y(0)
...

y(N − 1)

, H =

 x(0)
...

x(N − 1)

, ÔLS =
[

m̂
]

4 Finally, compute the angle Ψ̂z2 formed by the fitting line (v) and y-axis:
Ψ̂z2 = arctan m̂− 90◦ if m̂ > 0
Ψ̂z2 = arctan m̂ + 90◦ if m̂ < 0

Therefore, the third Euler’s angle of rotation (yaw angle) ψ̂z is computed as follows:

ψ̂z = Ψ̂z1 − Ψ̂z2 (20)

Finally, the points cH1 are rotated to points cH2 by an angle −Ψ̂z2 around z-axis, as shown in
Figure 6.

cH2 = Rz(−Ψ̂z2)cH1 (21)
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Figure 5. (1) Fitting the lines passing through the points of each ζ = 10◦ consecutive azimuth;
(2) intersection points S of each symmetric lines between (l) and (l′); (3) fitting line (v) that passes
through the points S and the origin O; and (4) angle Ψ̂z2 formed by line (v) and y-axis.
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Figure 6. (a) Points cH1 before LSCA; and (b) points cH2 after LSCA rotated by Ψ̂z2 about z-axis.
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3.4. Height Estimation

At the end of LGCM approach, a suitable way to estimate the height is to compute the altitude
mean of the points cH2 , due to the ground geometrical model used in this paper. Therefore,
the estimated height is then expressed as:

ĥ =
1
N

N−1

∑
i=0

zi where N is the number of calibrated points (22)

3.5. Extrinsic Parameters Optimization

Levenberg–Marquardt algorithm is an optimization algorithm that combines gradient descent
and Gauss–Newton methods [27]. In addition, it is a very efficient technique to find the minima
and it performs well on most non-linear functions. Therefore, the role of opt-LGCM is to optimize
the extrinsic parameters ψz, θy, φx, h by Levenberg–Marquardt algorithm, which is initialized by the
estimated extrinsic parameters ψ̂z, θ̂y, φ̂x, ĥ to obtain the optimized extrinsic parameters ψ̂′′z , θ̂′′y , φ̂′′x , ĥopt,
in order to minimize the mean square error mse that represents the square difference between the
position of noisy points cw and the optimized position of points copt in Equation (24). The optimized
points copt represent the intersection between all the LiDAR beams (d) and the optimized plane (Popt),
which is the rotation of the horizontal plane (PH) by the new optimized Euler’s angles ψ̂′′z , θ̂′′y , φ̂′′x and
the optimized height ĥopt in Equation (25). In other words, the importance of the above procedure is
to get the optimized height ĥopt and the optimized Euler’s angles ψ̂′′z , θ̂′′y , φ̂′′x that rotate in the inverse
ordering orientation the horizontal plane (PH), to fit the noisy points cw that are distributed along the
oblique real plane (Pre) with minimum mse on the position.

(ψ̂′′z , θ̂′′y , φ̂′′x , ĥopt) = arg min
(ψz ,θy ,φx ,h)

mse (23)

The non-linear function mse is expressed by:

mse =
1
m

m

∑
i=1

(
(xcopt − xcw)

2 + (ycopt − ycw)
2 + (zcopt − zcw)

2
)

(24)

The optimized points copt represent the intersection between the straight lines (d) and the rotated
optimized plane (Popt), where the plane (Popt) is the rotation of the fixed ground horizontal plane (PH)

of height ĥopt by −ψ̂′′z ,−θ̂′′y ,−φ̂′′x based on Rx,y,z rotation matrix, as shown in Equation (25):

Popt = Rx,y,z(−ψ̂′′z ,−θ̂′′y ,−φ̂′′x )PH (25)

where the rotation matrix Rx,y,z is the reverse of Rz,y,x.

Rx,y,z(−ψ̂′′z ,−θ̂′′y ,−φ̂′′x ) = Rx(−φ̂′′x )Ry(−θ̂′′y )Rz(−ψ̂′′x )

=


cos ψ̂′′x cos θ̂′′y sin ψ̂′′x cos θ̂′′y − sin θ̂′′y

cos ψ̂′′x sin θ̂′′y sin φ̂′′x
− sin ψ̂′′x cos φ̂′′x

sin ψ̂′′x sin θ̂′′y sin φ̂′′x
+ cos ψ̂′′x cos φ̂′′x

cos θ̂′′y sin φ̂′′x
cos ψ̂′′x sin θ̂′′y cos φ̂′′x
+ sin ψ̂′′x sin φ̂′′x

sin ψ̂′′x sin θ̂′′y cos φ̂′′x
− cos ψ̂′′x sin φ̂′′x

cos θ̂′′y cos φ̂′′x

 (26)
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Finally, the Cartesian coordinates of rotated optimized points cloud copt in the reverse orientation
sense are estimated by ψ̂′′z , θ̂′′y , φ̂′′x , ĥopt, as expressed below:

(copt) :




x

y

z

 =


t ∗ tan α

t

t ∗
√

tan2 α + 1 ∗ tan β

 for


0◦ < α < 90◦ or

270◦ < α < 360◦

−90◦ < β < 90◦

t ≥ 0

∀t = (ul′−u′ l)ĥoptk′′+(u′k−uk′)ĥopt l′′+(lk′−l′k)ĥoptu′′

(k′ l′′−l′k′′) tan α+(lk′′−kl′′)+(l′k−lk′)
√

tan α2+1 tan β
x

y

z

 =


t ∗ tan α

t

−t ∗
√

tan2 α + 1 ∗ tan β

 for


90◦ < α < 270◦

−90◦ < β < 90◦

t ≤ 0

∀t = (ul′−u′ l)ĥoptk′′+(u′k−uk′)ĥopt l′′+(lk′−l′k)ĥoptu′′

(k′ l′′−l′k′′) tan α+(lk′′−kl′′)−(l′k−lk′)
√

tan α2+1 tan β

(27)

where

k = cos ψ̂′′z cos θ̂′′y + sin ψ̂′′z cos θ̂′′y

l = a cos ψ̂′′z cos θ̂′′y + b sin ψ̂′′z cos θ̂′′y

u = − sin θ̂′′y

k′ = − sin ψ̂′′z cos φ̂′′x + cos ψ̂′′z sin θ̂′′y sin φ̂′′x + cos ψ̂′′z cos φ̂′′x + sin ψ̂′′z sin θ̂′′y sin φ̂′′x

l′ = −a sin ψ̂′′z cos φ̂′′x + a cos ψ̂′′z sin θ̂′′y sin φ̂′′x + b cos ψ̂′′z cos φ̂′′x + b sin ψ̂′′z sin θ̂′′y sin φ̂′′x

u′ = cos θ̂′′y sin φ̂′′x

k′′ = sin ψ̂′′z sin φ̂′′x + cos ψ̂′′z sin θ̂′′y cos φ̂′′x − cos ψ̂′′z sin φ̂′′x + sin ψ̂′′z sin θ̂′′y cos φ̂′′x

l′′ = a sin ψ̂′′z sin φ̂′′x + a cos ψ̂′′z sin θ̂′′y cos φ̂′′x − b cos ψ̂′′z sin φ̂′′x + b sin ψ̂′′z sin θ̂′′y cos φ̂′′x

u′′ = cos θ̂′′y cos φ̂′′x



∀a and b ∈ R (28)

4. Experimental Results

The proposed calibration method LGCM was applied on two types of data: simulation data were
obtained by the modeling mentioned in Section 2 and real data acquisition from the Velodyne VLP-16
LiDAR. The most important features of Velodyne VLP-16 LiDAR for modeling are shown in Table 1.

Table 1. VLP-16 features.

Features VLP-16
Laser beams 16

Horizontal FOV 360◦

Vertical FOV −15◦ → +15◦

Azimuth angular resolution 0.1◦–0.2◦–0.4◦

Elevation angular resolution 2◦

Maximum range accuracy σρ 3 cm

The extrinsic calibration results are presented in terms of precision and robustness. According
to our application, the precision shows the stability of the method with respect to the variation of
pitch angle φx toward the ground, while the robustness shows the method strength with respect to the
variation of range accuracy σρ of the measurements.

Therefore, the evaluation parameters of the results focus on the point cloud features of the real
points cre on the real plane (Pre), noisy points cw distributed along the real plane (Pre), estimated points
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cest on the estimated plane (Pest) obtained by LGCM, and the optimized points copt on the optimized
plane (Popt) obtained by opt-LGCM, as described below:

• The real height h, estimated height ĥ, and the optimized height ĥopt.
• The standard deviation σdw/i

of the noisy points cw orthogonal Euclidean distance with respect to
the real plane (Pre), the estimated plane (Pest) and the optimized plane (Popt).

σdw/i
=

√
1
N ∑(dw/i − dw/i)2 (29)

dw/i =
|Aixw + Biyw + Cizw + Di|√

A2
i + B2

i + C2
i

(30)

where xw, yw, zw are the Cartesian coordinates of the noisy points cw, Ai, Bi, Ci, Di are the coefficient
parameters of the planes, i = {re, est, opt}, and N is the number of impact points.

• The standard deviation σρre/ρi
of the real points cre range difference with respect to the noisy

points cw, the estimated points cest, and the optimized points copt.

σρre/ρi
=

√
1
N ∑((ρre − ρi)− (ρre − ρi))2 (31)

where i = {w, est, opt} and N is the number of impact points.
• The standard deviation σρw/ρi

of the noisy points cw range difference with respect to the real
points cre, the estimated points cest, and the optimized points copt.

σρw/ρi
=

√
1
N ∑((ρw − ρi)− (ρw − ρi))2 (32)

where i = {re, est, opt} and N is the number of impact points.
• The gain in performance PFi that describes the range accuracy enhancement obtained from the

Levenberg–Marquardt optimization algorithm which is defined as:

PFi = σρw/ρi
− σρw/ρre (33)

where σρw/ρre is the LiDAR range accuracy and i = {est, opt}.

4.1. Simulation Data Results

Using the simulation data, the setups used to validate the proposed calibration method are
separated in two categories:

• In term of precision, the real height h = 2 m, roll angle θy = 2◦, yaw angle ψz = 2◦, and LiDAR
range accuracy σρw/ρre = 0.03 m, with respect to the variation of pitch angle φx = [−70◦, 70◦].

• In term of robustness, the real height h = 2 m, pitch angle φx = 45◦, roll angle θy = 2◦, and yaw
angle ψz = 2◦, with respect to the variation of σρw/ρre = [0, 0.095 m].

4.1.1. Standard Deviation σdw/i
in Terms of Precision and Robustness

After analyzing Figure 7a, the increasing of standard deviation σdw/i
along the planes is due to

the orientation effect of the LiDAR by the pitch angle φx on σdw/i
. Thus, as pitch angle φx tends to 90◦,

the standard deviation σdw/i
tends to the LiDAR range accuracy σρw/ρre . In Figure 7b, the increasing

of the standard deviation σdw/i
is due to increasing of LiDAR range accuracy σρw/ρre . Moreover,

Equation (34) describes the relation of σdw/i
with φx and σρw/ρre ,which proves the increasing of σdw/i

.

σdw/i
= sin (φx + ϕk)σρw/ρre (34)
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where ϕk is the elevation angle of each VLP-16 LiDAR laser, and k = {1, 2, ..., 16} represents the
laser index.

In Figure 7c,d, we can see that the standard deviation σdw/opt
is closer to the the standard deviation

σdw/re
than the standard deviation σdw/est

. This shows that the optimized plane (Popt) is better fit to the
real plane (Pre) than the estimated plane (Pest).
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Figure 7. The variation of σdw/i
in terms of precision and robustness.

4.1.2. Standard Deviation σρre/ρi
and σρw/ρi

in Terms of Precision and Robustness

In terms of precision and robustness, Figure 8 shows the increasing behavior of the range standard
deviations σρre/ρest and σρw/ρest after the LGCM calibration, due to:

• The increase of pitch angle φx on positive and negative sides decreases the sparsity of impact
points on the ground. This leads to decrease the precision of plane fitting estimation, as shown in
Figure 8a,c.



Sensors 2020, 20, 2841 16 of 22

• The increase of LiDAR range accuracy σρw/ρre decreases the precision of plane fitting estimation,
as shown in Figure 8b,d.

The standard deviation σρre/ρopt is lower than the standard deviation σρre/ρest , as shown in
Figure 8a,b, which indicate how the optimized points copt are closer to the real points cre than
the estimated points cest. On the other hand, the standard deviation σρw/ρopt is closer to LiDAR
range accuracy σρw/ρre than the standard deviation σρw/ρest , as shown in Figure 8c,d, which indicate
the equality of the noisy points cw range distribution along the real plane (Pre) and the optimized
plane (Popt).

The negligible standard deviation σρre/ρopt in Figure 8a,b and the coincident standard deviations
σρw/ρopt and σρw/ρre in Figure 8c,d prove the similarity of the real plane (Pre) and the optimized plane
(Popt) compare to the estimated plane (Pest).
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Figure 8. The variation of σρre/ρi
and σρw/ρi

in terms of precision and robustness.
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4.1.3. Height Recovering in Terms of Precision and Robustness

In terms of precision and robustness, Figure 9 highlights the recovering of the height parameter
and how the optimized height ĥopt is closer to the real height h than the estimated height ĥ,
which presents the height optimization importance and the strength of the Levenberg–Marquardt
optimization algorithm.
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Figure 9. Height recovering in terms of precision and robustness.

4.1.4. Performance Gain PFi in Terms of Precision and Robustness

Figure 10 shows the gain in performance of the optimized plane points copt against the estimated
plane points cest distributed by the noisy points cw compared to the LiDAR range accuracy σρw/ρre

as expressed in Equation (33), with respect to the variation of pitch angle φx and LiDAR range
accuracy σρw/ρre . Moreover, the negligibility of the method performance PFopt appears after the
optimization, which means that the standard deviation σρw/ρopt after optimization is closer to the
standard deviation σρw/ρest before optimization with respect to the LiDAR range accuracy σρw/ρre .
In addition, it presents the recovering of noisy points cw range distribution along the real plane (Pre)

after the optimization algorithm, taking advantage of maintaining the standard deviation σρw/ρopt

value as negligible. The gain feature PFi proves again the better fit between the optimized plane (Popt)

and the real plane (Pre) rather than the estimated plane (Pest).
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Figure 10. The variation of PFi in terms of precision and robustness

4.2. Real Data Results

The 3D point cloud acquisitions were obtained using a multi-lasers rangefinder VLP-16 LiDAR
mounted on a vehicle. To obtain a telemetric information about the ground surface and to achieve
the application goal, the VLP-16 LiDAR was rotated toward the ground direction with a pitch angle
φx ' 70◦, and it was at a height of h ' 1.05 m above the ground surface. The real setup is shown in
Figure 11.

Figure 11. VLP-16 LiDAR mounted on a vehicle toward the ground.
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The proposed method was applied to two different acquisitions:

• Acquisition 1: The vehicle was at rest on the road.
• Acquisition 2: The vehicle was moving at a slow speed on the road.

Standard Deviation σρw/ρi
per LiDAR Frames

In the absence of real plane (Pre) when using real data, the results focus on the range distribution
of the noisy points cw along the estimated plane (Pest) and the optimized plane (Popt). It is clear that
the standard deviations σρw/ρopt curve is lower than the σρw/ρest in the two acquisitions, as shown in
Figure 12. The optimization algorithm is thus proved to be more efficient for real data as well in
decreasing the range distribution of the noisy points cw along the fitting planes.
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(b) Acquisition 2

Figure 12. The variation of σρw/ρi
with respect to LiDAR frame.

4.3. Results Discussion

In general, the results prove the efficiency of the optimization algorithm, which is represented
by the optimized plane (Popt), versus the estimated plane (Pest), compared with the real plane (Pre),
in terms of precision and robustness. On the other hand, the convergence of the optimization algorithm
is granted automatically by the suitable initialization parameters, namely the estimated Euler’s angles
ψ̂z, θ̂y, φ̂x and the estimated height ĥ, which are computed in Stage 1 (LGCM) to obtain the estimated
plane (Pest), and then optimized by Levenberg–Marquardt optimization algorithm (opt-LGCM) in
Stage 2 to get the optimized Euler’s angles ψ̂′′z , θ̂′′y , φ̂′′x and the optimized height ĥopt to obtain the
optimized plane (Popt). Finally, the results show the strength and the method performance in terms
of precision and robustness against the variation of pitch angle φx and LiDAR range accuracy σρw/ρre ,
respectively, in order to achieve the application’s aim, as shown in Figure 13.
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(a) uncalibrated frame (b) calibrated frame

(c) uncalibrated frame (d) calibrated frame

Figure 13. Uncalibrated and calibrated LiDAR frames from Acquisitions 1 and 2.

5. Conclusions

A new extrinsic LiDAR/Ground calibration method for 3D LiDARs is presented in this paper.
The solution relies on plane-based modeling of the ground, which allows the estimation of the
LiDAR’s orientation and altitude using Rodrigues formula, Least Squares Conic Algorithm for yaw
angle estimation and height estimation. The proposed method (LGCM) is extended to an optimized
derivation (opt-LGCM) using the Levenberg–Marquardt algorithm and is shown to be a suitable
solution to LiDAR/Ground calibration problem. It is implemented on synthetic and real LiDAR
telemetric data. The results show the performance in terms of precision and robustness against
the variation of LiDAR’s orientation and range accuracy, respectively, proving the stability and the
accuracy of the proposed calibration method.
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