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Abstract: Due to its widespread application in communications, radar, etc., the orthogonal frequency
division multiplexing (OFDM) signal has become increasingly urgent in the field of localization.
Under uniform circular array (UCA) and near-field conditions, this paper presents a closed-form
algorithm based on phase difference for estimating the three-dimensional (3-D) location (azimuth
angle, elevation angle, and range) of the OFDM signal. In the algorithm, considering that it is difficult
to distinguish the frequency of the OFDM signal’s subcarriers and the phase-based method is always
affected by errors of the frequency estimation, this paper employs sparse representation (SR) to
obtain the super-resolution frequencies and the corresponding phases of subcarriers. Further, as
the phase differences of the adjacent sensors including azimuth angle, elevation angle and range
parameters can be expressed as indefinite equations, the near-field OFDM signal’s 3-D location is
obtained by employing the least square method, where the phase differences are based on the average
of the estimated subcarriers. Finally, the performance of the proposed algorithm is demonstrated by
several simulations.

Keywords: near-field OFDM signal; uniform circular array (UCA); sparse representation (SR); phase
difference; parameter estimation

1. Introduction

The orthogonal frequency division multiplexing (OFDM) signal has superior performance due
to the practical applications in wireless local area networks (WLAN), 4G mobile communications,
digital audio broadcasting (DAB) systems, radar, etc., which have received considerable attention in
the field of source localization [1–3]. Uniform circular array (UCA) is an attractive geometry and is
preferable over uniform linear array (ULA) because of its 360◦ azimuth coverage, additional elevation
angle information and almost identical beamwidth in the context of three-dimensional (3-D) parameter
estimation [4–10].

For the problem of near-field source localization, an improved 3-D Multiple Single Classification
(MUSIC) method [7] was proposed to estimate the 3-D location. While the 3-D MUSIC method for a
joint estimation of the azimuth, elevation angle, and range can cope with multiple sources, it requires
an expensive 3-D search procedure. Based on the phase of the adjacent sensors’ correlation function,
Jung et al. [8] presented a closed-form estimator for the 2-D direction of arrivals (DOAs) and range of a
single narrowband source, which is more computationally efficient. In [9], by using a fixed rotary UCA
with a center sensor, Chen et al. considered the condition of multiple mono-frequency sources and the
ambiguity in the phase-based algorithm, the phase difference before and after rotation is utilized to
obtain the 3-D localization and resolve ambiguity. However, it is limited by the specific condition that
the frequency spacing should be more than 8 times frequency resolution, which cannot be extended to
the localization for the wideband signal.
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The aforementioned method has not been focused on the wideband source such as the OFDM
signal localization in the near-field condition. Due to the fact that the OFDM signal has several
subcarriers and the frequency of the adjacent subcarriers is closed to each other, it is difficult to
distinguish the subcarriers in the frequency domain. Notwithstanding, padding zeroes at the tail of
the discrete measurements is equal to interpolating in the frequency domain when the Fast Fourier
Transformation (FFT) algorithm is performed, which can improve frequency resolution and avoid the
phenomenon of spectrum leakage. Yet, it will lead to the deviation of frequency estimation and the
inaccuracy of the corresponding phase difference [11]. By turning to the sparse representation (SR)
framework, we are able to achieve super-resolution without a large number of time samples, and with
lower sensitivity to signal-to-noise ratio (SNR) [12–14]. Therefore, the goal of this paper is to explore
how to utilize the sparse representation methodology for the subcarriers’ frequency estimation.

Accordingly, under a fixed UCA, this paper presents a closed-form algorithm that extends the
scheme in [8] to estimate the 3-D position of the OFDM signal. Herein, considering that the phase-based
algorithm seriously suffers from the errors of the frequency and the corresponding phase estimation,
we first employ sparse representation (SR) to decouple the subcarriers in the frequency domain and
obtain the corresponding super-resolution phases. Moreover, we calculate the phase difference of
the adjacent sensors for each subcarrier. Furthermore, as the phase differences including azimuth
angle, elevation angle and range parameters can be expressed as indefinite equations, we make full
use of subcarriers’ phase differences and employ the normalized phase differences of the subcarriers.
Meanwhile, the least square method is utilized to obtain the near-field OFDM signal’s 3-D location.
Simulation results are performed to illustrate the effectiveness of the proposed algorithm, which can
estimate the super-resolution frequencies of the OFDM signal’s subcarriers and obtain the 3-D location
of a near-field OFDM signal accurately.

2. Signal Model

After serial in parallel out (SIPO), the sequences become parallel streams, which are
simultaneously modulated by different subcarriers with the same frequency interval. In order to
guarantee that the subcarriers of the OFDM signal are orthogonal to each other, the frequency spacing
of the adjacent subcarriers is set to the reciprocal of a code time width. The structure of the OFDM
signal in time domain is shown in Figure 1.
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Figure 1. The structure of an OFDM signal in time domain. 
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Figure 1. The structure of an OFDM signal in time domain.

For p = 1, . . . , P, q = 1, . . . , Q, where ϑp,q is the pth subcarrier’s phase within the duration of
the qth elementary symbol, tb is the duration of the completed OFDM elementary symbol, fB,p is the
baseband frequency of the pth subcarrier, and ∆ f is the frequency spacing of the adjacent subcarriers
which is equal to the reciprocal of tb.
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Focusing on the frequency and phase, as the baseband frequency fB,p is processed by the up
converter with the carrier frequency fc, the OFDM signal within the duration of elementary symbol
can be simplified as

s(t) =
P

∑
p=1

{
exp(j2π fpt) + exp(jϑp)

}
(1)

where (q− 1)tb < t ≤ qtb, fp represents the frequency of the pth subcarrier, and ϑp is the pth
subcarrier’s phase.

Consider a UCA in the xy-plane with radius R and M identical omnidirectional sensors impinged
by an OFDM signal. The sensors are uniformly and counterclockwise spaced on the circumference
where the first sensor is located at the x-axis, its geometry is shown in Figure 2. The near-field OFDM
signal is located at (φ, θ, r), where the azimuth angle φ ∈ [−π, π) is measured counterclockwise from
the x-axis, the elevation angle θ ∈ [0, π/2) is measured downward from the z-axis, and the range r is
measured from the center of the UCA. The output of the mth sensor of the UCA at the nth sample is
given by

xm[n] = s[n]e(j2π/λ){r−rm(φ,θ,r)} + wm[n] (2)

for m = 1, 2, . . . , M and n = 1, 2, . . . , N, where s[n] represents the OFDM signal sampling with power
σ2

s , and wm[n] is assumed to be a zero-mean white complex Gaussian noise with power σ2
n , which

is independent of s(n). λ is the wavelength. rm(φ, θ, r) is the range between the mth sensor and the
near-field OFDM signal, which has the form of

rm(φ, θ, r) =
√

r2 + R2 − 2rRζm(φ, θ) (3)

where ζm(φ, θ) = cos(γm − φ) sin θ with γm = 2π(m− 1)/M. According to a second-order Taylor
series expansion around the point where the value of R/rp is approximated to zero, rm(φ, θ, r) for
m = 1, . . . , M can be well simplified as

rm(φ, θ, r) ≈ r− Rζm(φ, θ) +
(

R2/2r
)(

1− ζ2
m(φ, θ)

)
(4)

Substituting (3) and (4) into (2) yields the approximated signal model

xm[n] = s[n]e(j2πR/λ){ζm(φ,θ)−(R/2r)(1−ζ2
m(φ,θ))} + wm[n] (5)
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Figure 2. Geometry of a UCA with a near-field OFDM signal. 
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3. Frequency Estimation of the OFDM Signal’s Subcarriers

For the received data of the sensors under UCA, considering that the OFDM source is a form
of mono-frequency source that needs to consider the impact of frequency, the conventional method
employs the FFT algorithm to obtain the frequency spectrum and estimate the frequencies of subcarriers.
Although padding zeroes at the tail of the discrete measurements is equal to interpolating in the
frequency domain, which can improve frequency resolution and avoid the phenomenon of spectrum
leakage, it will lead to the inaccuracy estimation of frequency as well as the corresponding phase.
Take the first sensor’s received data for example, considering that an OFDM signal contains two
subcarriers whose phase-code ϑ is same and frequency interval is 0.5 MHz, the subcarriers’ frequency
spectrum by performing the FFT algorithm under noiseless condition is shown in Figure 3a, where the
black curve and the blue curve represent the frequency spectrum of the two subcarriers respectively.
It can be noticed that the subcarrier’s spectrum has half overlap with each other, which reflects the
orthogonality of the OFDM signal’s subcarriers. The frequency spectrum of the OFDM signal is
shown in Figure 3c, where the red lines represent the real frequencies of subcarriers. Because of the
disturbance of the main and side lobes to the other subcarrier’s spectrum, the peaks of the frequency
spectrum is deviated from the actual values. The phase spectrum is shown in Figure 3e, where the red
hollow dots represent the real phases of subcarriers and the blue solid dots represent the corresponding
phases of the frequency spectrums’ peaks. It can be seen that the phase-code of the subcarriers is equal
but the estimated phases is deviated from the true values. Besides, when the difference of phase-code
∆ϑ is π and the frequency interval is 0.5 MHz, the frequency spectrum and phase spectrum are shown
in Figure 3b,d,f. It can be noticed from Figure 3d that the subcarriers cannot be resolved from the peak
in the frequency spectrum.
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In order to overcome the drawbacks of the frequency spectrum by employing the FFT algorithm
and obtain the super-resolution frequencies of the OFDM signal’s subcarriers for the phase-based
algorithm, this paper utilizes the sparse representation to decouple subcarriers in the frequency domain.
The goal of the paper is to explore how to employ the sparse representation methodology to obtain
the super-resolution frequency spectrum of the OFDM signal. Considering that the received data of
each sensor under UCA contains the same components of frequency, we employ the first sensor’s
received data x1 to obtain the super-resolution frequencies of the OFDM signal’s subcarriers, which
can be expressed as

x1 = Φy (6)

where
x1 = [x1[1], x1[2], · · · , x1[N]]T (7)

y =
[
y[1], y[2], · · · , y

[
Ny
]]T (8)

Sensors 2018, 18, 226 5 of 11

Sensors 2018, 18, 226 5 of 11 

 

  
(e) (f) 

Figure 3. The effect of the subcarriers’ frequencies and phases on spectrum by performing FFT 

algorithm: (a) Subcarrier frequency spectrum ( 0)  ; (b) Subcarrier frequency spectrum 

( π)  ; (c) Received data frequency spectrum ( 0)  ; (d) Received data frequency spectrum

( π)  ; (e) Received data phase spectrum ( 0)  ; (f) Received data phase spectrum ( π)  . 

In order to overcome the drawbacks of the frequency spectrum by employing the FFT algorithm 

and obtain the super-resolution frequencies of the OFDM signal’s subcarriers for the phase-based 

algorithm, this paper utilizes the sparse representation to decouple subcarriers in the frequency 

domain. The goal of the paper is to explore how to employ the sparse representation methodology to 

obtain the super-resolution frequency spectrum of the OFDM signal. Considering that the received 

data of each sensor under UCA contains the same components of frequency, we employ the first 

sensor’s received data 1
x  to obtain the super-resolution frequencies of the OFDM signal’s 

subcarriers, which can be expressed as 


1

x Φy  (6) 

where 

     
T

1 1 11 , 2 , ,x x x N   1
x  (7) 

   
T

1 , 2 , ,y y y N     y
y  (8) 

(2 / ) 1 1 (2 / ) 1 ( 1)

(2 / ) ( 1) 1 (2 / ) ( 1) ( 1)

1 1 1

1 e e1

1 e e

y

y

y

j N j N N

j N N j N N N

N N

N

 

 



  



 
 
 

  
 
 
 

y y

y y

y

Φ  (9) 

 
T

  denotes the transpose operator, 
N N

 yΦ  is a known matrix which is referred to as a 

dictionary with N N
y

＜ , N
y  is the dimension of vector y , y  refer to a representation of the 

received data 1
x  with respect to the dictionary, which is sparse if there are few non-zeroes among 

the possible entries. Generically, this formulation is referred to as sparse approximation. The 

assumption of sparsity of y  is significant when we try to obtain the unique solution because the 

problem in (6) is ill-posed. Only when y is sparse enough can we achieve the precise estimation of 

the frequencies and phases of the OFDM signal. 
In order to obtain sparse representation y  in (6), considering the problem in (6) is ill-posed and 

has many solutions, we attempt to solve an optimization problem of the following form 

Figure 3. The effect of the subcarriers’ frequencies and phases on spectrum by performing FFT
algorithm: (a) Subcarrier frequency spectrum (∆ϑ = 0); (b) Subcarrier frequency spectrum (∆ϑ = π);
(c) Received data frequency spectrum (∆ϑ = 0); (d) Received data frequency spectrum (∆ϑ = π);
(e) Received data phase spectrum (∆ϑ = 0); (f) Received data phase spectrum (∆ϑ = π).

In order to overcome the drawbacks of the frequency spectrum by employing the FFT algorithm
and obtain the super-resolution frequencies of the OFDM signal’s subcarriers for the phase-based
algorithm, this paper utilizes the sparse representation to decouple subcarriers in the frequency domain.
The goal of the paper is to explore how to employ the sparse representation methodology to obtain
the super-resolution frequency spectrum of the OFDM signal. Considering that the received data of
each sensor under UCA contains the same components of frequency, we employ the first sensor’s
received data x1 to obtain the super-resolution frequencies of the OFDM signal’s subcarriers, which
can be expressed as

x1 = Φy (6)
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(•)T denotes the transpose operator, Φ ∈ CN×Ny is a known matrix which is referred to as a dictionary
with N < Ny, Ny is the dimension of vector y, y refer to a representation of the received data x1

with respect to the dictionary, which is sparse if there are few non-zeroes among the possible entries.
Generically, this formulation is referred to as sparse approximation. The assumption of sparsity of
y is significant when we try to obtain the unique solution because the problem in (6) is ill-posed.
Only when y is sparse enough can we achieve the precise estimation of the frequencies and phases of
the OFDM signal.

In order to obtain sparse representation y in (6), considering the problem in (6) is ill-posed and
has many solutions, we attempt to solve an optimization problem of the following form
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with respect to the dictionary, which is sparse if there are few non-zeroes among the possible entries.
Generically, this formulation is referred to as sparse approximation. The assumption of sparsity of
y is significant when we try to obtain the unique solution because the problem in (6) is ill-posed.
Only when y is sparse enough can we achieve the precise estimation of the frequencies and phases of
the OFDM signal.

In order to obtain sparse representation y in (6), considering the problem in (6) is ill-posed and
has many solutions, we attempt to solve an optimization problem of the following form
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In order to overcome the drawbacks of the frequency spectrum by employing the FFT algorithm
and obtain the super-resolution frequencies of the OFDM signal’s subcarriers for the phase-based
algorithm, this paper utilizes the sparse representation to decouple subcarriers in the frequency domain.
The goal of the paper is to explore how to employ the sparse representation methodology to obtain
the super-resolution frequency spectrum of the OFDM signal. Considering that the received data of
each sensor under UCA contains the same components of frequency, we employ the first sensor’s
received data x1 to obtain the super-resolution frequencies of the OFDM signal’s subcarriers, which
can be expressed as

x1 = Φy (6)

where
x1 = [x1[1], x1[2], · · · , x1[N]]T (7)

y =
[
y[1], y[2], · · · , y

[
Ny
]]T (8)

Φ =
1

Ny




1 1 · · · 1
1 ej(2π/Ny)·1·1 · · · ej(2π/Ny)·1·(Ny−1)

...
...

...
...

1 ej(2π/Ny)·(N−1)·1 · · · ej(2π/Ny)·(N−1)·(Ny−1)




N×Ny

(9)

(•)T denotes the transpose operator, Φ ∈ CN×Ny is a known matrix which is referred to as a dictionary
with N < Ny, Ny is the dimension of vector y, y refer to a representation of the received data x1

with respect to the dictionary, which is sparse if there are few non-zeroes among the possible entries.
Generically, this formulation is referred to as sparse approximation. The assumption of sparsity of
y is significant when we try to obtain the unique solution because the problem in (6) is ill-posed.
Only when y is sparse enough can we achieve the precise estimation of the frequencies and phases of
the OFDM signal.

In order to obtain sparse representation y in (6), considering the problem in (6) is ill-posed and
has many solutions, we attempt to solve an optimization problem of the following form

min‖y‖1 s.t‖x1 −Φy‖2 ≤ ε (10)

where ‖·‖ denotes the Euclidean norm for vectors, ‖·‖1 represents `1-norm, ‖·‖2 represents `2-norm,
which forces the residual x1 − Φy to be smaller than a threshold ε. Therefore, y refer to the

y‖2 ≤ ε (10)

where ‖·‖ denotes the Euclidean norm for vectors, ‖·‖1 represents `1-norm, ‖·‖2 represents `2-norm,
which forces the residual x1 −
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In order to overcome the drawbacks of the frequency spectrum by employing the FFT algorithm
and obtain the super-resolution frequencies of the OFDM signal’s subcarriers for the phase-based
algorithm, this paper utilizes the sparse representation to decouple subcarriers in the frequency domain.
The goal of the paper is to explore how to employ the sparse representation methodology to obtain
the super-resolution frequency spectrum of the OFDM signal. Considering that the received data of
each sensor under UCA contains the same components of frequency, we employ the first sensor’s
received data x1 to obtain the super-resolution frequencies of the OFDM signal’s subcarriers, which
can be expressed as

x1 = Φy (6)

where
x1 = [x1[1], x1[2], · · · , x1[N]]T (7)

y =
[
y[1], y[2], · · · , y

[
Ny
]]T (8)

Φ =
1

Ny




1 1 · · · 1
1 ej(2π/Ny)·1·1 · · · ej(2π/Ny)·1·(Ny−1)

...
...

...
...

1 ej(2π/Ny)·(N−1)·1 · · · ej(2π/Ny)·(N−1)·(Ny−1)




N×Ny

(9)

(•)T denotes the transpose operator, Φ ∈ CN×Ny is a known matrix which is referred to as a dictionary
with N < Ny, Ny is the dimension of vector y, y refer to a representation of the received data x1

with respect to the dictionary, which is sparse if there are few non-zeroes among the possible entries.
Generically, this formulation is referred to as sparse approximation. The assumption of sparsity of
y is significant when we try to obtain the unique solution because the problem in (6) is ill-posed.
Only when y is sparse enough can we achieve the precise estimation of the frequencies and phases of
the OFDM signal.

In order to obtain sparse representation y in (6), considering the problem in (6) is ill-posed and
has many solutions, we attempt to solve an optimization problem of the following form

min‖y‖1 s.t‖x1 −Φy‖2 ≤ ε (10)

where ‖·‖ denotes the Euclidean norm for vectors, ‖·‖1 represents `1-norm, ‖·‖2 represents `2-norm,
which forces the residual x1 − Φy to be smaller than a threshold ε. Therefore, y refer to the

y to be smaller than a threshold ε. Therefore, y refer to the
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super-resolution frequency spectrum, and the frequency estimation of the pth subcarrier can be
obtained as

f̂p = fskp/Ny (11)

where fs is the sampling frequency, kp is the position of the pth peak in y. By turning to sparse
representation framework, we are able to achieve super-resolution in the frequency domain. Further,
the estimated frequencies can be utilized to calculate the corresponding phases of the received data.

4. 3-D Parameter Estimation of the OFDM Signal

In order to obtain 3-D position of the OFDM signal, this paper utilizes the phase difference of the
adjacent sensors in a matrix form to estimate the 3-D parameters.

The phase of the pth subcarrier at the mth sensor can be estimated as

ηm,p = arg
(
Xm(kp)

)

=
(

2π f̂pR/c
){

ζm,p(φp, θp)−
(

R/2rp
)(

1− ζm,p(φp, θp)
2
)}

+ 2πq
(12)

for m = 1, 2, . . . , M, where Xm
(
kp
)

represents the value of the pth peak in frequency spectrum by
performing sparse representation at the mth sensor, c is speed of light, q is a definite integer. The phase
difference of the adjacent sensors for the pth subcarrier can be written as

um,p = ηm,p − ηm+1,p

=
(

2π f̂pR/c
){[

ζm,p(φp, θp)− ζm+1,p(φp, θp)
]
+
(

R/2rp
)[

ζ2
m,p(φp, θp)− ζ2

m+1,p(φp, θp)
]}

+ 2πq1
(13)

for m = 1, 2, . . . , M− 1, where ζm(φ, θ) = cos(γm − φ) sin θ with γm = 2π(m− 1)/M, q1 is a definite
integer. The phase ambiguity problem has already been well addressed in [9]. To guarantee no phase
ambiguity in um,p, the condition R ≤ λ/4 is assumed to ensure um,p ∈ [−π, π). By observing (13),
when q1 = 0, there is no phase ambiguity about the adjacent sensors’ phase difference. When q1 6= 0,
according to the method in [9], we can employ virtual short baseline formed by the same sensor before
and after rotation instead of that of the adjacent sensors. Due to the fact that the short-based-line is
less than the maximal rotation angle, which can avoid phase ambiguity in the phase-based method.

It can be noticed that ζm(φ, θ) can be decomposed by employing angle transformation formula of
trigonometric function, and ζ2

m,p(φp, θp) by employing the double angle formula of trigonometric
function. Therefore, by extending the scheme in [8] to decouple the phase difference um,p, we
reformulate (14) as the form of matrix

u = Ab (14)

where
u =

c
2πR

[u1, u2, . . . , uM−1]
T (15)

A =




cos(γ1)− cos(γ2) sin(γ1)− sin(γ2) cos(2γ1)− cos(2γ2) sin(2γ1)− sin(2γ2)

cos(γ2)− cos(γ3) sin(γ2)− sin(γ3) cos(2γ2)− cos(2γ3) sin(2γ2)− sin(2γ3)
...

...
...

...
cos(γM−1)− cos(γM) sin(γM−1)− sin(γM) cos(2γM−1)− cos(2γM) sin(2γM−1)− sin(2γM)




(16)

b =




cos(φ) sin(θ)
sin(φ) sin(θ)

(R/4r) cos(2φ) sin2(θ)

(R/4r) sin(2φ) sin2(θ)


 (17)

for m = 1, 2, . . . , M − 1, where um = 1
P

P
∑

p=1
um,p / f̂p represents the average of all subcarriers’ phase

differences at the mth sensor. The method in [8] for the single-frequency source can be promoted and
employed to estimate the individual subcarrier’s 3-D localization, which approximately represents the
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3-D localization of the OFDM signal. However, the method in [8] does not make full use of subcarriers’
frequencies and phase differences. It can be noticed that the improved algorithm utilizes the normalized
phase differences of the OFDM signal’s subcarriers, which can obtain precise localization of the
near-field OFDM source.

Note that only the matrix b includes the parameters of azimuth angle, elevation angle and range.
By using the least square method, the optimal solution of b can be estimated as

b̂ =
[

b̂1 b̂2 b̂3 b̂4

]T
= (ATA)

−1
ATu (18)

As a result, the estimation of the OFDM signal’s azimuth angle, elevation angle and range are
respectively obtained from (16)

φ = arg
{

b̂1 + jb̂2

}
(19)

θ = arcsin
{√

b̂1
2 + b̂22

}
(20)

r =
R
4

b̂1
2 + b̂2

2
√

b̂32 + b̂4
2

(21)

The flow chart of the proposed closed-form algorithm based on phase difference for a near-field
OFDM signal’s 3-D localization is shown in Figure 4.
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5. Simulation Results

In this section, simulations are performed to demonstrate the effectiveness of our proposed
algorithm. The results show that the proposed algorithm can accurately estimate the frequencies and
the corresponding phases of the OFDM signal’s subcarriers as well as the 3-D position of the near-field
OFDM signal.

5.1. Performance of Sparse Representation

In order to verify that sparse representation can decouple the subcarriers of the OFDM signal
in the frequency domain and obtain the corresponding phases, we consider a simulation that the
OFDM signal has 8 subcarriers and the carrier frequency fc = 100 MHz. After the processing of the up
converters, the minimal frequency of subcarrier is 100 MHz and the frequency spacing is 0.5 MHz,
which belongs to the wideband source. Besides, the subcarrier’s phase in the duration of the OFDM
elementary symbol is modulated by employing 8 Phase Shift Keying (8PSK), which is shown in Table 1.
For all examples, we set an eight-sensor symmetric UCA with radius R = 0.6 m. Due to the fact that
the maximum frequency of the subcarrier is 103.5 MHz and the corresponding minimum wavelength
is 2.90 m, it is can be noticed that the radius is less than the a quarter of the minimum wavelength,
which can guarantee that there is no ambiguity for the phase-based algorithm. The sampling frequency
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and snapshot number are set at 2 GHz and 4000, respectively. At the same time, the FFT algorithm is
executed to perform the comparison of the frequency estimation.

Table 1. The frequencies and phases of the OFDM signal’s subcarriers.

Subcarrier 1 2 3 4 5 6 7 8

Frequency (MHz) 100 100.5 101 101.5 102 102.5 103 103.5
Phase (rad) −π −3π/4 −π/2 −π/4 0 π/4 π/2 3π/4

When the signal-to-noise ratio (SNR) is set at 0 dB and 20 dB, the frequency spectrum of the
first sensor’s received data are respectively shown in Figure 5a,c, where the red lines represent the
real frequency of subcarriers, the black curve represents the frequency spectrum by employing the
FFT algorithm through padding zeros at the tail of the discrete received data, and the blue curve
represents the frequency spectrum by performing sparse representation. It is noteworthy that the
peaks by employing the FFT algorithm do not correspond to the actual values but the peaks of the
sparse representation can estimate the subcarriers’ frequencies accurately. The phase spectrum are
shown in Figure 5b,d, where the red hollow dots represent the real phases of subcarriers, the blue solid
dots represent the corresponding phases of the peaks in the frequency spectrum by employing the
FFT algorithm and the × shape dots represent the corresponding phases of the peaks by employing
sparse representation. It is can be seen that the FFT algorithm loses efficacy for the frequency and the
corresponding phase estimation but the results of the proposed sparse representation is corresponding
to the actual values. The conclusion could be reached that the proposed method of sparse representation
is superior in the performance for estimating the frequencies and the corresponding phases for the
OFDM signal.
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5.2. Performance of Location

In this section, in order to demonstrate the superior 3-D parameter estimation performance of
the proposed algorithm, due to the fact that the method in [8] for the single-frequency source can be
promoted and employed to estimate the individual subcarrier’s 3-D localization, which approximately
represents the 3-D localization of the OFDM signal, the first and the fourth subcarriers’ localization
results by employing the method in [8] are executed to perform the comparison. The results are
evaluated by employing the estimated root mean square errors (RMSEs) from the average results of
500 independent Monte Carlo simulations for the mentioned OFDM signal located at (20◦, 50◦, 6 m).

When the SNR is set as 20 dB, the pth subcarrier’s wavelength λp in [8] can be calculated by c/ fp,
where c is speed of light and fp is the pth subcarrier’s frequency. The 3-D position simulation results are
shown in Table 2 and Figure 6. Due to the fact that the method in [8] only considers the single-frequency
source which can be referred to as the narrow-band, but the OFDM source is a form of mono-frequency
source, which needs to consider the impact of frequency, it can be seen from Table 2 that the result of
the proposed method employed the normalized subcarriers’ phase differences is closer to the actual
location, and the performance of the proposed method is superior to the method in [8].

Table 2. 3-D parameter estimation comparison.

Parameter Estimation Actual Parameter Proposed Method Subcarrier 1 1 Subcarrier 1 4

Azimuth angle (degree) 20 20.01 20.17 20.05
Elevation angle (degree) 50 49.98 50.78 51.51

Range (m) 6 6.01 5.57 6.80
1 represents the individual subcarrier’s localization by directly employing the method in [8].

As shown in Figure 6, the + shape represents the OFDM signal real location, the red dot represents
the location of the proposed method and the blue dots represent the locations of the individual
subcarriers’ locations by employing the method in [8]. Due to the fact that the method in [8] is only
suitable for the single-frequency source, it is can be noticed that the positioning results of the individual
subcarriers are distributed around the OFDM signal’s real location, and the proposed algorithm with
comprehensive utilization of the subcarriers’ phase differences and frequencies can achieve a more
precise location.Sensors 2018, 18, 226 10 of 11 
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In order to further demonstrate the superiority of the proposed method for the near-field OFDM
signal localization, we compare the RMSEs of the proposed algorithm to that of the method by directly
employing the individual subcarrier alone and the method in [8]. The logarithm of the RMSEs are
shown in Figure 7, where the red lines represent the parameter estimation of the proposed method, the
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blue lines represent the fourth subcarrier’s parameter estimation by employing the method in [8] and
the green lines represent the first subcarrier’s parameter estimation by employing the method in [8].
As the proposed algorithm makes full use of subcarriers’ phase differences, it can be noticed that the
proposed algorithm can obtain the near-field OFDM signal’s location effectively with increased SNR.
Moreover, although there are errors in the frequency estimation by employing sparse representation
under low SNR, it can be seen that the improved method for the localization of the OFDM signal can
reduce errors and the performance is superior to method in [8] especially for elevation angle.
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6. Conclusions

A closed-form algorithm based on phase difference is proposed for the 3-D location (azimuth
angle, elevation angle and range) of the near-field OFDM signal under UCA. The proposed algorithm
synthetically utilizes the estimated subcarriers’ phase differences of the adjacent sensors and employs
the least square method to acquire precise 3-D parameters of the OFDM signal’s location, which
promotes the phase-based method in [8] for a single-frequency source to the specific practical
application of the OFDM source. Moreover, as the mono-frequency estimation is significant to the
phase-based method and the existing method cannot resolve the frequencies of the OFDM signal’s
subcarriers in the frequency domain, the advantage of the proposed algorithm is that it employs
sparse representation to obtain the super-resolution frequencies and the corresponding phases of the
OFDM signal’s subcarriers in the case of unknown signal’s parameters. Compared to the individual
subcarriers’ localization results by directly employing the method in [8], the proposed algorithm
makes full use of subcarriers’ phase differences and has superior performance for the 3-D parameter
estimation especially for elevation angle.

Due to the fact that the subcarriers of the OFDM source can be referred to as the single-frequency
sources and the far-field source can be referred to as the condition that the near-field source’s range is
infinite, the proposed algorithm can be also applicable to the localization of parameter estimation in
the case of the multiple near-field mono-frequency sources or a far-field OFDM signal.
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